
Treating dishonest ciphertexts in post-quantum KEMs –
explicit vs. implicit rejection in the FO transform

Kathrin Hövelmanns and Mikhail Kudinov

Eindhoven University of Technology, Eindhoven, Netherlands
kathrin@hoevelmanns.net, mishel.kudinov@gmail.com

Abstract. We revisit a basic building block in the endeavor to migrate to post-quantum se-
cure cryptography, Key Encapsulation Mechanisms (KEMs). KEMs enable the establishment
of a shared secret key, using only public communication. When targeting chosen-ciphertext
security against quantum attackers, the go-to method is to design a Public-Key Encryption
(PKE) scheme and then apply a variant of the PKE-to-KEM conversion known as the Fujisaki-
Okamoto (FO) transform, which we revisit in this work. Intuitively, FO ensures chosen-
ciphertext security by rejecting dishonest messages. This comes in two flavors – the KEM
could reject by returning ’explicit’ failure symbol ⊥ or instead by returning a pseudo-random
key (’implicit’ reject). During the NIST post-quantum standardization process, designers chose
implicit rejection, likely due to the availability of security proofs against quantum attackers.
On the other hand, implicit rejection introduces complexity and can easily deteriorate into
explicit rejection in practice. While it was proven [BHH+19] that implicit rejection is not less
secure than explicit rejection, the other direction was less clear. This is relevant because the
available security proofs against quantum attackers still leave things to be desired. When envi-
sioning future improvements, due to, e.g., advancements in quantum proof techniques, having
to treat both variants separately creates unnecessary overhead.
In this work, we thus re-evaluate the relationship between the two design approaches and
address the so-far unexplored direction: in the classical random oracle model, we show that
explicit rejection is not less secure than implicit rejection, up to a rare edge case. This, however,
uses the observability of random oracle queries. To lift the proof into the quantum world, we
make use of the extractable QROM (eQROM). As an alternative that works without the
eQROM, we give an indirect proof that involves a new necessity statement on the involved
PKE scheme.
Keywords: Post-quantum, Public-key encryption, Key Encapsulation, Fujisaki-Okamoto trans-
form, QROM, NIST.

1 Introduction

Post-quantum cryptography is a critical topic, as the development of quantum computing technology
poses a significant threat to the security of the currently deployed cryptographic algorithms. This
threat necessitates to explore and implement new cryptographic techniques and protocols that are
capable of withstanding potential quantum-based attacks. The two most basic building blocks are
digital signatures and Key Encapsulation Mechanisms (KEMs), which were recently targeted in the
NIST PQC standardization process [NIS]. This work is concerned with KEMs, more specifically, we
revisit the Fujisaki-Okamoto (FO) transform [FO99,FO13]. Dent [Den03, Table 5] and later [HHK17]
gave FO adaptations for KEMs, which by now have become the de-facto standard for building post-
quantum secure KEMs. Notably, all KEM submissions to the NIST PQC standardization process

K.H. was supported by an NWO VENI grant (Project No. VI.Veni.222.397). Date: January 14, 2025

2 K. Hövelmanns, M. Kudinov

which made it to later rounds used some variant of FO [NIS]. An important contribution in [HHK17]
was that the paper provided a security proof against quantum attackers, by analyzing the FO
transform in the Quantum Random Oracle model (QROM).

Intuitively, FO ensures chosen-ciphertext security by rejecting dishonest messages: when asked
to compute the key corresponding to a received ciphertext, the KEM will first perform a sanity
check (sometimes called ’re-encryption check’) on the received ciphertext and only derive the key if
the ciphertext passes the check. Otherwise, the KEM rejects. Rejection comes in two flavors – an
FO-KEM could reject by returning ’explicit’ failure symbol ⊥ (’explicit’ reject, sometimes denoted
as FO⊥) or instead by returning a pseudo-random key (’implicit’ reject, sometimes denoted as FO ̸⊥).
During the NIST post-quantum standardization process, designers chose implicit rejection, likely
because it was proven secure against quantum attackers much earlier [HHK17], and with follow-up
proofs allowing for better parameters [SXY18, JZC+18,BHH+19,HKSU20,KSS+20] than the ones
for explicit rejection [JZM19, DFMS22] at least until more recent results [HHM22, HM24]. These
two more recent results allowed parameters close to the ones for implicit rejection – by making use
of an emerging new quantum proof technique, the extractable Quantum Random Oracle [DFMS22]
(eQROM), a better security bound proof could be given.

