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Abstract. Arithmetic hash functions defined over prime fields have been actively
developed and used in verifiable computation (VC) protocols. Among those, elliptic-
curve-based SNARKs require large (256-bit and higher) primes. Such hash functions
are notably slow, losing a factor of up to 1000 compared to regular constructions like
SHA-2/3.
In this paper, we present the hash function Skyscraper, which is aimed at large
prime fields and provides major improvements compared to Reinforced Concrete
and Monolith. First, the design is exactly the same for all large primes, which
simplifies analysis and deployment. Secondly, it achieves a performance comparable
to cryptographic hash standards by using low-degree non-invertible transformations
and minimizing modulo reductions. Concretely, it hashes two 256-bit prime field
(BLS12-381 curve scalar field) elements in 135 nanoseconds, whereas SHA-256 needs
42 nanoseconds on the same machine.
The low circuit complexity of Skyscraper, together with its high native speed, should
allow a substantial reduction in many VC scenarios, particularly in recursive proofs.
Keywords: hash functions · zero-knowledge · circuits

1 Introduction
The area of computational integrity has seen a dynamic development in the past couple
of years, mainly fueled by the need for efficient constructions for verifiable computation
[BBHR18, BDFG21, CBBZ23, DP24]. In part, the development has been accelerated by
blockchain applications, where often large chunks of transaction executions need to be
proven quickly and, most importantly, in a succinct way.

Using new advancements in proving technology, the computational cost for creating
these proofs has decreased significantly over the last couple of years, in some cases even
by several orders of magnitude. Since this cost is directly related to the funds consumed
in the entire process, making these methods faster and even more efficient is a crucial
direction in research. In particular, the increased feasibility of these approaches is leading
to many new use cases that go significantly further than merely transferring assets on a
main chain. For example, this includes verifying data storage with Filecoin [Fil24], efficient
rollups, private voting systems, and anonymous credentials for age verification or accessing
services.

Today, the research areas in this space can mainly be split into two larger settings,
namely, one considering small prime numbers of around 32 or 64 bits and one considering
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larger prime numbers of around 256 bits. Protocols in the latter setting mostly make use
of arguments based on elliptic curve operations [Gro16, BDFG21]. They are also natively
used in on-chain operations on various L1 blockchains (like Ethereum), being supported
by native functions like elliptic curve pairings over BN254.

In many cases, the cryptographic building blocks used in these two settings are different.
For example, for protocols based on coding theory arguments like FRI [BBHR18], using
smaller finite fields makes sense for increased performance, which is mainly due to faster
interpolations and more efficient base field operations for commitments and evaluations in
general (assuming use cases where smaller fields are sufficient). This creates new challenges
for the corresponding proving systems, such as the need for new fast Fourier transform
(FFT) algorithms and efficient hash functions over small finite fields. These issues have
been addressed in multiple recent works [HLP24, GKL+24].

In protocols based on elliptic curves, a prover is forced to compute over finite fields
whose sizes are proportional to the size of the elliptic curve and, thus, the final security.
This means that the underlying base field for e.g. constraint evaluations has to be a
comparatively large one in the order of ≈ 256 bits. It becomes then a more challenging
task to achieve a fast prover [LWY+23, ZHY+24, LFG23, BH23].

1.1 Hash Functions in Proving Systems
Having established these two areas, it remains to explain the need for efficient, often called
“circuit-friendly”, hash functions in this context. They are used both directly as a building
block for polynomial commitment schemes such as FRI and indirectly as random oracle
replacements in various protocols. We give a non-exhaustive overview of hash function
applications outside of commitment schemes in the following.

Provable Randomness. In a Fiat-Shamir transformation, challenges are derived from
current transcripts in order to make a protocol non-interactive. Using hash functions that
instantiate a random oracle to generate these challenges, one may want to prove succinctly
that they have been evaluated in an honest way.

Recursion-Based Verifiable Computation. Recursion-based schemes are proofs about
previous proofs, where each step ensures the validity of a previous one. A hash function
is necessary to compress the inputs to each proof, which otherwise would blow up and
make the scheme infeasible. Folding schemes [KST22, KS24] are a classical example of
this technique.

Merkle Membership Proofs. Circuit-friendly hash functions over large finite fields can
also be used to natively construct Merkle trees with large leaf values and prove openings
efficiently using, e.g., pairings over BN254. This can also be done directly on-chain and is
significantly cheaper (in terms of gas costs) than any other approach of proving Merkle
tree openings with smaller primes (without an additional conversion step from one proving
system to another).

Hash-Based ZK Proof Systems. Fast circuit-friendly hash functions over large fields
are crucial in various hash-based ZK proof systems, for example when requiring efficient
recursion. This includes StarkWare’s Stone prover [Sta24] and Fractal [COS20].

Recursion Based on GKR and Similar Protocols. GKR and similar protocols can be
used for recursion, and are often used together with circuit-friendly hash functions in this
context, as is done e.g. in [BSB23].
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In this paper we will focus on the above settings, and we propose a new hash function
that is significantly more efficient than other designs [GKR+21, GKL+22], both in terms
of plain performance and in terms of circuit performance.

1.1.1 Hash Functions for Large Finite Fields

Regarding hash functions, most efforts in the last couple of years have been put into
efficient hash functions and new design strategies for smaller prime fields [GKL+24,
SLS+23, Sal23], which is in stark contrast to the requirements of the settings discussed
above. While the recent constructions Anemoi [BBC+23] and Griffin [GHR+23] offer
suitable instantiations, the security of both of them is questionable for some parameter
choices [BBL+24, KLR24]. The only other new construction focusing on this scenario is
Reinforced Concrete [GKL+22], arguably the first one making heavy use of the lookup
argument [GW20]. However, it is significantly slower (in plain performance) than more
classical hash functions, mainly due to a complex interplay between lookup and base field
operations in its decomposition step.

One may try to adapt recent fast constructions such as Tip5 and Monolith [SLS+23,
GKL+24] for large finite fields, but both of them require prime numbers of a special form,
which does not match the prime fields we need (e.g., BN254).

1.2 Contribution
We make a significant step forward in the performance of hash functions defined over large
prime fields. Our new design Skyscraper runs within a small factor of the SHA-3 standard
and is on par with recent designs over small and specially crafted prime fields [GKL+24],
see Figure 1. This allows for faster verifiable computation protocols that rely on large
prime field arithmetic such as folding schemes [KST22] and earlier STARK schemes like
the Stone Prover.1 Our new design removes the bottleneck of hash computations prevalent
in such protocols. In concrete numbers, we achieve the following.

• Performance. We do not use expensive modular multiplications but only a few (6)
Montgomery reductions and 18 modular additions. The permutation over F2

p (and
thus the 2-to-1 compression function) runs within 200ns for most 256-bit primes.

• Circuit Size. For 256-bit fields, an arithmetic circuit would contain 6 squarings
and 128 8-bit lookups.

This performance increase has been achieved via the following ideas.

• Replacing the SPN-based scheme with a Feistel network allows using non-invertible
quadratic transformations, whereas the SPN would require power maps of degree 5
and higher [GKR+21].

• High-degree components can also be non-invertible and thus identical for all possible
prime domains. This allows defining Skyscraper in a uniform way for any prime.

• The multiplication over the prime field is sped up using the Montgomery fast
arithmetic trick. Since the power mapping degree is at most 2, and there is no matrix
multiplication, it is possible to apply the Montgomery multiplication universally
throughout the scheme.

By focusing on large primes and a small number of elements in the state, we arrive at a
simple design that allows for easy third-party scrutiny.

1https://github.com/starkware-libs/stone-prover

https://github.com/starkware-libs/stone-prover
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Figure 1: Native performance for arithmetization-friendly hashing of ≈ 500 bits over Fp

for large (BLS12-381, 255 bits) and small (Goldilocks, 64 bits) primes. Setup details in
Section 5.

To enhance both the accessibility and reliability of our results, we provide a reference
implementation in SageMath.2 Further, we provide a Rust codebase for benchmarks.3

2 Skyscraper

2.1 Domain
The Skyscraper permutation operates on prime fields Fp, where p ≥ 2248, and with the
additional condition that m := ⌈log2(p)/8⌉ is even.4 We present concrete examples of
primes used in practical applications in Table 1.

Let n ∈ {1, 2, 3} be a positive integer. The state consists of two branches. Each
branch is an element of the field extension Fpn ≡ Zp[X]/G(X), where G is an irreducible
polynomial of degree n. Hence, the state is an element of F2

pn . A summary of all parameters
is given in Table 2.

Table 1: Some primes p and irreducible polynomials G of degree n considered in our
practical evaluations over the field Fpn ≡ Zp[X]/G(X).

Curve Prime p n = 2 n = 3
BLS12-381 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001 X2 + 5 X3 + 2
BN254 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 X2 + 5 X3 + 3
Pallas 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001 X2 + 5 X3 + 2
Vesta 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001 X2 + 5 X3 + 2

2.2 Modes of Operation
The Skyscraper permutation can be used within a sponge or in a 2-to-1 compression
function.

2https://github.com/skyscraper-hash/skyscraper-sage
3https://extgit.isec.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
4This is common for most applications due to performance reasons.

https://github.com/skyscraper-hash/skyscraper-sage
https://extgit.isec.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
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Table 2: Summary of parameters for Skyscraper : F2
pn → F2

pn .
p Security (κ) n # Feistel Rounds Chunk-size s # Chunks m

≥ 2248 124 bits {1, 2, 3} 10 8 bits
⌈

log2(p)
s

⌉
(even)

Sponge-Based Schemes. First, Skyscraper can instantiate a sponge [BDPV07, BDPV08],
and thus various symmetric constructions such as variable-length hash functions, com-
mitment schemes, authenticated encryption, and stream ciphers. The recently proposed
SAFE framework [KBM23] instructs how to handle domain separation and padding in
these constructions. In a sponge, the permutation state is split into an outer part with a
rate of r elements and an inner part with a capacity of c elements. We set c = 1, which
allows for a 128-bit security level for prime fields of size ≈ 2256 and larger.

Compression Function. We also suggest a fixed-length 2-to-1 compression function, that
can be used in, e.g., Merkle trees. Concretely, it takes 2n Fp elements as input and
produces n Fp elements as output. It is defined as

x ∈ F2n
p ≡ F2

pn 7→ Truncn(P(x) + x) ∈ Fn
p ≡ Fpn , (1)

where Truncn(·) yields the first n elements of the input.

2.3 Overview and Round Function
Over F2

pn , the Skyscraper permutation is defined as a sequence of 10 consecutive functions
over F2

pn such that

(xL, xR) 7→ S9 ◦ S8 ◦ B7 ◦ B6 ◦ S5 ◦ S4 ◦ B3 ◦ B2 ◦ S1 ◦ S0(xL, xR), (2)

where Si and Bi are illustrated in Figure 2 and defined as follows.

xL xR

yL yR

S1 ◦ S0

B3 ◦ B2

S5 ◦ S4

B7 ◦ B6

S9 ◦ S8

(a) Overview of Skyscraper.

x2/σ + γi

x2/σ + γi+1

⊞

⊞

(b) Details of Si+1 ◦ Si.

B′(x) + γi

B′(x) + γi+1

⊞

⊞

(c) Details of Bi+1 ◦ Bi.

Figure 2: Overview of the design.

Square Operation. The operation Si : F2
pn → F2

pn is a Feistel round with the round
function being the squaring operation followed by the addition of a pseudo-random constant
γi, i.e.,

(xL, xR) 7→
(

xR + (xL)2

σ
+ γi, xL

)
, (3)

where σ is a Montgomery constant s.t. (2256 mod p) for p < 2256 and (2512 mod p) for
other p.



6 Skyscraper: Fast Hashing on Big Primes

Input x0 x1

Decomp

Rotm/2

Sbox T · · · T T T T · · · T T · · · T T T T · · · T

Comp y0 = B′
0(x0 + x1 ·X) mod p y1 = B′

1(x0 + x1 ·X) mod p

w0 w1 . . . w m
2 −1 w m

2
. . . wm−2 wm−1 wm wm+1 . . . w 3m

2 −1 w 3m
2

. . . w2m−2 w2m−1

w′
0 w′

1 . . . w′
m
2 −1 w′

m
2

. . . w′
m−2 w′

m−1 w′
m w′

m+1 . . . w′
3m

2 −1 w′
3m

2
. . . w′

2m−2 w′
2m−1

Figure 3: The Bar layer B′ : Fpn → Fpn for n = 2 in detail, including the decomposition,
the rotation, the S-box, and the composition.

Bars Operation. The Bars operation Bi : F2
pn → F2

pn is defined as

(xL, xR) 7→ (xR + B′(xL) + γi, xL), (4)

where γi is a pseudo-random round constant and the function B′ : Fpn → Fpn , illustrated
in Figure 3, is defined as follows.

1. Decomp. Interpret x ∈ Fpn as (x0, x1, . . . , xn−1) ∈ Fn
p , then split each xj ∈ Fp into

m = ⌈log2(p)/8⌉ 8-bit chunks, i.e.,

x 7→ (w0, w1, . . . , wn·m−1) ∈ (F8
2)m (5)

such that xj =
∑m−1

ℓ=0 28(m−1−ℓ) · wj·m+ℓ for all 0 ≤ j < n.

2. Rotm/2. Apply a cyclic rotation to w by m/2 elements such that

w′
k ← w(k+m/2) mod n·m, 0 ≤ k < n ·m. (6)

(Recall that m/2 is an integer by assumption on p.)

3. Sbox. Apply an (invertible) 8-bit operation T to each w′
k independently:

zk ← T(w′
k), 0 ≤ k < n ·m, (7)

where T : F8
2 → F8

2, borrowed from Monolith and [Dae95], is defined as

T(v) =
(
v ⊕

(
(v ≪ 1)⊙ (v ≪ 2)⊙ (v ≪ 3)

))
≪ 1. (8)

4. Comp. Map (z0, z1, . . . , zm·n) to (y0, . . . , yn−1) via

yj =
(

m−1∑
ℓ=0

28(m−1−ℓ) · zj·m+ℓ

)
mod p (9)

and interpret the vector as y ∈ Fpn .

Concrete examples for n ∈ {1, 2, 3} are given in Table 3.

Round Constants. We generate the round constants γi ∈ Fpn represented as

γi = αi,0 + αi,1 ·X + · · ·+ αi,n−1 ·Xn−1, (10)

coefficient-wise for i ∈ {1, . . . , 8}, j ∈ {0, . . . , n− 1} such that

αi,j = SHA-256( (i− 1)n + j︸ ︷︷ ︸
32-bit, big-endian

|| Skyscraper︸ ︷︷ ︸
28-byte string

) mod p. (11)

The round constants γ0 and γ9 are set to zero.
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Table 3: Examples of B′ : Fpn → Fpn for the 15-bit prime p = 28657, n ∈ {1, 2, 3}, and
m = 2. The extension field modulus is Xn + 5.

Steps n = 1 n = 2 n = 3
x ∈ Fpn 17cd 1e83 + 142b · X 09ce + 4aae · X + 2d7c · X2

x ∈ Fn
p (17cd) (1e83,142b) (09ce,4aae,2d7c)

1. Decomp (17,cd) (1e,83,14,2b) (09,ce,4a,ae,2d,7c)
2. Rotm/2 (cd,17) (83,14,2b,1e) (ce,4a,ae,2d,7c,09)
3. Sbox (d3,0e) (17,28,46,bc) (d9,94,1d,1a,fa,12)
4. Comp (631d) (1728,46bc) (69a3,1d1a,1a30)

y ∈ Fpn 631d 1728 + 46bc · X 69a3 + 1d1a · X + 1a30 · X2

2.4 Security Level
We claim at least 124 bits of security against collision and preimage attacks on both the
sponge hash function and the 2-to-1 compression function instantiated by the Skyscraper
permutation for all primes larger than 2248.5

For the inner Skyscraper permutation we also claim security against CICO attacks. By
definition, a permutation P : Ft

p → Ft
p is secure against the CICO attack if there is no

algorithm that finds x, y ∈ Ft−1
p such that P(0, x) = (0, y) faster than p calls to P or its

inverse [BDPV11].6 Note that the CICO security directly translates to the short-message
preimage resistance: a preimage attack of complexity T yields a CICO solver with the
same complexity. As this reduction is one-directional, we effectively strengthen our security
claims with the CICO security. Note that if Skyscraper is defined over the extension field,
for the CICO security we consider an equivalent representation over the base field.

We do not, however, claim security against finding more sophisticated relations between
inputs and outputs of Skyscraper permutation, such as zero sums and zero-sum partitions.

3 Design Rationale
3.1 Skyscraper Core Ideas
When designing a new function, we tried to

• improve the performance of hashing over large prime fields,

• make the design as simple as possible to minimize the number of cryptanalysis
vectors, and

• use lookups/S-boxes to increase the algebraic degree and become less prone to
algebraic attacks.

In order to achieve these goals, we constructed the function based on the following
principles.

1. Feistel structure instead of substitution-permutation network (SPN) to allow for
non-invertible nonlinear mappings;

2. Alternate S-boxes and squarings as Feistel round functions to withstand attacks;

3. Montgomery multiplication instead of regular squaring;
5Technically, we could claim 248 bits of security against preimage attacks in the compression mode,

but such a claim is useless as most protocols do not claim security beyond 128 bits anyway.
6The actual position of the zero value does not matter, and we place it upfront without loss of generality.
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4. Keeping the same algorithm for wide states by switching to extension fields;

5. 8-bit, software-efficient S-boxes to have both small lookup tables and high native
performance;

6. Rearranging S-box outputs using a single shift to get a high degree over the base
field;

In the following, we detail our approach and argue each principle separately.

3.2 Feistel Instead of SPN
We have looked into the instances of Poseidon over certain domains and observed that
the power mapping impedes the performance significantly. One reason is that there are
few tricks that boost multiplication over prime fields, where the prime does not have any
special form. One of the tricks available, the Montgomery multiplication (see the next
subsection), scales poorly as the degree of the power mapping grows. As the minimal
degree for xd to be an invertible transformation is often 5 or 7 (based on popular prime
number choices such as BN254), it has been natural to seek a construction that does not
need invertibility. We have also learned from MiMC and Monolith [GKL+24] that the
Feistel structure provides sufficient cryptographic strength if used with care, even though
those designs do not employ the Montgomery technique for performance.

In order to get a high algebraic degree quickly, we alternate a low-degree Feistel round
function with a high-degree one which is based on S-boxes. From a different standpoint,
we alternate between a statistically strong and a statistically weak round function, thus
having a strong transformation overall.

3.3 Montgomery Multiplication
In modular arithmetic, multiplication and subsequent reduction are among the most
expensive operations. This cost highly depends on the modulus and the reduction technique.
In Skyscraper (see Section 2), we work on large prime moduli. One efficient optimization
is the Montgomery modular multiplication [Mon85](i.e., multiplication with subsequent
Montgomery reduction). Given c = a · b for a, b ∈ Fp and σ > p, where σ and p are
coprime, the reduction computes c · σ−1 mod p, for 0 ≤ c < σ · p. While classical modular
reduction computes c′ ≡ c mod p as c′ = c− ⌊ c

p⌋ · p, the Montgomery reduction replaces
the expensive trial division by p with multiplication by a constant and a reduction and
division by σ (see Algorithm 1). This algorithm is thus most efficient if σ is set as a
multiple of machine words (i.e., σ = 2256 for the primes we are interested in) as reductions
are then free and divisions represent bit shifts.

Algorithm 1: MontReduce.
Input: c ∈ {0, . . . , pσ − 1}

1. c̃← (c · ((−p)−1 mod σ)︸ ︷︷ ︸
precomputed

) mod σ

2. r ← (c+c̃p)
σ

3. r ←

{
r − p r ≥ p

r else

4. Return r ≡ cσ−1 mod p
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Features. As mentioned above, the Montgomery reduction computes c′ = cσ−1 mod p.
Usually, this effect is compensated by transforming a value into its Montgomery represen-
tation by computing

a′ = a · σ = MontReduce(a · σ2). (12)

The Montgomery multiplication of two values a′, b′ in this representation,

c′ = a · b · σ = MontReduce(a′ · b′), (13)

leads to a result c′ again in this representation. As one must transform into and out of the
Montgomery representation only once for a given multiplication chain, the performance
amortizes with the number of multiplications.

Our design (see Figure 2) has interleaved evaluations of the squaring and Bars. While
evaluating Bars on (x′

L, x′
R) = (xLσ, xRσ) would retain its high nonlinearity, the function

description would fundamentally change, losing the advantages of our chunk representation.
As a result of these considerations, we include the constant σ−1 in the definition of the
squaring operation. This step removes the cost of transforming the representation while
retaining the desired structure of Bars.

3.4 Working with a Wider State
As some applications need a high-rate sponge, e.g. for a high-arity Merkle tree, we have
had to scale the basic version, which deals with two Fp elements, to a larger state. Going
to extension fields is a natural choice, and the Bars operation scales naturally to those, as
it works on the byte level and is, to a large extent, agnostic to whether the outer field is
an extension. However, for the squaring operation, this change is less trivial. There exist
at least three options:

1. Treat the extension field element as a vector and replace a single squaring operation
with an SPN, which can be non-invertible.

2. Again, treat the input as a vector and for n > 1 replace the squaring Feistel round
function with a Monolith-like combination of a Type-3 Feistel and an MDS matrix.