With the currently best known security bounds being relatively close for both variants, the
question arises how much their security actually differs. Before making the case why this question
might be relevant, we survey what is known: it is known [BHH+19] that implicit rejection is at least
as secure as explicit rejection, so designers of an explicitly rejecting KEM can freely switch to implicit
rejection without deteriorating security. (Intuitively, this might feel natural since implicit rejection
simply replaces the explicit failure symbol with something that at least has the format of a proper
key, so in a sense, the attacker might learn less from such responses.) Implicit rejection, however,
introduces some complexity: it involves more hashing, and unless special care is taken, practice can
turn implicit rejects into explicit ones, e.g., due to timing information, implementations raising (and
leaking) internal flags, or because the larger infrastructure that uses the KEM aborts connections
once it notices that the key is improper. If designers want to be on the safe side and account for
such potential deterioration, they might indeed want to design their KEM such that even its explicit
rejection counterpart has a security proof.

The other direction of the question – whether explicit rejection is as secure as implicit rejection
– so far was not formally analyzed. As a result, it is not completely clear what a KEM actually gains
in terms of security (if anything at all) when choosing implicit over explicit rejection, which might be
dissatisfying for designers that want to choose their concrete KEM design. Additionally, this missing
link might create unnecessary work in the future: neither variant has an easily applicable security
proof against quantum attackers that is ’tight’ – if designers want to base the KEM’s security on the
security of the underlying PKE scheme, using a standard notion of PKE security, the parameters need
to be chosen much larger to mitigate quantum attacks than when only aiming to mitigate classical
attacks. This lack of tightness stems from how the proofs argue key indistinguishability – to do so,
they use a quantum proof technique called One-Way-To-Hiding that (so far) incurs a security loss.
The closeness of currently known bounds does not rule out that future advancements in quantum
proof techniques can tighten up one variant, but not the other, which would unveil one variant as
significantly more secure than the other. Even if both variants can be tightened up, having to treat
both variants separately creates unnecessary overhead. We note that previous work [BHH+19] gave
a result for explicit rejection with key confirmation, i.e., for another KEM variant that includes an
additional hash into the ciphertext, but that the proof crucially relies on this additional hash and
that the design thus suffers from additional computation and communication overhead.

Our contribution. For FO-KEMs that are built from probabilistic schemes with sufficient entropy,
we will show that explicit rejection is as secure against classical attackers as implicit rejection, up
to one edge case that in practice will be very rare. For schemes with imperfect correctness, i.e., for

Explicit vs. implicit rejection in the FO transform 3

schemes where decrypting sometimes does not return the originating plaintext, it can be bounded by
computational correctness notions. We decided to give a more fine-grained analysis (see Definition 9)
to enable better bounds and to capture how rare this edge case will be in practice. Notably, the edge
case does not occur at all if the involved encryption scheme is perfectly correct, i.e., if decrypting
always returns the originating plaintext.

We stress that our approach only applies to KEMs that are built from probabilistic schemes
and that follow the FO paradigm of computing encryptions as c := Enc(pk,m; r) with randomness
r := Hash(m), like, e.g., Kyber. This is because the proof crucially exploits that the randomness-
generating hash function Hash is modeled as a random oracle.