3. Treat the input as an atomic element and use the squaring operation over the
extension field Fpn (see Figure 4).

The first option seems fragile, as for non-invertible SPNs we do not get nice statistical
bounds, whereas an invertible SPN would be too expensive in computation due to a
higher-degree power mapping. Thus we opted for the latter two.

x2/σ x2/σ x2/σ

×M + (γi,0, γi,1, . . . , γi,2n−1)

x0 ∈ Fp x1 ∈ Fp . . . x2n−1 ∈ Fp

y0 ∈ Fp y1 ∈ Fp . . . y2n−1 ∈ Fp

⊞ ⊞

(a) T3FM

x2/σ + γi

xL ∈ Fpn xR ∈ Fpn

yL ∈ Fpn yR ∈ Fpn

⊞

(b) ExtSq

Figure 4: The two options considered for the squaring during the design phase. The Bars
operation remains as in Section 2.3.
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Table 4: Comparing the impact of different strategies for a wide state of size t = 2n
elements in Fp. The squaring operation (Sq) becomes either a classical Feistel with input
(xL, xR) ∈ F2

pn (denoted by ExtSq), or a Type-3 Feistel followed by an MDS matrix
multiplication with input x ∈ F2n

p (denoted by T3FM). The running time is in nanoseconds,
setup details are given in Section 5.

t = 2 t = 4 t = 6
Sq (F2

p) ExtSq (F2
p2) T3FM (F4

p) ExtSq (F2
p3) T3FM (F6

p)

Bars Feistel round 6 12 19
Square Feistel round 13 60 96 135 198
Skyscraper Perm. 135 320 497 722 887

As a baseline for comparison, we implement the extension field squaring where the
two main design decisions are the squaring algorithm and reduction polynomial G(X).
We base our implementation on the reduction algorithms from [DhSD06] and employ
G(X) = Xn + β. The concrete choice of β depends on the prime p s.t. G(X) is irreducible
in Fp. For the primes we considered in our implementations, we provide the irreducible
polynomials in Table 1. For a possible MDS matrix combined with the Type-3 Feistel
approach we decided to sample matrices with small entries s.t. matrix multiplication can
be implemented with Fp additions only. With this approach, the smallest circulant MDS
matrices are circ(1, 1, 2, 3) and circ(1, 4, 2, 4, 3, 1), which we implemented with 13 and
42 additions, respectively.

The results of implementing the latter two scaling options are presented in Table 4.
We see that the last option, i.e. the extension field squaring, is faster by about 30%. One
could calculate that even though the 2n− 1 base field squarings in the Type-3 options are
faster than a single extension field squaring, the follow-up matrix multiplication consumes
all that advantage and much more than that.

Regarding the benchmarks of the full Skyscraper permutation, we have to interpret the
numbers according to the actual rate of hashing. Assuming the sponge has capacity 1, we
hash n− 1 F elements per permutation call. Thus, in the Feistel-MDS combination, the
hashing rate is 166 ns/element for rate 3 and 178 ns/element for rate 5. In the extension
field squaring case, the numbers drop to 106 ns/elt and 147 ns/elt, respectively.

Eventually we conclude that the squaring in the extension field is the best strategy for
small extensions and have fixed our design accordingly.

3.5 High Degree Component: Similarities and Differences of Bars
among Reinforced Concrete, Monolith, Tip5, and Skyscraper

We had to use a high-degree component to counteract algebraic attacks. After we decided
on the Feistel structure, it has become natural to alternate a high-degree round function
with a low-degree one. We were aware of the approach in Tip5 and Monolith to get a high-
degree function from a decomposition-S-box-composition structure, but the requirements
to cover arbitrary prime fields and no invertibility condition in place have opened new
design vectors for us, which we detail below.

Invertibility. The first obvious difference relies on the invertibility of Bars. While the
Bars functions are invertible for Reinforced Concrete, Monolith, and Tip5, this is not
the case in Skyscraper. The main consequence of this is that Skyscraper requires a Feistel
construction to guarantee the invertibility of the entire scheme.
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Table 5: Properties of Bars for different constructions. “No condition on Fp” means
that the construction does not require an assumption on the prime that defines the field.
“Simple decomposition” is related to the simplicity of the decomposition phase.

Invertible No condition on Fp Simple decomposition
Reinforced Concrete ✓ ✓ ✗
Tip5, Monolith ✓ ✗ ✓
Skyscraper ✗ ✓ ✓

No Condition on Fp. Next, we point out that the definition of Bars requires no condition
on Fp in the case of Reinforced Concrete and Skyscraper.7 Instead, in the case of
Monolith (and similarly for Tip5), it is required that the bit representation of p is defined
via substrings of 0s and 1s bits of lengths at least 3 (see [GKL+24, Def. 3] for more details)
in order to achieve the invertibility condition. It is obvious that not all primes satisfy this
condition.

Simple Decomposition. As we have seen before, the Bars function is composed of
several steps, one of which is the decomposition. Both in the case of Monolith, Tip5,
and Skyscraper, this decomposition is simple and intuitive. Any x ∈ Fp is decomposed
in (x0, x1, . . . , xm−1) ∈ Z2n0 × Z2n1 × · · · × Z2nm−1 for suitable n0, n1, . . . , nm−1 (usually
n0 = n1 = · · · = nm−1 = 8) such that

x =
m−1∑
i=0

xi ·
∏
j≤i

2nj . (14)

In the case of Reinforced Concrete, any x is decomposed into (x0, x1, . . . , xm−1) ∈
Zp0 × Zp1 × · · · × Zpm−1 for some integers p0, p1, . . . , pm−1 such that

x =
m−1∑
i=0

xi ·
∏
j≤i

pj . (15)

While the authors of Reinforced Concrete give concrete examples of such a decomposition
for some primes, it is currently unclear how to find p0, p1, . . . , pm−1 for a generic prime p
in order to guarantee efficiency and security of Bars.

We summarize the main differences in the Bars functions between Skyscraper and
Reinforced Concrete, Monolith, and Tip5 in Table 5.

3.6 Number of Rounds
We will see from Section 4 that a combination of two Bars rounds plus two squaring rounds
protects from all existing attacks. As some attacks, like CICO, provide additional freedom
to the attacker, we can assume that they may guess/fix the output of one more Bars round.
We surround this structure with one more Bars and two more squaring rounds at each
side as a security margin and obtain a total of 10 rounds.

4 Security
In this section, we present the security analysis of Skyscraper.

7To be precise, in the case of Skyscraper, we required that ⌈log2(p)/8⌉ is even for simplifying the
presentation only. However, it is possible to generalize the scheme for the case in which ⌈log2(p)/8⌉ is odd
– the only thing that changes is the rotation of the F8

2-chunks in Bars.
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4.1 Properties
We start by discussing some properties of the functions that instantiate Skyscraper.

4.1.1 Statistical Properties of x 7→ x2

Here we list some statistical properties of x 7→ x2. The maximum differential probability of
a function F over Fpn is defined as

DPmax(F) = max
δI ̸=0,δO

|{x ∈ Fpn | F(x + δI)− F(x) = δO}|
pn

. (16)

Lemma 1. The maximum differential probability of x 7→ x2 over Fpn is 1/pn.

Proof. It is trivial to check that (x + δI)2 − x2 = δO is satisfied by x = δO−δ2
I

2δI
only, which

implies the result.

Let ⊙ be the inner product over Fn
p : a⊙b =

∑
ai · bi. The maximum linear correlation

of a function F over Fn
p is defined as

LCmax(F) = max
a ̸=0,b∈Fn

p

|{x ∈ Fn
p | b⊙ F(x) = a ⊙ x}|

pn
. (17)

Lemma 2. The maximum linear correlation of x 7→ x2 over Fpn is 2/p.

Proof. The function x 7→ x2 has degree 2 as a multivariate polynomial over (x1, . . . , xn) ∈
Fn

p . Therefore, for any a, b ∈ Fn
p the linear correlation condition b ⊙ F(x) = a ⊙ x is a

degree-2 equation. By the Schwartz–Zippel lemma, the number of solutions to it is at most
(2 · pn−1)/pn = 2/p.

4.1.2 Algebraic Properties of Bars and of x 7→ x2

We first recall the following results from Monolith [GKL+24].

Lemma 3 (Lemma 1 in [GKL+24]). Let p ≥ 3 be a prime number, and let Fsq denote the
squaring function x → x2 over Fp. Let Fsq be any interpolant of Fsq over F⌈log2 p⌉

2 , i.e.,
for any a < p and its bit representation a we have that Fsq(a) is the bit representation of
Fsq(a). Then Fsq has (multivariate) degree at least d, where d is the maximum positive
integer such that d < log2

√
p and

⌈
2d−0.5⌉ is odd.

Lemma 4 (Lemma 2 in [GKL+24]). Let F be a function that maps Fp to itself with a
differential ∆I 7→ ∆O holding with probability 0 < α < 1, i.e., |{x ∈ Fp | F (x + ∆I) =
F (x) + ∆O}| = p · α. Then we have deg(F ) > α · p, where deg(F ) is the degree of F as a
polynomial over Fp.

The following property directly follows from its analogue in Monolith [GKL+24].

Proposition 1. The Bars function has degree at least 63/256 · p over Fpn .

Proof. Indeed, when viewed as a function over Z256, Sbox admits the differential {+1} 7→
{+2} for 63 inputs out of 256. Taking the chunk rotation into account, the output difference
becomes {+24m+1}. Setting a zero input difference in all other Sbox applications, it follows
that the differential 1 7→ 24m+1 holds for 63/256 of all possible inputs from Fpn . The
degree bound follows immediately by applying Lemma 4.

For the next result, we need to introduce the following definition.
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Definition 1. Given x ∈ Fpn , we denote its bit representation by x̃ ∈ Fn·⌈log2 p⌉
2 . Let F

be a function over Fpn and F be a function over Fn·⌈log2 p⌉
2 . We say that F is an interpolant

of F if
∀x ∈ Fpn : F̃ (x) = F(x̃) .

Lemma 5. Let F be the mapping x 7→ x2 over Fpn with p > 2246. Then any interpolant
of F over Fn·⌈log2 p⌉

2 has multivariate degree at least 123.

Proof. Let F be some interpolant of F over Fn⌈log2 p⌉
2 . By fixing the first (n− 1)⌈log2 p⌉

variables to 0, we get the function Fn, which is an interpolant to the squaring function
over Fp. From Lemma 3, Fn has degree at least d if

⌈
2d−0.5⌉ is odd. As

⌈
2123−0.5⌉ =

7 519 249 036 500 140 985 782 305 389 925 783 029 is odd, the function Fn has degree at
least 123. As deg(F) ≥ deg(Fn), we get the lemma statement.

4.1.3 Linear Approximation of Bars

In order to derive useful linear approximations for Bars, we start by considering simplified
variants of it.

Case: x 7→ x ⊕
(
(x ≪ 1) ⊙ (x ≪ 2) ⊙ (x ≪ 3)

)
. First, let us note that the map

T : x 7→ x⊕
(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

)
over F8

2 has exactly 48 fixed points, including
34 with 0 as the most significant bit. This results from Lemma 6 and Lemma 7.

Lemma 6. Let Eτ be the set defined by

{x ∈ Fτ
2 | x0 = 0 and ∀i ∈ {0, . . . , τ − 1}, xi = 1⇒ xi+1 mod τ = xi−1 mod t = 0}.

Then, the cardinal of Eτ is |Eτ | = Fib(τ + 1), where Fib(τ + 1) is the (τ + 1)-th term in
the Fibonacci sequence.

Proof. Let us show by induction on τ ≥ 2 that there are Fib(τ) elements with LSB (least
significant bit) equal to 0 (i.e. xτ−1 = 0), and Fib(τ − 1) elements with LSB equal to 1.

• For τ = 2. We have
E2 = {(0, 0), (0, 1)}

so that Fib(2) = 1 element is with LSB x1 = 0, and Fib(1) = 1 element is with LSB
x1 = 1.

• For τ + 1. By definition of the set Eτ , if xτ−1 = 1, then xτ = 0, and if xτ−1 = 0,
then xτ ∈ {0, 1}. By induction hypothesis, we have Fib(τ − 1) + Fib(τ) = Fib(τ + 1)
elements with LSB equals to 0, and Fib(τ) elements with and LSB equals to 1.