Our proof does not directly carry over to the quantum setting – in the classical setting, we model
the involved hash functions as random oracles and the proof exploits that all adversarial oracle
queries can be observed. In the quantum-accessible ROM, we thus offer two alternative approaches:
the first one makes use of the more recent QROM techniques, in particular of the extractable
QROM [DFMS22]. The extractable QROM is a compressed oracle [Zha19] that provides an additional
‘extraction’ interface Ext. Essentially, Ext can serve as a QROM counterpart to book-keeping random
oracle queries. While we will argue that attackers do not gain anything from interacting with Ext,
security proofs heavily benefit from it. In our case, Ext enables a tight reduction between the two
rejection methods. More specifically, given an adversary against an explicitly rejecting FO-KEM,
one can again construct an adversary against the implicitly rejecting counterpart, with the proof
resembling its classical counterpart up to how the relevant oracle queries are found. We also briefly
discuss a second, alternative approach that dispenses with the extractable QROM, but comes at the
price of being far less tight. This approach combines already known relations with a new necessity
statement on the involved PKE scheme: we use that if the implicitly rejecting KEM is IND-CCA
secure, then the involved PKE scheme must be Oneway-secure. Consequentially [HHM22, Theorem
9], the explicitly rejecting KEM then is secure as well.

Organization of this paper. After recalling the necessary definitions/notation in Section 2 as well
as – for the reader’s convenience – relevant previous results in Section 3, we start by showing the
result for classical attackers, giving a reduction in the (classical) ROM in Section 4. Section 5 uses
the extractable QROM to lift the proof to the quantum world. We finish by giving the non-tight,
but extQROM-less indirect proof in Section 6.

2 Preliminaries

In this section we recall the necessary background from previous literature that we will use through-
out the paper: we recall Fujisaki-Okamoto transformation, definitions and security notions for PKE
schemes and KEMs, and the extractable QROM.

2.1 Public-Key Encryption

A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of three algorithms and a finite
message spaceM. The key generation algorithm Gen outputs a key pair (pk, sk), with pk defining a
randomness space R = R(pk). The encryption algorithm Enc, on input pk and a message m ∈ M,
produces an encryption c ← Enc(pk,m) of m under the public key pk. If necessary, we explicitly
specify the used randomness of encryption by writing c := Enc(pk,m; r), where r ←$ R and R
denotes the randomness space. The decryption algorithm Dec, on input sk and a ciphertext c, yields
either a message m = Dec(sk, c) ∈ M or a special symbol ⊥ /∈ M to show that c is not a valid
ciphertext.

4 K. Hövelmanns, M. Kudinov

2.2 Fujisaki-Okamoto transformation

This subsection recalls the definition of the two FO variants FO⊥
m and FO ̸⊥

m. To a public-key encryp-
tion scheme PKE = (Gen,Enc,Dec) with message spaceM, randomness space R, and hash functions
G :M→R and H : {0, 1}∗ → {0, 1}n, we associate the two KEMs (either with rejection type ⊥ or
̸⊥):

KEM⊥/ ̸⊥
m := FO⊥/ ̸⊥

m [PKE,G,H] := (Gen,Encaps,Decaps) ,

with the respective algorithms given in Algorithm 1 and Algorithm 2. (To reject in line 6, FO ̸⊥
m uses

a seed sk.seed that was randomly chosen from the message space during key generation and is stored
alongside the secret key for PKE.)

Algorithm 1: Encaps(pk)

1 m←$M
2 c = Enc(pk;m;G(m))
3 K = H(m)

Algorithm 2: Decaps(sk, c)

1 m′ = Dec(sk, c)
2 if m′ = ⊥ or c ̸= Enc(pk,m′,G(m′))

then
3 if type = ⊥ then
4 return ⊥
5 if type = ̸⊥ then
6 return H(c, sk.seed)

7 else
8 return K = H(m′)

The two KEMs use the underlying scheme PKE in a derandomized way by using G(m) as the
encryption randomness (see line 2 of Algorithm 1) and check during decapsulation whether the
decrypted plaintext does re-encrypt to the ciphertext (see line 2 of Algorithm 2). This building

block of FO⊥/ ̸⊥
m , i.e., derandomizing PKE and introducing a re-encryption check, was formalized

in [HHK17] as the following transformation T, whose result we denote by PKEG:

PKEG := T[PKE,G] :=
(
Gen,EncG,DecG

)
,

with the respective algorithms given in Algorithm 3 and Algorithm 4 in Figure 1.

Algorithm 3: EncG(pk,m)

1 m←$M
2 c = Enc(pk;m;G(m))
3 return c

Algorithm 4: DecG(sk, c)

1 m′ = Dec(sk, c)
2 if m′ = ⊥ or

c ̸= Enc(pk,m′,G(m′)) then
3 return ⊥
4 else
5 return m′

Fig. 1: Derandomized PKE scheme PKEG := T[PKE,G] := (Gen,EncG,DecG).

Following the notation established in [HHK17], we denote the transformation from a deterministic
dPKE to a KEM with corresponding rejection mechanism by U̸⊥

m

(
U⊥

m

)
. Starting from a deterministic

Explicit vs. implicit rejection in the FO transform 5

encryption scheme dPKE and a hash function H, we build a key encapsulation mechanism KEM̸⊥ :=
U ̸⊥

m [dPKE,H] with ’implicit’ rejection by defining

Encaps(pk) := (c← Enc(pk,m),K := H(m)) ,

where m is picked at random from the message space, and

Decaps ̸⊥(sk, c) =

{
H(m) m ̸= ⊥
H(c, sk.seed) m = ⊥

where m := Dec(sk, c) and sk.seed is a random seed which is contained in sk.

We also define the ’explicit rejection’ counterpart KEM⊥ = U⊥
m

[
PKEG,H

]
which differs from

KEM ̸⊥ only in decapsulation:

Decaps⊥(sk, c) =

{
H(m) m ̸= ⊥
⊥ m = ⊥

where m := Dec(sk, c).

2.3 Security notions for Public-Key Encryption schemes

In the security analysis of FO-KEMs, it is usually necessary to utilize notions of correctness. This
captures a particular class of chosen-ciphertext attacks, where attackers found a failing ciphertext
c, meaning c decrypts to a different message than its originating one, and uses this to obtain some
leakage on the secret key. There are two approaches to handling such correctness errors. The first
one is information-theoretic.

Definition 1 (Correctness (inf. theor.) [HHK17]). We call a public-key encryption scheme
PKE δ-correct if

E

[
max
m∈M

Pr[Dec(sk, c) ̸= m|c← Enc(pk,m)]

]
≤ δ.

where the expectation is taken over (pk, sk)← Gen.

In the security analysis of FO-KEMs, it is usually necessary to use a correctness term for the
derandomized version of PKE.

Definition 2 (Deterministic Correctness (inf. theor.) [HHK17]). We call the deterministic
public-key encryption scheme PKEG δ1-correct if

E

[
max
m∈M

Pr[DecG(sk, c) ̸= m|c← Enc(pk,m,G(m))]

]
≤ δ1.

where the expectation is taken over (pk, sk)← Gen.

According to Theorem 3.1 [HHK17] the correctness of a PKEG can be related to correctness of
PKE as δ1 = qG · δ, where qG is the number of queries to G in the classical ROM. In the QROM, δ1
is bounded by δ1 ≤ 8(qG + 1)2 · δ [HHK17, Lemma 4.3] .

This reflects that even a possibly unbounded adversary with access to the key pair cannot create
a failing ciphertext with a probability bigger than δ1. A computational (game-based) approach to
capturing this was introduced in [HHM22].

6 K. Hövelmanns, M. Kudinov

Definition 3 (FFP-ATK). Let PKE = (Gen, Enc, Dec) be a deterministic public-key encryption
scheme. For ATK ∈ {CPA,CCA}, we define FFP-ATK games as in Algorithm 5, where

OATK :=

{
− ATK = CPA

oDecrypt ATK = CCA

We define the FFP-ATK advantage function of an adversary A against PKE as

AdvFFP−ATK
PKE (A) := Pr

[
FFP− ATKA

PKE ⇒ 1
]
.

Although the computational approach might give a tighter bound, we will at times stick to the
somewhat simpler information-theoretic notion.

Algorithm 5: FFP-ATK

1 (pk, sk)← Gen

2 m← AOATK,G(pk)

3 c← EncG(pk,m)

4 m′ = DecG(sk, c)
5 return Jm′ ̸= mK

Algorithm 6: oDecrypt(c)

1 m = Dec(sk, c)
2 return m

Definition 4 (Injectivity of PKE schemes [BHH+19]). A dPKE = (Gen,Enc,Dec) is ϵ-
injective if

Pr[Enc(pk,m) is not injective : (pk, sk)← Gen(), H ← H] ≤ ϵ
We say dPKE is injective if ϵ = 0. We say that an probabilistic PKE scheme is injective if for all
public keys pk, all m ̸= m′ and all coins r, r′, we have Enc(pk,m, r) ̸= Enc (pk,m′, r′).