It follows that the cardinal of the set Eτ is Fib(τ − 1) + Fib(τ) = Fib(τ + 1).

Lemma 7. The fixed points of the map T : x 7→ x ⊕
(
(x ≪ 1) ⊙ (x ≪ 2) ⊙ (x ≪ 3)

)
over Ft

2, with gcd(t, 3) = 1 (necessary condition for the invertibility), are exactly the
Fib(t + 1) + Fib(t− 1) + 1 following elements:

{1} ∪ {x ∈ Ft
2 | ∀i ∈ {0, . . . , t− 1}, xi = 1⇒ xi+1 mod t = xi−1 mod t = 0}.

Proof. First, let us observe that the fixed points of T satisfy the following system of
equations:

∀i ∈ {0, . . . , t− 1} : xi ⊕ (xi+1 mod t · xi+2 mod t · xi+3 mod t) = xi ,
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(a) MSB = 0.

x0

x1

x2

x3

x4

1 + Fib(1)

1 + Fib(2)

1 + Fib(3)

1 + Fib(3)

1

1 0

1 0
×

1 0

1 0
×

1
×

0 1 0

1 0
×

1
×

0 1
×

0 1
×

0

(b) MSB = 1.

Figure 5: Counting fixed points for T when t = 5.

which is equivalent to

∀i ∈ {0, . . . , t− 1} : xi · xi+1 mod t · xi+2 mod t = 0 .

In particular, it means that if there exists i ∈ {0, . . . , t− 1} such that xi = xi+1 mod t = 1,
then 1 = (1, . . . , 1) is the only solution to the system. Indeed, w.l.o.g., let us assume that
x0 = x1 = 1, then we have 

0 · 1 · x2 = 0
0 · x2 · x3 = 0
. . .

xt−3 · xt−2 · xt−1 = 0
xt−2 · xt−1 · 1 = 0
xt−1 · 1 · 1 = 0.

From the last equation we obtain xt−1 = 0, that is, xt−1 = 1. Then, it follows that
xt−2 = 1, and so on until x2 = 1, meaning that (1, . . . , 1) is the only solution. It remains
to show that all points such that if xi = 1 then xi+1 mod t = 0 and xi−1 mod t = 0 are
solutions. This follows from noting that in any equation

xi · xi+1 mod t · xi+2 mod t = 0

either xi+1 mod t = 0 or xi+2 mod t = 0 so that the equation is always satisfied. We deduce
that all fixed points are exactly

{1} ∪ {x ∈ Ft
2 | ∀i ∈ {0, . . . , t− 1}, xi = 1⇒ xi+1 mod t = 0, xi−1 mod t = 0}.

The number of such points then follows from Lemma 6. Indeed, if the MSB (Most
Significant Bit) is 0 (i.e., x0 = 0), then by a direct application of the lemma with τ = t,
we have Fib(t + 1) fixed points. Then let us assume that the MSB is 1. If x1 = 1, then
we necessarily have x = (1, . . . , 1). Else we have x1 = xt−1 = 0, and we apply Lemma 6
for τ = t − 2, so that we obtain Fib(t − 1) fixed points. It follows that the map T has
exactly Fib(t + 1) + Fib(t− 1) + 1 fixed points. The procedure to count the fixed points is
depicted in Figure 5.

By approximating the Fibonacci term Fib(t) = Φt−(−Φ)−t

√
5 where Φ =

√
5+1
2 ≈ 1.61803

is the golden section number we get

1 + Φt+1 − (−Φ)−(t+1)
√

5
+ Φt−1 − (−Φ)−(t−1)

√
5

fixed points. We give concrete examples in Table 6.
Remark 1. We point out that our new bound given in Lemma 7 improves the one previously
given in [GKL+24, Sect. 5.3] for Monolith, and equal to (7/4)t. For a concrete comparison,
we refer to Table 6.
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Table 6: Number of fixed points for T defined over Ft
2.

t bits Practical # fixed points Theoretical # fixed points Formula (7/4)t

8 48 48 88
10 124 124 269
16 2208 2208 7738

2−2 21 24 27 210 213 216 219 222 225 228 231
2−19

2−12

2−5

22

Primes

P
ro

b.
lin
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r

ap
pr

ox
im

at
io

n

B′ without Rot⌊m/2⌋

B′ with Rot⌊m/2⌋

Lower Bound: p−0.364

Upper Bound? 3 · p−0.364

Figure 6: Probabilities of the linear approximation x 7→ 2 · x (n = 1). The orange line
corresponds to the linear approximation for the case without rotation, while the purple
one for the case with rotation. Note that the lower and the upper bounds hold for the
orange line only. (For experiments, we used Rot⌊m/2⌋ to cover the cases m ∈ {1, 2, 3}.)

Case: x 7→
(
x ⊕

(
(x ≪ 1) ⊙ (x ≪ 2) ⊙ (x ≪ 3)

))
≪ 1. Next, the operation

· ≪ 1 applied on x 7→ x ⊕
(
(x ≪ 1) ⊙ (x ≪ 2) ⊙ (x ≪ 3)

)
over F8

2 corresponds
to the double operation over Z28 when the most significant bit is 0. It follows that
x 7→

(
x⊕

(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

))
≪ 1 is well approximated by x 7→ 2 · x over

Z28 when x is a fixed point of x 7→ x ⊕
(
(x ≪ 1) ⊙ (x ≪ 2) ⊙ (x ≪ 3)

)
. Due to the

previous result, this happens with probability at least

34
256 ≈ 2−2.913 .

Considering now all the chunks over Fpn , we get

(2−2.913)m·n = (2−2.913)⌈log2(p)/8⌉·n ≈ (2−2.913)log2(p)/8·n = p−0.364·n

as a lower bound for the linear approximation of B′ (without the rotation Rotm/2) by the
mapping x 7→ 2 ·x . For example, for p ≈ 2254, this corresponds to a probability of 2−92.5·n.

This lower bound has been practically tested – results given in Figure 6 (green line).
An upper bound is more complicated to establish. Figure 6 suggests that the bound must
be close to 3 · p−0.364·n (red line).

Still, we recall that the Bars operation includes a rotation Rotm/2 of the chunks. This
rotation has the effect to destroy the linear approximation x 7→ 2 · x, as it is possible to
observe in Figure 6 (purple line).

About Rotm/2. Having said that, we cannot exclude a priori that other linear approxi-
mations with better probabilities exist. Concretely, assume n = 1, and consider the case
in which all lookup tables Sbox are defined by the identity map over F8

2. In such a case,
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n B′(x) = 256x with lookup
B′(x) = 256x with identity
Bound: 256 · p−1

Figure 7: Probabilities of the linear approximation x 7→ 28 · x (n = 1). The cyan line
corresponds to the linear approximation for the case without lookup, while the magenta
one for the case with lookup.

the Bars function reduces to a rotation of the chunks (and so of the bits). This implies
that the Bars function admits x 7→ 28·m/2 · x = 24·m · x as linear approximation for all the
points x such that 0 ≤ x < 24·m (unless p = 24·m + 1, in which case 0 ≤ x ≤ 24·m). This
implies a probability equal to

24m

p
.

For example, for p ≈ 2254, this corresponds to 2−126. Note that

24m

p
= 24·⌈log2(p)/8⌉

p
≈ 24·log2(p)/8

p
= p0.5

p
= p−0.5 ,

which is smaller than p−0.364 for the previous linear approximation.
One can prove that this bound is actually tight, i.e., there is no better linear approxi-

mation. Indeed, the entire domain Fn
p splits into classes of form CA = {24mA + 0, 24mA +

1, . . . , 24mA + 24m−1} for every A < p/24m where the mapping is actually linear:

x 7→ 24m · x + A(28m − 1) .

As all these mappings are different, we effectively get that p−0.5 is the tight linear
approximation bound.

In the general case n ≥ 1, the probability becomes p−0.5·n, since it is possible to use
the previous linear approximation independently on each chunk. As before, we expect
that this probability drops down when the “real” Bars functions (hence, Sbox are not the
identity maps) are considered.

Conclusion. By summarizing the previous results, we get that

• Bars without rotation admits the linear approximation x 7→ 2 · x, which holds with
probability p−0.364·n;

• the rotation of Bars (instantiated with identity maps instead of Sbox) admits the
linear approximation x 7→ 24·m · x, which holds with probability p−0.5·n.

By combining these two results, we get for Bars the following linear approximation:

x 7→ 24·m︸︷︷︸
rotation

· (2 · x)︸ ︷︷ ︸
Bars without rotation

= 24·m+1 · x ,
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Upper Bound? p−0.364
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Figure 8: Case n = 1, 28 < p < 216, and m = 2. Probabilities of the linear approximations
x 7→ 28 · x (magenta), x 7→ 29 · x (blue) and x 7→ 2 · x (purple) for Bars. Note that the
theoretical linear approximation x 7→ 2 · x obtained for the case of Bars without rotation
is an upper bound for both.

whose probability is lower bounded by p−0.364·n · p−0.5·n = p−0.864·n. Practical results for
the case 28 < p < 216 (for which we have two 8-bit chunks, hence, the linear approximation
x 7→ 22·4+1 · x = 29 · x) are given in Figure 8. As it is possible to observe in there, the best
linear approximation we found is either x 7→ 2 · x or x 7→ 24·m+1 · x.

The problem of identifying the best linear approximation for Bars is open for future
research. In Figure 8 we observe that the bound p−0.5·n holds for sufficiently big primes
(i.e. p ≥ 210). At the current state, based on our theoretical and on our practical results,
and assuming p ≥ 2248, we conjecture the following.

Conjecture 1. There exists no linear approximation of Bars with probability higher than
p−0.5·n.

4.2 Security against Statistical Attacks
Here we show that our design is secure against statistical attacks.
Remark 2. Since the Bars layer is not supposed to have good statistical properties, we
simply assume that the attacker can skip it with probability 1. Equivalently, we consider
a “weaker” version in which Bars are omitted. If such a construction is secure against
statistical attacks, then Skyscraper is secure as well.
Remark 3. We do not consider impossible differential [BBS99, Knu98] and zero-linear
cryptanalysis [BW12], since they do not lead to any collision and/or preimage attack on
the sponge/compression hash function.

4.2.1 Differential and Linear Cryptanalysis

Differential cryptanalysis [BS90, BS93] exploits the probability distribution of a non-
zero input difference leading to an output difference after a given number of rounds.
Since Skyscraper is an iterated cipher, a cryptanalyst considers ordered sequences of
differences over consecutive rounds called differential characteristics/trails. Assuming the
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independence of the rounds, the Differential Probability (DP) of a differential trail is the
product of the DPs of its one-round differences.

In the case of Skyscraper, the maximum DP of x 7→ x2 is 1/pn, as shown in Lemma 1. As
it is well known (see e.g. [DKLS20]), in a Feistel construction, only one of two consecutive
rounds is active. Indeed, the attacker can impose the difference of the first round in order
not to activate the consecutive rounds. It follows that 4 rounds are largely sufficient to
prevent differential cryptanalysis since the probability of any differential characteristic is
upper bounded by p−2n ≤ 2−4·κ where n ≥ 1. This also takes into account the fact that
more characteristics can be used simultaneously in order to set up a differential attack.