In the security analysis of FO-KEMs, it will also be necessary to capture that adversaries might
be able to create valid ciphertexts without knowing the respective plaintext. This will involve the
following notion about the entropy (or ’spreadness’) of the PKE scheme.

Definition 5 (γ-spreadness [HHM22]). We say that PKE is γ-spread iff for all key pairs
(pk, sk) ∈ supp(Gen) and all messages m ∈M it holds that

max
c∈C

Pr[Enc(pk,m) = c] ≤ 2−γ

where the probability is taken over the internal randomness Enc.

Lastly, we define one-wayness under different models (OW-ATK) for PKE schemes.

Definition 6 (OW-ATK). Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with mes-
sage spaceM. We now define three security notions for public-key encryption: One-Wayness under
Chosen Plaintext Attacks (OW-CPA), One-Wayness under Plaintext Checking Attacks (OW-PCA),
and One-Wayness under Plaintext and Validity Checking Attacks (OW-PCVA). We define these
games as in Algorithm 7 and a corresponding advantage function of an adversary A against PKE as

AdvOW-ATK
PKE (A) = Pr

[
OW-ATKA

PKE ⇒ 1
]

Where a corresponding oracle will be defined as

OATK :=


− ATK = CPA

Pco(·, ·) ATK = PCA

Cvo(·) ATK = VA

Pco(·, ·),Cvo(·) ATK = PCVA

Explicit vs. implicit rejection in the FO transform 7

Algorithm 7: ATK-CPA

1 (pk, sk)← Gen
2 m∗ ←$M
3 c∗ ← Enc(pk,m∗)

4 m′ ← AOATK(pk, c∗)
5 return Jm′ = m∗K

Algorithm 8: ATK oracles

1 Pco(m ∈M, c) :
2 return JDec(sk, c) = mK

3 Cvo(c ̸= c∗) :
4 m = Dec(sk, c)
5 return Jm ∈MK

2.4 Security notions for Key Encapsulation Mechanisms

Here, we define security notions for key encapsulation: Indistinguishability under Chosen Plaintext
Attacks (IND-CPA) and Chosen Ciphertext Attacks (IND-CCA).

Definition 7 (IND-CPA). We define the IND-CPA game as in Algorithm 9 and the IND-CPA ad-
vantage function of an adversary A (with binary output) against KEM as

AdvIND-CPA
KEM (A) :=| Pr

[
IND-CPAA

KEM ⇒ 1]− 1/2.

Definition 8 (IND-CCA). We define the IND-CCA game as in Algorithm 10 and the IND-CCA
advantage function of an adversary A (with binary output) against KEM as

AdvIND-CCA
KEM (A) :=| Pr

[
IND-CCAA

KEM ⇒ 1]− 1/2.

Algorithm 9: IND-CPA

1 (pk, sk)← Gen
2 b←$ {0, 1}
3 (K∗

0 , c
∗)← Encaps(pk)

4 K∗
1 ←$ K

5 b′ ← A(c∗,K∗
b)

6 return Jb′ = bK

Algorithm 10: IND-CCA

1 (pk, sk)← Gen
2 b←$ {0, 1}
3 (K∗

0 , c
∗)← Encaps(pk)

4 K∗
1 ←$ K

5 b′ ← ADecaps(c∗,K∗
b)

6 return Jb′ = bK

In [HHK17] Theorem 3.4, the authors showed a reduction of IND-CCA of KEM ̸⊥ security to
OW-PCA security of PKEG in ROM. While in Theorem 3.3 they showed a reduction of IND-CCA of
KEM⊥ security to OW-PCVA security of PKEG in ROM.