Linear cryptanalysis [Mat93] exploits the existence of linear approximations. For
primitives over binary fields, the attack makes use of the high correlations between sums
of input bits and sums of output bits. The generalization of this attack over prime fields
has been proposed in [BSV07, DGGK21]. Due to the low correlation of the map x 7→ x2

(see Lemma 2), we claim that our scheme is secure against this approach (in the same way
it is secure against differential attacks).

4.2.2 Fixed Points

As in Monolith, the Bars layer of Skyscraper has some fixed points. From [GKL+24,
Sect. 5.3], the only fixed points of x 7→

(
x⊕

(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

))
≪ 1 over

F8
2 are 0 and 1. Hence, without the rotation Rotm/2 of the chunks, the number of fixed

points of Bars is at most 2n·m − 1 = 2n·⌈log2(p)/8⌉ − 1, where −1 is due to the fact that
not all chunks can be equal to 1s.

However, due to the rotation Rotm/2, the number of fixed points is reduced to 2m/2− 1
(again, −1 is due to the fact that not all chunks can be equal to 1s),8 since no more than
m/2 8-bit chunks are free to take any value among 0 and 1 if one aims to guarantee that
a point is unchanged after the rotation.

It follows that the probability of a point in Fn
p to be fixed for Bars is

2m

pn
= 2⌈log2(p)/8⌉

pn
≈ 2log2(p)/8

pn
= p−n+1/8 ≤ p−7/8 .

As a concrete example, for p ≈ 2254, this corresponds to a probability of approximately
231−254·n ≤ 2−223. For comparison, we remember that the probability that a point is fixed
for Monolith is 2−216. Due to the fact that the only fixed points of x 7→ x2 are 0 and 1,
and due to the random constant additions, we conjecture that this does not represent a
threat to the security of Skyscraper.

4.2.3 Truncated Differential and (Invariant) Subspace Trail Cryptanalysis

Truncated differential attacks [Knu94] and (invariant) subspace trail attacks [GRR16] are
used mostly against primitives that have incomplete diffusion over a few rounds. This is
not the case here, since full diffusion is achieved in two consecutive rounds.

4.2.4 Rebound Attacks

Rebound attacks [LMR+09, JNP12] have been widely used to analyze the security of
various types of hash functions against shortcut collision attacks since the beginning of
the SHA-3 competition. It starts by choosing internal state values in the middle of the
computation and then computing in the forward and backward directions to arrive at the
inputs and outputs. It is useful to think of it as having central (often called “inbound”)

8Only for completeness, we point out that in the general case in which m/2 is not an integer, the
number of fixed points after the rotation Rot⌊m/2⌋ is reduced to 2gcd(⌊m/2⌋,n·m) − 1.
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and the above-mentioned “outbound” parts. In the attack, solutions to the inbound phase
are first found and then filtered in the outbound phase.

Since any (truncated) differential characteristic on 2-round Skyscraper has a probability
that is much lower than the security level, we can immediately conclude that the rebound
attack is not a threat to our design.

4.3 Security against Algebraic Attacks
Here we provide evidence that our design withstands algebraic attacks.
Remark 4. We do not consider higher-differential [Knu94] and zero-sum partition [BCC11,
BDPA11] attacks, since they do not lead to any collision and/or preimage attack on the
sponge/compression hash function. In more detail, our choice is motivated by the gap
present in the literature between the number of rounds of the internal permutation that
can be covered by a zero-sum partition and by the number of rounds in the corresponding
sponge hash function that can be broken, e.g. via a preimage or a collision attack. As
a concrete example, consider the case of Keccak: While 24 rounds of Keccak-f can be
distinguished from a random permutation using a zero-sum partition [BCC11] (that is,
full Keccak-f), preimage/collision attacks on Keccak can only be set up for up to 6 rounds
of Keccak-f [GLST22].

4.3.1 Interpolation Attack: Density of the Interpolating Polynomial

Interpolation attacks [JK97] exploit the (low) algebraic degree of a component to reconstruct
polynomials efficiently describing the output of a primitive in dependence of its inputs.

Interpolation of B′. Let L(F, x,D) denote the (unique) univariate Lagrange polynomial
in x of the function F , with domain D, that is,

L(F, x,D) :=
∑
i∈D

F (i) ·
∏

j∈D,i̸=j

x− j

i− j
(18)

with deg(L(F, x,D)) ≤ |D|−1. The Lagrange interpolation of the function B′ : Fpn → Fpn ,
as defined in Section 2.3, has degree at least 63/256 · p, as we proved in Proposition 1.

Still, calculating the actual interpolating polynomial of B′ over Fn
p , or even assessing

its concrete degree and density, is infeasible in practice for pn sufficiently large. Thus, we
conduct experiments on smaller finite fields with n = 1 and chunk size s = 4 (which permits
the same formula for T, given in Equation (8)), and report the deviation between the
actual degree and density from the theoretical maximum values. In total, we interpolated
B′ over more than 700 different primes p (13 7-bit, 23 8-bit, 122 11-bit, 196 12-bit, 428
14-bit). Notably, in all cases, the univariate Lagrange interpolation polynomial was of
maximum degree and high density, as shown in Figure 9.

In particular, our experiments suggest that B′ has the same behavior as a random
polynomial over Fp for p sufficiently large.

Lemma 8 (Asymptotic density of a random polynomial over Fp). In a random univariate
polynomial F : Fp → Fp of degree p− 1, all monomials are present with high probability.
In particular, the probability that exactly k out of p monomials have a zero coefficient is
given by

B
(

k ; p,
1
p

)
≤ 1

k! · e
−1 (19)

for p sufficiently large.
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Figure 9: Density of the interpolation polynomial of B′ : Fpn → Fpn (n = 1).

Proof. In a random univariate polynomial F : Fp → Fp of degree p− 1, each monomial xi

for 0 ≤ i ≤ p− 1 has a probability of 1
p of being not present. Let η denote the number of

monomials with coefficient zero. Then Prob(η = k) is given by the Binomial distribution

Prob(η = k) = B
(

k ; p,
1
p

)
=
(

p

k

)
·
(

1
p

)k

·
(

1− 1
p

)p−k

.

The binomial coefficient
(

p
k

)
is always upper bounded by pk/k!, since

(
p
k

)
=
∏k

j=0(p−j)/k! ≤
pk/k!. Hence:

Prob(η = k) ≤ pk

k! ·
(

1
p

)k

·
(

1− 1
p

)p−k

= 1
k! ·

(
1− 1

p

)p

≈ e−1

k! ,

where the last approximation holds for p≫ 1.

Conclusion. Due to the algebraic properties of B′, the multivariate polynomial describing
the Skyscraper permutation to be of degree p in each variable and thus renders the
interpolation attack infeasible. Thus, mounting an interpolation attack on Skyscraper is
infeasible. The same conclusion holds for the meet-in-the-middle (MitM) version of the
attack.

4.3.2 Gröbner Basis Attacks

In this section, we attempt to solve the CICO problem as it is formulated in Section 2.4.
We take an algebraic representation of Skyscraper and formulate the problem as a set of
equations (a concrete choice of equations will be detailed below). Then the process is
generic as follows.

Given a system of ne multivariate polynomial equations in nv variables over a field F
generating a zero-dimensional ideal I, the Gröbner basis attack consists of the following
steps.

1. Compute the Gröbner basis of I with respect to a total degree order using algorithms
such as Faugère’s F4 [Fau99] or F5 [Fau02] algorithm.

2. Apply a basis conversion algorithm, such as the FGLM algorithm [FGLM93], to
convert the total degree order Gröbner basis into a Gröbner basis with respect to an
elimination order.
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3. Recover the solutions to the polynomial equation system by iteratively solving
(systems of) univariate equations. See [CLO15, Chapter 3] or [BBLP22, §3.1] for
more details.

The complexity of the aforementioned matrix-based algorithms to compute a total
degree order Gröbner basis can be bounded by

O
(

ne ·
(

nv + dreg

dreg

)ω)
(20)

operations in Fp, where 2 ≤ ω ≤ 3. Here, dreg denotes the degree of regularity, as defined
in [BSGL20, §A 2.2.1]. In general, the degree of regularity is as difficult to compute as
computing the Gröbner basis itself. Thus, a common approach is to perform small-scale
experiments on reduced versions of a primitive and extrapolate dreg from the experimental
data points to large-scale instances, which are computationally intractable.

In the following, we describe an algebraic model of Skyscraper over F2
p, that is, for the

simplest case n = 1. We point out that we subsequently only focus on step 1 of a Gröbner
basis attack and show that already the complexity of this step by far exceeds the targeted
security level.

Generalized construction. For the purpose of analysis, it is informative to consider a
generalized version of Skyscraper. Let q be the number of consecutive squaring components
Si, let b be the number of consecutive Bars components Bi, and let N be the number
of times the pattern “q× Square, b× Bars” is repeated. In particular, for our design
given in Equation (2), we consider the instance (q, b, N) = (2, 2, 2), yielding a total of
R = (q + b) ·N + q = 10 rounds.

Algebraic Model for B′. Let s denote the chunk size in the decomposition Decomp, and
let m =

⌈
log2(p)

s

⌉
denote the number of s-bit chunks in the decomposition of x. Further,

let p0 = p ≫ ((m − 1) · s) denote the integer value of the most significant chunk of p’s
decomposition, and let r =

⌊
m
2
⌋

denote the number of elements for the left rotation.
To model y = B′(x), we introduce m variables w0, . . . , wm−1 ∈ Fp. The following

constraints need to hold:

1. Range constraints: To ensure that w0, . . . , wm−1 are in the correct range, that is,
they fit into a maximum of s bits, we introduce the following m constraints:

0 =
p0−1∏
i=0

(w0 − i), and 0 =
2s−1∏
i=0

(wk − i) ∀ 1 ≤ k < m. (21)

Note that for the most significant chunk, while in practice w0 ≤ p0, we require that
w0 < p0, excluding some solutions and thus giving the attacker an advantage. In
total, the range constraints are modeled as a system of m− 1 polynomial equations
of degree 2s and 1 polynomial of degree p0 < 2s. The polynomials have high density.

2. Composition constraint: Step 1 in the definition of B′ can be modeled using a single
equation linear in the input x:

x =
m−1∑
k=0

bk · wk, (22)

where bk := 2s(m−1−k) for 0 ≤ k < m.
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3. Model Rotr, Sbox, and Comp. Using Lagrange interpolation, as defined in Equa-
tion (18), steps 2 - 4 in the definition of B′ can be modeled using a single equation
of degree max{deg(y), 2s}:

y =
m−1∑
k=0

bk · L(T, wk−r mod m,Dk), (23)

where the respective interpolation domains are given by

Dk =
{

[0, p0 − 1] if k = m− r,

[0, 2s − 1] otherwise.

Treating the input x and output y as constants, the component B′ : Fp → Fp is modeled
as a system of m + 2 polynomial equations in m variables.

Algebraic Model for Skyscraper. The Skyscraper-CICO problem consists of finding
xR, yL ∈ Fp such that

Skyscraper(0, xR) = (yL, 0).

Skyscraper-CICO can be modeled as an overdetermined system of ne = (m + 2) · b ·N + 1
equations in nv = (m + 1) · b ·N + 1 variables, which arises as follows:

• Variables: We introduce 1 variable xR modeling the unconstrained input to the
Feistel construction. For each of the b · N operations Bi : F2

p → F2
p, we introduce

one variable bi to model the output of B′, as well as m variables to model the
decomposition.