2.5 Extractable Compressed Random Oracle

In this section, we want to describe extractable Compressed Oracle (eCO) [DFMS22]. In our con-
text, it was used in the proofs of [HHM22], which allowed the authors to simulate decapsulation
queries and produce a tighter bound. This model is an extension of Zhandry’s Compressed Random
Oracle [Zha19]. eCO implements two interfaces; one is used for quantum-accessible random oracle,
and the second one is used for extraction queries. Let’s look at them in more detail.

The random oracle interface is usually denoted as eCO.RO while the extraction interface is
denoted as eCO.Ext. The extraction mechanism depends on some function f so we can sometimes
write eCO.Extf if f is not obvious from the context. The extraction query must be classical and
consist of some target value t. The response simulates a quantum measurement that ”collapses” the
Oracle database, allowing it to yield a specific outcome x. After the measurement, the database

8 K. Hövelmanns, M. Kudinov

is in a state where all the values for eCO.RO(x) collapse to the values y that satisfy the equation
f(x, y) = t. Moreover, x is the smallest input in the database that, with some corresponding value
y, satisfies the function f .

Now, we present the formal definitions of eCO from [DFMS22,HM24]. We also do not go into
detail about the efficiency of eCO implementation. An interested reader can look further details up
in [DFMS22].

The simulator eCO for a random function O: {0, 1}m → {0, 1}n is a stateful oracle with a state
stored in a quantum register D = D0m . . . D1m , where for each input value x ∈ {0, 1}m, register
Dx has n + 1 qubits used to store superpositions of n-bit output strings y, encoded as 0y, and an
additional symbol ⊥, encoded as 10n. We adopt the convention that an operator expecting n input
qubits acts on the last n qubits when applied to one of the registers Dx. The compressed oracle has
the following three components.

1. The initial state of the oracle, |ϕ⟩ = |⊥⟩2m

2. A quantum query with query input register X and output register Y is answered using the oracle
unitary OXYD defined by

OXYD|x⟩X = |x⟩X ⊗
(
FDx

CNOT⊗n
Dx:Y

FDx

)
,

where F |⊥⟩ = |ϕ0⟩ , F |ϕ0⟩ = |⊥⟩ and F |ψ⟩ = |ψ⟩ for all |ψ⟩ such that ⟨ψ | ⊥⟩ = ⟨ψ | ϕ0⟩ = 0,
with |ϕ0⟩ = |+⟩⊗n being the uniform superposition.

3. A recovery algorithm that recovers a standard QRO O: apply F⊗2m to D and measure it to
obtain the function table of O.

The extraction interface works the following way. Given a random oracle O : {0, 1}m → {0, 1}n, let
f : {0, 1}m×{0, 1}n → {0, 1}ℓ be a function. We define a family of measurements (Mt)t∈{0,1}ℓ . The

measurementMt has measurement projectors {Σt,x}x∈{0,1}m∪{∅} defined as follows. For x ∈ {0, 1}m,

the projector selects the case where Dx is the first (in lexicographical order) register that contains
y such that f(x, y) = t, i.e.

Σt,x =
⊗
x′<x

Π̄t,x′

D′
x
⊗Πt,x

Dx
, with Πt,x =

∑
y∈{0,1}n:
f(x,y)=t

|y⟩⟨y|

and Π̄ = 1 − Π. The remaining projector corresponds to the case where no register contains
such a y, i.e.

Σt,∅ =
⊗

x′∈{0,1}m

Π̄t,x′

D′
x

eCO is initialized with the initial state of the compressed oracle. eCO.RO is quantum-accessible,
eCO.Ext is a classical oracle interface that, on input t, appliesMt to eCO’s internal state.

The main lemma used in our proof declares how extraction queries affect RO behavior. To define
it, we first need to introduce some notions.

– Rf,t(x, y) :⇔ f(x, y) = t.
– ΓR := maxx |{y | R(x, y)}|.
– Γ (f) = maxt ΓRf,t

.

Lemma 1 (Part of theorem 3.4 in [DFMS22], formulated in [HHM22]). The extractable
RO simulator eCO described above, with interfaces eCO.RO and eCO.Ext, satisfies the following
properties.