• Equations: We apply the round function until we reach a Bars component Bi. In
particular, the input to B′ in Bi is given by a polynomial of degree at least 2q−1,
and the output is given by the variable bi. Then B′ is modeled as a system of
m + 2 polynomial equations. This strategy is repeated until the output of the Feistel
construction is reached. Finally, one additional equation is needed to model the
constrained output yR = 0.

An example for the instance (q, b, N) = (2, 1, 1) is given in Figure 10.

Small-Scale Experiments. In order to perform practical experiments, we consider reduced
versions of Skyscraper. In particular, we investigate chunk sizes of s = 4 and s = 8 (which
both permit the same formula for T, given in Equation (8)) and vary (q, b, N) to get an
overview of the complexity of the Gröbner basis attack against Skyscraper-CICO. We
achieved practical results for primes with ≤ 16 bits, summarized in Tables 14 to 16.

In particular, we observed that the degree of regularity is given by dreg = 2s for primes
of size ≈ 2 · s bits, regardless of the total number of Bars and rounds. Notably, this is
exactly the maximum degree that appears in the algebraic model. Further, dreg increases
with the prime size, more precisely with the number of chunks m in the decomposition.

Conjecture 2 (from experiments). A lower bound for the degree of regularity dreg when
solving instances of Skyscraper-CICO is given by

dreg ≥ 2s. (24)
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x 7→ x2 + 0

x 7→ x2 + γ1

x 7→ B′ + γ2

x 7→ x2 + γ3

x 7→ x2 + 0

xRxL = 0

yR = 0yL

0

0

0

xR

xR

x2
R + γ1

x2
R + γ1

x2
R + γ1

b2

xR + b2

xR + b2

(xR + b2)2 + γ3

(xR + b2)2 + γ3 + x2
R + γ1 ((xR + b2)2 + γ3 + x2

R + γ1)2

Figure 10: Modeling Skyscraper-CICO for the instance (q, b, N) = (2, 1, 1).

Conclusion. We conclude by giving a security estimate for the Gröbner basis attack on
Skyscraper-CICO for primes of size ≈ 256 bits. We fix a chunk size of s = 8 bits, yielding
m = 32 chunks for the decomposition. Using the conjectured lower bound for dreg yields
the following complexity estimate:

CGB = ne ·
(

nv + dreg

dreg

)ω

= (34bN + 1) ·
(

33bN + 1 + 28

28

)ω

. (25)

The respective complexity estimates for different values of b and N are given in Table 7. One
can see that for optimistic values ω = 2 and even for ω = 1, the attack cost is prohibitive
for Skyscraper (instance (q, b, N) = (2, 2, 2)). This is evidence that the Skyscraper design is
secure against Gröbner basis attacks.

Table 7: Complexity of computing a Gröbner basis for Skyscraper-CICO over Fp with
log2 p ≈ 256. For every instance, we note the number of Feistel rounds in parentheses,
calculated as R = (2 + b) ·N + 2.

CGB (R) N = 1 N = 2 N = 3

b = 1 2147.4ω+5.1 (5) 2233.7ω+6.1 (8) 2300.5ω+6.6 (11)
b = 2 2233.7ω+6.1 (6) 2355.9ω+7.0 (10) 2445.1ω+7.6 (14)

4.3.3 Further Considerations

Algebraic Attacks over F2. As for the case of Monolith (see [GKL+24, Sect. 6.4] for
details), even if Bars has a low-degree over F2, we claim that algebraic attacks against
Skyscraper that exploit the binary representation over F2 are not efficient in general. The
reason is the high degree of the F2 function corresponding to the squaring operation
x 7→ x2, as proved in Lemma 5. For this reason, in the following, we limit ourselves to
focus on algebraic attacks that exploit the Fp representation of Skyscraper.

Algebraic Attacks via Low-degree Approximation of Bars. Algebraic attacks exploit the
simple algebraic description of the attacked construction to break it. In Skyscraper, Bars
are the only functions with a complex algebraic expression. If a simple algebraic description
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of it that holds with high probability exists, then the attacker can potentially exploit it to
set up a probabilistic algebraic attack on Skyscraper. As we showed in Section 4.1, any
linear approximation of Bars holds with a probability that is too low to be useful for such
an attack. We conjecture that the same occurs for any other low-degree approximation
(e.g., quadratic approximations) of Bars as well.

Resistance against FreeLunch Attack and Resultants. Other algebraic attacks include
the FreeLunch attack [BBL+24] and the resultant approach [YZY+25]. These attacks are
particularly efficient in the case of symmetric primitives with simple algebraic descriptions,
such as Rescue, Griffin, and Anemoi. As for the case of Reinforced Concrete, Monolith,
and Tip5, since there is substantial evidence that Bars do not have any low-degree
approximations, we expect that neither the FreeLunch attack nor the resultant approach
would succeed against Skyscraper.

4.4 Attacks in the Quantum Setting

We claim that Skyscraper provides the same resistance against quantum attacks as other
sponge-based hash functions with similar capacity parameters. It is known that the sponge
framework provides about (c log(p))/3 bits of quantum security [Unr21], which is arguably
sufficient given the high actual costs of quantum attacks. Indeed, the best-known quantum
attack against hash functions (and many other symmetric primitives) is quantum search
with Grover’s algorithm [Gro96], which, given a quantum circuit of the attacked primitive,
exhaustively (in the quantum domain) searches for a solution. The algorithm’s result
stabilizes after around I ∈ O(2n/γ) iterations for preimage and collision search and an
input size of n bits, where 2 ≤ γ ≤ 3 [CNS17].

Regarding non-blackbox attacks, some works appeared recently on some hash func-
tions [HS21, HS20]. We are not aware of any application of these attacks to the full version
of Skyscraper.

5 Benchmarks
In this section, we discuss the plain performance of Skyscraper, i.e., its efficiency when
evaluated outside of an arithmetic circuit. This aspect has been a crucial motivation for
the new design since, in many scenarios, it is important to compute Merkle trees as fast as
possible [COS20, Eth22].

As a baseline of discussion, we performed extensive benchmarks comparing Skyscraper
to other hash functions relevant within the domain. We include our plain implementations
in the open-source benchmarking framework of Monolith.9 They provide implementations
of Poseidon, Poseidon2, Reinforced Concrete, and Griffin. Further, they merged
hash implementations for Tip5 and Tip4’10 and added SHA3-256 and SHA-256 from
RustCrypto11. On top of this, we merge the implementation of the Anemoi hash function
into the framework.12 All our tests are run on an AMD Ryzen 9 7900X with a single
thread with 5 seconds of warmup time and averaged over 10 000 executions. Due to the
small time scale, an individual execution of a hash function may deviate depending on the
system load, and these results serve as a basis for comparison.

9https://extgit.isec.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
10https://github.com/Neptune-Crypto/twenty-first
11https://github.com/RustCrypto/hashes
12https://github.com/anemoi-hash/anemoi-rust

https://extgit.isec.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://github.com/Neptune-Crypto/twenty-first
https://github.com/RustCrypto/hashes
https://github.com/anemoi-hash/anemoi-rust
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Table 8: Hashing ≤ 512 bits of data (8 elements for the 64-bit prime and 2 elements
for BLS12-381) with different hash functions. For the category Other, we follow the
specification.

p = BLS12-381 p = 264 − 232 + 1 Other
State t time [ns] State t time [ns] time [ns]

[SAD20] Rescue-Prime 2 235 630 8 12 819 –
[BBC+23] Anemoi 2 82 297 – – –
[GHR+23] Griffin 3 64 763 8 1948 –
[AGP+19] GMiMC 2 12 339 8 1827 –
[GKR+21] Poseidon 2 8276 8 2345 –
[GOPS22] Neptune 2 7637 8 2600 –
[GKS23] Poseidon2 2 4907 8 1827 –
[GKL+22] Reinforced Concrete 3 1511 – – –
[SLS+23] Tip5 – – 16 609 –
[Sal23] Tip4’ – – 12 305 –
[GKL+24] Monolith – – 8 123 –
Ours Skyscraper 2 135 – – –
[ND15] SHA3-256 – – – – 196
[ANWW13] Blake2s – – – – 80
[NIS02] SHA-256 – – – – 42

5.1 A Single Permutation Call
In our first evaluation, we started by comparing the latency of a single permutation call
of different hash functions. In Table 8, one can see the results of hashing ≤ 512 bits for
different hash functions. This is an approximation, as we compare hash functions working
over different domains. For the large prime setting, we evaluate hashing 2 elements of Fp

where p = BLS12-381 fully representing 509 bit. For the small prime setting, we evaluate
the hash functions for 8 elements of Fp where p is the Goldilocks Prime p = 264 − 232 + 1,
representing a total of 511 bits. Finally, the traditional hashes SHA-256, SHA3-256, and
Blake2s do not work over a prime field and can thus represent 512 bits. Another caveat
in this comparison is the mode of operation. For some hashes, the minimum state size is
larger than the input size. There, we instantiate these hash functions in sponge mode. For
the large prime, we instantiate Reinforced Concrete and Griffin with a fixed state F3

p

in sponge mode. For the small prime, Tip5 and Tip4’ are in sponge mode with respective
state sizes of 16 and 12. Overall, we chose the minimum state size that hashes at least 509
bits with the best permutation latency.

While there are shortcomings in the comparison, as outlined above, Table 8 clearly
highlights the advantage of Skyscraper. Very often, the choice of the underlying prime field
is not based on the hashing performance but on the underlying use case. Then, in the case
of a large prime, there was simply no way of benefiting from the performance of many of
the novel circuit-friendly hash functions. Skyscraper reduces this gap significantly.

5.2 Hashing Performance with Larger Inputs
Next to the 2-to1 compression outlined above, we evaluate the performance of Skyscraper
when hashing larger inputs. Comparing in this setting removes the disadvantage of larger
states and looks at amortized performance. This time we chose the state size to maximize
the amortized performance of the respective hash functions. All evaluated functions are
instantiated in sponge mode. For Skyscraper, we showcase multiple state settings dictated
by the degree of the underlying extension field. Given the previous benchmarks, there
are some unexpected results in Table 9. For big primes, Anemoi has a Sponge instance
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Table 9: Hashing 1 Mbit in sponge mode (with the only exception of SHA-256 used in
Compression mode).

p = BLS12-381 p = 264 − 232 + 1 Other
State t time [µs] State t time [µs] time [µs]

[SAD20] Rescue-Prime 3 495 460 12 42 035 –
[BBC+23] Anemoi 4 12 864 – –
[GHR+23] Griffin 3 140 550 12 4391 –
[AGP+19] GMiMC 2 52 616 12 6661 –
[GKR+21] Poseidon 3 26 375 12 6607 –
[GOPS22] Neptune 4 19 563 12 7213 –
[GKS23] Poseidon2 3 13 043 12 2780 –
[GKL+22] Reinforced Concrete 3 3411 – –
[SLS+23] Tip5 – 16 1000 –
[Sal23] Tip4’ – 12 586 –
[GKL+24] Monolith – 12 61 –

Skyscraper
Fp 2 711 – –

Ours Fp2 4 657 – –
Fp3 6 880 – –

[ND15] SHA3-256 – – – – 180
[ANWW13] Blake2s – – – – 138
[NIS02] SHA-256 – – – – 47

with state size 4, which has a drastically better-amortized runtime than its compression.
Similarly, for small primes, Griffin amortized better with its Sponge state size. For
Skyscraper, we confirm the preliminary benchmarks of Table 4 showing that Fp2 has the
best-amortized performance. Further, Skyscraper remains the fastest hash function in the
big prime setting. However, the gap between Skyscraper and both Monolith and SHA-256
widens. For Monolith, there are better amortization effects with the larger state size,
while SHA-256 has generally much stronger performance optimizations.