Explicit vs. implicit rejection in the FO transform 9

1. If eCO.Ext is unused, eCO is perfectly indistinguishable from a random oracle.
2. Any two subsequent independent queries to eCO.RO commute. In particular, two subsequent

classical eCO.RO-queries with the same input x give identical responses.
3. Any two subsequent independent queries to eCO.Ext commute. In particular, two subsequent

eCO.Ext queries with the same input t give identical responses.
4. Any two subsequent independent queries to eCO.Ext and eCO.RO 8

√
2Γ (f)/2n-almost-commute.

3 Known Results

In this section, we revise related results from previous works for the reader’s convenience. We begin
with the implication result mentioned in the introduction, stating that implicit rejection is at least
as secure as explicit rejection.

Theorem 1 (Explicit → implicit [BHH+19, Theorem 3]). Let PKEGbe a derandomized PKE.
Let A be an IND-CCA adversary against U ̸⊥

m(PKEG,F, H). Then there is an IND-CCA adversary B
against U⊥

m(PKEG, H), running in about the same time and resources as B, such that

AdvIND-CCA
U̸⊥

m(PKEG,F,H)
(A) = AdvIND-CCA

U⊥
m(PKEG,H)(B)

Algorithm 11: Enc1(pk,m)

1 c← Enc(pk,m)
2 t← Ht(m)
3 return (c, t)

Algorithm 12: Dec1(sk, (c, t))

1 m′ ← Dec(sk, c)
2 if Ht(m

′) ̸= t then
3 return ⊥
4 return m′

Fig. 2: PKE scheme C(PKE, Ht, τ): PKE with added key confirmation of length τ .

As already pointed out in the introduction, there also exists a proof in the other direction for
explicitly rejecting KEMs that additionally add key confirmation to the ciphertexts. We now recall
the construction and the result. Let τ be the number of bits used for the key-confirmation tag. To
PKE scheme PKE = (Gen,Enc,Dec) and random oracle Ht :M→ {0, 1}τ , [BHH+19] associated the
transformed scheme C(PKE, Ht, τ) = (Gen,Enc1,Dec1) that adds key confirmation to PKE, formally
defined in Algorithm 11 and Algorithm 12 in Figure 2. We note that the security bound for the
resulting KEM (see below) contains a term relative to τ and to qDecaps, the number of decapsulation
queries. In practice, this means that the ciphertext’s key confirmation portion must be sufficiently
long to rule out chosen-ciphertext attacks.

Theorem 2 (Implicit → explicit with key confirmation [BHH+19, Theorem 4]). Let dPKE
be an ϵ-injective derandomized PKE. Consider the KEM K1 := U⊥

m(C(dPKE, Ht, τ), Hs) obtained
from dPKE applying the C-transform with random oracle Ht :M→ {0, 1}τ and the U⊥

m-transform
with independent random oracle Hs :M→ {0, 1}ς . Let K2 := U ̸⊥

m(dPKE,F, H) be the KEM obtained
from dPKE applying the U ̸⊥

m-transform with random oracle H :M→ {0, 1}ς+τ .
If A is an IND-CCA-adversary against K1 which makes qDecaps decapsulation queries, then it is

also an IND-CCA-adversary against K2, and there is a PRF adversary B against F which uses about
the same time and resources as A, such that:

AdvIND-CCA
K1

(A) ≤ 2 ·AdvIND-CCA
K2

(A) + qDecaps

2τ−1
+ 2 ·AdvPRF

F (B) + 2ϵ

10 K. Hövelmanns, M. Kudinov

For our indirect QROM proof in Section 6, we will use the following modular result from [HHM22]).
Its first step bases IND-CCA security of explicitly rejecting FO-KEMs KEM⊥ := FO⊥

m[PKE] on their
passive security (i.e., IND-CPA), together with the correctness of the derandomized scheme PKEG

(which is captured via a computational ’Find Failing Plaintext’ notion, FFP-CCA) and gamma-
spreadness of the underlying scheme PKE. Note that according to [HHM22, Remark 1], this theorem
also holds for the implicitly rejecting variant FO ̸⊥

m[PKE].