5.3 Merkle Tree Evaluation
Another significant area of application of arithmetization-oriented hash functions is Merkle
tree evaluation. We describe a Merkle tree with a compression function and an arity a,
which defines the number of child nodes each parent node has. Given a set of n input
nodes ∈ {0, 1}l and a hash function that maps {0, 1}al 7→ {0, 1}l, a Merkle tree evaluation
recursively compresses the input nodes until only a final node is left. This final node is
the root of the tree. As a result, the tree has d = loga n layers. Verifying that an element
is part of the tree requires only NV ∈ O(d) hashes, substantially improving performance
in many applications. Further, reducing the required hashes for verification enhances the
efficiency of zero-knowledge-proof systems that rely on Merkle tree constructions. Some
protocols rely on Merkle trees at their very heart (e.g., the FRI protocol uses Merkle trees
to encode their codewords).

In Table 10, we give an overview of the plain evaluation performance for a Merkle tree
with different hash functions and arities. Similar to the tables above, we define l ≈ 256. In
other words, a node is equivalent to an input element Fp for the large primes considered.
Further, for the Goldilocks prime, a node is represented as four Fp elements, and finally,
in the other hash functions, a node represents 256 bits.

The choice of arity in a Merkle tree highly depends on the use case, as it directly
impacts the tree’s depth and the required hash verifications per level. We evaluated the
hash functions with their respective state sizes and the arities these state sizes permit.
Our experiments focus on arities 2 and 4, as these correspond to the arities of Skyscraper
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Table 10: Merkle-Tree with 220 ≈ 256-bit input elements. The Arity describes the number
of 256-bit inputs per permutation call.

p = BLS12-381 p = 264 − 232 + 1 Other
State t time [ms] State t time [ms] time [ms]

Arity = 2
[SAD20] Rescue-Prime 2 250 170 8 13 072 –
[GHR+23] Griffin 3 74 402 8 1877 –
[AGP+19] GMiMC 2 13 938 8 1562 –
[GKR+21] Poseidon 2 9578 8 2006 –
[GOPS22] Neptune 2 8925 8 2223 –
[GKS23] Poseidon2 2 5608 8 978 –
[GKL+22] Reinforced Concrete 3 1826 – –
[SLS+23] Tip5 – 16 590 –
[Sal23] Tip4’ – 12 275 –
[GKL+24] Monolith – 8 182 –
[ND15] SHA3-256 – – – – 264
[ANWW13] Blake2s – – – – 88
[NIS02] SHA-256 – – – – 66
Ours Skyscraper Fp 2 220 – –
Arity = 4
[GOPS22] Neptune 4 4808 – – –
Ours Skyscraper Fp2 4 208 – –
[ND15] SHA3-256 – – – – 95
[ANWW13] Blake2s – – – – 58
[NIS02] SHA-256 – – – – 37

in Fp and Fp2 , respectively, making them especially relevant for our context. In particular,
we evaluated all hash functions for arity two as it is the classical Merkle tree setting.
We evaluated those hash functions with arity four that have a large enough state size.
Larger arities can be achieved by securely increasing the state size, which requires care
and might not be captured by the security analysis of all hash functions. For Skyscraper,
increasing the state size works by increasing the degree of the extension field. However, as
our experiments above have shown, the increased arity is penalized for higher degrees.

The results of the Merkle tree evaluation follow a similar pattern as the one in the
table with the 512-bit compression. We see that Skyscraper is the best-performing hash in
the category of large prime fields. Further, we see that Skyscraper is the first hash function
on large primes that is competitive compared to small primes, with only Monolith being
faster here. It is again important to note that Griffin and Reinforced Concrete suffer
from a minimum state size of three for the large primes. These hash functions might
perform better in scenarios with a dataset size of 3k for some k. We can see that Griffin
comparably improves significantly with a fitting state size in the smaller prime field. Given
the category of Other hash functions, Skyscraper is again faster than SHA3 but slower
than Blake2s and SHA2.

For Arity 4, we provide a small sample of data for hash functions that already support
the larger state size. We see that Skyscraper improves its performance over the case for
two inputs, resulting in the highest performance for large primes. However, compared to
the improvements for the other hashes, it falls behind as the overhead of the extension
field operations diminishes the potential speedup. In scenarios where Arity 4 is required
or applicable, the degree 2 extension can be recommended. Otherwise, Skyscraper in Fp

provides a good middle ground.
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6 Circuit Performance
Here we discuss the circuit performance of Skyscraper, i.e., its efficiency when represented
as an arithmetic circuit. For this purpose we assume a general-purpose proving system with
the Plonkish arithmetization [GWC19] and support for lookup arguments (e.g., [Hab22]).
This characterization applies to various well-known protocols, however, our design can also
be represented using different arithmetizations such as R1CS or AIR.

As is customary in the area, we focus on representing the round function of Skyscraper
as an arithmetic circuit.

Canonical Decomposition Proof. There is one crucial difference between previous lookup-
based hash function designs (e.g. Reinforced Concrete or Monolith) and Skyscraper.
Indeed, let us focus on the lookup step of the round function. There we decompose (i.e.,
split) a field element x into various ι-bit chunks, such that a combination of these chunks
sums up to x. After applying the lookups, the results are composed together into an output
field element, which is essentially the inverse operation of the first step. Unfortunately,
however, one main problem arises when combining this approach with arbitrary fields. In
particular, it has to be guaranteed that the chunks received from the first step are the
correct decomposition of x ∈ N rather than x + p ∈ N for a prime field Fp. Otherwise, a
cheating prover may use the (wrong) decomposition for x + p ∈ N and apply incorrect
lookup operations. Without any countermeasures, this does not violate the constraint
system since clearly x ≡ x + p mod p. This issue can be solved efficiently in previous
hash function designs, where the considered prime numbers have advantageous forms (e.g.,
231 − 1 or 264 − 232 + 1), allowing for simple constraints based on the bit representation of
the prime number in order to avoid this attack. In particular, the structure of consecutive
0 and 1 bits is exploited, and the chunk boundaries align with these sequences of bits (we
refer to [GKL+24] for more details).

When using arbitrary prime numbers, as is the case for Skyscraper, the sequences of
consecutive 0 and 1 bits in their representation are shorter in general, making this solution
significantly less efficient. We solve this issue by applying a canonical decomposition proof
to the trace elements, which allows to prove that the correct decomposition is used for
arbitrary prime numbers and without adding too much overhead. We explain our approach
in App. B and use it in the circuit description below.

6.1 Square Operation
The first component, which merely consists of the squaring operation in a Feistel network,
requires a single degree-2 constraint reflecting the squaring and (linear) round constant
addition itself. Considering a state of two elements, these constraints are applied to three
trace elements, namely the two input elements of the round and the new output element
(note that one of the output elements is equal to one of the input elements).

Similar to Monolith, our design allows for a tradeoff between the number of variables
and the degree of the constraints. Indeed, one may decide to use two constraints, one of
degree 2 and one of degree 4, to map the two consecutive Feistel rounds. In this case,
we need four trace elements, where one of the output elements is described as a degree-2
function of the input trace elements and the other is described as a degree-4 function of
the input trace elements.

6.2 Bars Operation
The Bars operation makes heavy use of lookup tables and also uses a canonical decompo-
sition proof. We summarize the circuit cost of these components below.
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Table 11: Circuit performance of Bars. All constraints are linear.
Witnesses Constraints Lookups

8 + 3m 10 2m

• First, the input element x gets split into two chunks x1 and x2 such that x = x2 || x1.
These two chunks are used in a binary comparison, adding the two trace elements
s1, s2 and a linear constraint for both of them. In particular,

s2 = p2 − x2 and s1 = p1 − x1,

where p1 and p2 are the lower and upper half of the prime p, respectively, and thus
publicly known values (see also App. B).
(Cost: 5 witnesses, 3 linear constraints)

• We then show that s1 and s2 are each within an allowed range. To do this, we split
them into lookup-sized chunks, needing m chunks in total.
(Cost: m witnesses, 2 linear constraints), m lookups

• Finally, we apply the lookup operations to x1 and x2 (and hence to x). Note that
this also concludes the first step, implicitly showing that the chunks x1 and x2 are
within their allowed range. We arrive at the new elements y1, y2, and eventually y.
(Cost: 3 + 2m witnesses, 5 linear constraints, m lookups)

The circuit cost of Bars is summarized in Table 11.

6.3 Concrete Instance for p ≈ 2256

We consider an instance with two state elements and log2(p) ≈ 256 (e.g., BN254). Assuming
16-bit lookup tables, we have m = 16. We further assume a maximum constraint degree
of 2, which means that we handle the Feistel rounds separately, requiring a total of 3
witnesses and 3 degree-2 constraints for two consecutive Feistel rounds (ignoring the input,
which is added separately in the first round and coming from the public input or the
preceding Bars operation). Taking into account the cost for Bars from Table 11, we list
the estimated circuit performance of all components of Skyscraper in Table 12. Comparing
it to Reinforced Concrete, we can see that the number of witnesses and lookups is
significantly reduced for m = 16. Moreover, the area-degree product is significantly less
than Reinforced Concrete. Even when opting for 8-bit lookup tables (i.e., m = 32,
essentially doubling the number of witness elements and lookups in Bars), Skyscraper is
still more efficient in the circuit.

6.4 Proof System Implementation
In addition to the theoretical discussion, we provide a proof system implementation of
Skyscraper in the Halo2 [BGH19] framework. This framework builds on the Plonkish
arithmetization style and allows for custom gates and lookup tables. Further, with
application in Zcash, it is an established framework fit for a draft implementation.

As indicated above, there is a high degree of freedom when choosing the concrete
polynomial constraints resulting in very different metrics of performance. We have to
balance the degree of individual constraints vs the number of rows in the table. Further, we
can increase the number of polynomials (i.e., columns of our table) to reduce the required
rows for a computation. These considerations are highly use case dependant so we went for
a balanced approach to showcase the general feasibility of a proof system implementation.
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Table 12: Circuit performance of all components of Skyscraper (n = 1), where we assume the
BN254 setting. This also includes a comparison with Reinforced Concrete, Poseidon,
Poseidon2, and Rescue-Prime, where d is the smallest positive integer such that gcd(d, p−
1) = 1 (e.g., d = 5 for BN254).

Component Witnesses Constraints (deg.) Lookups A-D product
Double squaring 3 3 (2) 0 –
All squarings 9 9 (2) 0 –
Bars 56 10 (1) 32 –
All Bars 224 40 (1) 128 –
Skyscraper 233 49 (1, 2) 128 1398
Reinforced Concrete 378 24 (1, 3, d) 267 5670
Poseidon, Poseidon2 80 80 (d) 0 1200
Rescue-Prime 42 42 (d) 0 630
Anemoi 42 42 (d) 0 630
Griffin 42 42 (3, d) 0 630

Table 13: Concrete cost of a single permutation in the Halo2 ZKP library.
m Prove [ms] Verify [ms]

Poseidon – 41.0 1.6

Skyscraper 16 5076.0 85.0
32 98.0 2.4

Concretely, our arithmetization in Halo2 requires 4 advice columns and 5 public
fixed columns. The advice columns hold the left and right state, respectively, and the
composition and decomposition are stored in two columns. The fixed columns are filled
with the lookup table pairs, the round constants, and the selector bits. We provide two
settings for decomposition, one evaluating a LUT of 16 bits and m = 16 chunks and
one with a LUT of 8 bits and m = 32 chunks. These settings require 74 and 138 rows,
respectively. However, for a Plonkish lookup, the key-value pairs are stored each in one of
the fixed columns requiring at least 2k + 4m rows. Since the row count is a power of two,
they require 29 and 217 rows, respectively. The performance given in Table 13 shows this
tradeoff. In other words, we could fit 884 executions of Skyscraper into the proof with a
16-bit LUT since 2k + 884 · 4m + s < 217, where s is a required security buffer for the LUT
constraint.

In summary, Skyscraper offers a proof system performance at half the speed of a
Poseidon implementation for one permutation, but with potential for amortization with
large batches of hash evaluations. We emphasize that this also includes Merkle path
openings and hashing longer inputs, two prominent settings where multiple permutation
calls have to be proven consecutively.
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A Experimental Results: Gröbner Basis Attacks

Table 14: Practical results of the Gröbner basis attack against Skyscraper-CICO for the
generalized instance (q, b) = (2, 1), as described in Section 4.3.2, and a chunk size of s = 4.

Instance Alg. model Gröbner basis computation (step 1)
p m N R nv ne dmax time [s] mem. [MB] dreg Degrees GBdrl #Sol.

37 2 1 5 4 5 16 1 33 16 1-1-1-1 1
79 2 1 5 4 5 16 1 33 16 2-1-1-1 2
89 2 1 5 4 5 16 1 33 16 2-2-2-1-1 3

127 2 1 5 4 5 16 1 33 16 1-1-1-1 1
149 2 1 5 4 5 16 1 33 16 2-2-2-1-1 3
233 2 1 5 4 5 16 1 33 16 1-1-1-1 1
251 2 1 5 4 5 16 1 33 16 1-1-1-1 1
563 3 1 5 5 6 16 1 46 17 1-1-1-1-1 1
641 3 1 5 5 6 16 1 46 17 1-1-1-1-1 1

1361 3 1 5 5 6 16 2 68 18 2-1-1-1-1 2
1423 3 1 5 5 6 16 2 68 18 1-1-1-1-1 1
1741 3 1 5 5 6 16 2 103 18 1-1-1-1-1 1
2129 3 1 5 5 6 16 3 121 20 2-1-1-1-1 2
2917 3 1 5 5 6 16 9 228 22 2-2-2-1-1-1 3
2999 3 1 5 5 6 16 6 196 22 1-1-1-1-1 1

11681 4 1 5 6 7 16 100 997 24 1-1-1-1-1-1 1
12227 4 1 5 6 7 16 119 1178 24 2-1-1-1-1-1 2
30133 4 1 5 6 7 16 1079 5082 26 1-1-1-1-1-1 1
30631 4 1 5 6 7 16 1046 5114 26 1-1-1-1-1-1 1
49559 4 1 5 6 7 16 18940 20201 29 1-1-1-1-1-1 1
52223 4 1 5 6 7 16 18928 20136 29 1-1-1-1-1-1 1
56711 4 1 5 6 7 16 21135 23445 30 1-1-1-1-1-1 1

43 2 2 8 7 9 16 1 33 16 1-1-1-1-1-1-1 1
83 2 2 8 7 9 16 3 136 16 2-2-2-1-1-1-1-1 3

109 2 2 8 7 9 16 3 174 16 1-1-1-1-1-1-1 1
113 2 2 8 7 9 16 5 170 16 1-1-1-1-1-1-1 1
211 2 2 8 7 9 16 12 685 16 2-1-1-1-1-1-1 2
251 2 2 8 7 9 16 8 353 16 1-1-1-1-1-1-1 1
647 3 2 8 9 11 16 165 1888 17 1-1-1-1-1-1-1-1-1 1
719 3 2 8 9 11 16 159 1888 17 1-1-1-1-1-1-1-1-1 1

1153 3 2 8 9 11 16 19602 53679 18 2-1-1-1-1-1-1-1-1 2
1543 3 2 8 9 11 16 38561 106476 18 1-1-1-1-1-1-1-1-1 1
1861 3 2 8 9 11 16 49714 237205 19 2-2-2-1-1-1-1-1-1-1 3
127 2 3 11 10 13 16 238 4747 16 1-1-1-1-1-1-1-1-1-1 1
223 2 3 11 10 13 16 392 4003 16 1-1-1-1-1-1-1-1-1-1 1
229 2 3 11 10 13 16 495 5194 16 1-1-1-1-1-1-1-1-1-1 1
239 2 3 11 10 13 16 503 5194 16 1-1-1-1-1-1-1-1-1-1 1

B Efficient High-Degree Functions over Arbitrary Fields
Assume we have a prime number p and set n = ⌈log2(p)⌉. In the following, we give an
efficient decomposition rule for arbitrary prime numbers. The result will be a provable
decomposition

(x1, x2, . . . , xm)

of a value x ∈ Fp, where the prover can efficiently show that

x =
m∑

i=1
2ι(i−1)xi < p
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Table 15: Practical results of the Gröbner basis attack against Skyscraper-CICO for the
generalized instance (q, b) = (2, 1), as described in Section 4.3.2, and a chunk size of s = 8.

Instance Alg. model Gröbner basis computation (step 1)
p m N R nv ne dmax time [s] mem. [MB] dreg Degrees GBdrl #Sol.

10973 2 1 5 4 5 256 103 1665 256 1-1-1-1 1
12277 2 1 5 4 5 256 207 2033 256 1-1-1-1 1
12809 2 1 5 4 5 256 574 3660 256 2-1-1-1 2
17033 2 1 5 4 5 256 483 3407 256 1-1-1-1 1
25057 2 1 5 4 5 256 2604 11395 256 2-2-2-2-2-2-1 4
28837 2 1 5 4 5 256 1348 7956 256 1-1-1-1 1
45943 2 1 5 4 5 256 3282 17224 256 1-1-1-1 1
51647 2 1 5 4 5 256 4210 21075 256 1-1-1-1 1
52541 2 1 5 4 5 256 4312 21810 256 1-1-1-1 1

Table 16: Practical results of the Gröbner basis attack against Skyscraper-CICO for the
generalized instance (q, b) = (2, 2), as described in Section 4.3.2, and a chunk size of s = 4.

Instance Alg. model Gröbner basis computation (step 1)
p m N R nv ne dmax time [s] mem. [MB] dreg Degrees GBdrl #Sol.

37 2 1 6 7 9 16 1 33 16 2-2-2-1-1-1-1-1 3
109 2 1 6 7 9 16 2 79 16 1-1-1-1-1-1-1 1
163 2 1 6 7 9 16 3 146 16 1-1-1-1-1-1-1 1
191 2 1 6 7 9 16 4 149 16 1-1-1-1-1-1-1 1
587 3 1 6 9 11 16 243 3661 17 1-1-1-1-1-1-1-1-1 1

1237 3 1 6 9 11 16 7550 31871 18 2-1-1-1-1-1-1-1-1 2
1361 3 1 6 9 11 16 18974 56732 18 1-1-1-1-1-1-1-1-1 1
1399 3 1 6 9 11 16 18912 56828 18 1-1-1-1-1-1-1-1-1 1
2297 3 1 6 9 11 16 51103 194271 20 1-1-1-1-1-1-1-1-1 1
2953 3 1 6 9 11 16 123706 385124 22 1-1-1-1-1-1-1-1-1 1

over N for a bucket size of ι bits, i.e., log2(xi) < ι for i ∈ {1, . . . , m}.
For simplicity, but w.l.o.g., assume that n

2 ∈ N so that we can consider a decomposition
into two buckets of the same size. Now, let p = 2n/2p2 +p1, where ⌈log2(pi)⌉ = n/2. Let us
abbreviate this by p = p2 || p1. An input x ∈ Fn

2 , allegedly x ∈ Fp, is split in two (n/2)-bit
chunks xi, i.e., x = x2 || x1. The goal of the next steps is to prove that the decomposition
of x as an integer is a canonical field element representation, i.e., 2n/2x2 + x1 < p. We
apply the following technique.

1. First, we compute s2 = p2 − x2 and s1 = p1 − x1 and store these two results in the
trace.

2. We then show that the decomposition of s2 only needs (n/2) bits, which is easy to
do with range checks. Moreover, no overflow can occur, since any (n/2)-bit value
is clearly a canonical representation in the n-bit field. The main idea behind this
step is that for a, b ∈ Fp (where n = ⌈log2(p)⌉ and a, b are at most (n/2) bits large
each), the value a− b is only representable by a (n/2)-bit decomposition in the field
if a− b ≥ 0 =⇒ a ≥ b.

3. Since we have a valid (n/2)-bit decomposition of s2, we now know that p2 ≥ x2, i.e.,
the upper half of the prime p is larger than or equal to the upper half of the input x.

4. The final step is to apply the same approach to the lower halves if p2 = x2 (i.e., test
if p1 > x1).

We prove the assumptions in the second and third step.
Lemma 9. Let a, b ∈ Fp for p ≥ 5 and let n = ⌈log2(p)⌉. Further, let log2(a) < n/2 and
log2(b) < n/2. Then log2(a− b) < n/2 if and only if a ≥ b (as integers).
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Proof. Clearly, a ≥ b =⇒ log2(a − b) < n/2. For simplicity, set p̃ ≈ √p. Let us now
assume a < b. The possible values are in the range {p− p̃, . . . , p− 2, p− 1}. The largest
value (as an integer) is p− 1, and note that log2(p− 1) ≤ n/2. The smallest value is p− p̃.
Since p̃ ≈ √p and p ≥ 5, subtracting p̃ from p will change the bit representation in the
most significant half. This statement is clearly the same for all values inbetween. Indeed,
we can even conclude that the field representation of a− b will have at least one bit set in
the most significant half of its bit representation if a < b.

Note that the ι-bit decompositions for x1 and x2 do not require additional witnesses,
since we later need them anyway for the lookup applications. Indeed, the lookup applica-
tions implicitly include range checks for those, so we do not need any additional range
checks here either. We only need additional range checks for si.

Probabilistic Alternative. When dealing with large primes (e.g., n ≈ 256), we may be
able to ignore the final step and just show that p2 ≥ x2 and p2 ≠ x2. This results in a
small class of circuits (around L

2n/2 of them for L large-word lookups) being impossible to
prove. However, it would allow for the following efficient description of the proof in the
circuit.

1. We first show that p2 ≥ x2 using the approach above. In the circuit it means showing
that a (n/2)-bit decomposition is sufficient to represent s2.

2. We then show that p2 ≠ x2 by storing a witness z such that z(p2 − x2) = 1 (i.e.,
z = (p2 − x2)−1).

For our prime sizes this approach results in an overhead of only 50% regarding range
checks and lookup operations.
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