Theorem 3 (FO⊥
m[PKE] IND-CPA and PKEG FFP-CCA

eQROM⇒ FO⊥
m[PKE] IND-CCA [HHM22,

Theorem 4]). Let PKE be a (randomized) PKE that is γ-spread, and δ-correct, and KEM⊥ :=
FO⊥

m[PKE,G,H]. Let A be an IND-CCA adversary (in the QROM) against KEM⊥, making at most qD
many queries to its decapsulation oracle oDecaps, and making qG, qH queries to its respective random
oracles. Let furthermore d and w be the combined query depth and query width of A’s random oracle
queries. Then there exist an IND-CPA-KEM adversary Ã and an FFP-CCA adversary B against
PKEG, both in the eQROMEnc, such that

AdvIND-CCA
KEM⊥ (A) ≤ AdvIND-CPA

KEM⊥ (Ã) + AdvFFP-CCAPKEG (B) + 12qD (qG + 4qD) · 2−γ/2 .

The adversary Ã makes qG + qH + qD queries to eCO.RO with a combined depth of d + qD and
a combined width of w, and qD queries to eCO.Ext. Here, eCO.RO simulates G× H. The adversary
B makes qD many queries to oDecrypt and eCO.Ext and qG queries to eCO.RO, and neither Ã nor
B query eCO.Ext on the challenge ciphertext. The running times of the adversaries Ã and B are
bounded as Time(Ã) = Time(A) +O (qD) and Time(B) = Time(A) +O (qD)

The second step of the modular result picks up the threat and bases the passive security of
KEM⊥ = FO⊥

m[PKE] on OW-CPA security of the underlying PKE scheme. Note that this theorem
also holds for the implicitly rejecting variant FO ̸⊥

m[PKE] because the IND-CPA advantage against
FO⊥

m[PKE] and FO ̸⊥
m[PKE] is identical. (With the only difference being in how the KEMs reject

invalid ciphertexts, the passive IND-CPA game is the same for both variants.)

Theorem 4 (PKE OW-CPA
eQROM⇒ FO⊥

m[PKE] IND-CPA [HHM22, Theorem 9]). For any
IND-CPA adversary A against KEM⊥ := FO⊥

m[PKE,G,H] in the eQROMEnc that issues q many
queries to eCO.RO in total, with a query depth (width) of d(w), and qE many queries to eCO.Ext,
where none of them is with its challenge ciphertext. there furthermore exists an OW-CPA adversary
BOW-CPA such that

AdvIND-CPA
KEM⊥ (A) ≤ 8d ·

√
w ·AdvOW-CPA

PKE (BOW-CPA)

The running time and quantum memory footprint of BOW-CPA satisfy Time (BOW-CPA) = Time(A)+
Time (eCO, q, qE) and QMem(BOW-CPA) = Time(A) + QMem(eCO, q, qE)

When combining the two results, the KEM’s IND-CCA security can be based on OW-CPA security
and gamma-spreadness of the underlying probabilistic PKE scheme PKE, but this still involves a
computational correctness notion (the FFP-CCA term) in the extractable QROM. Since our indirect
proof aims to dispense with the extractable QROM altogether, we will additionally make use of a
result in [HM24] that bounds the FFP-CCA term, using δ-correctness of the underlying PKE scheme
PKE (which is in the standard model):

Theorem 5 (PKE δ-correct
eQROM⇒ PKEG FFP-CCA [HM24, Theorem 3]). Let PKE be a

(randomized) PKE scheme that is δ-correct, and let C be an FFP-CCA adversary C against PKEG in
the eQROMEnc, issuing at most qD decryption queries and qG many queries to its eQROM oracle
interface eCO.RO. Then

AdvFFP-CCAPKEG (C) ≤ 10 (qG + qD + 1)
2
δ.

Explicit vs. implicit rejection in the FO transform 11

Combining the three results above, we can bound the security of KEM⊥ using δ-correctness,
γ-spreadness and one-wayness of the underlying PKE scheme.

Corollary 1 (OW-CPA → IND-CCA). Let PKE be a (randomized) PKE that is γ-spread and δ-
correct, and let KEM⊥ := FO⊥

m[PKE,G,H]. Let A be an IND-CCA adversary against KEM⊥ in the
QROM, making at most qD many queries to its decapsulation oracle oDecaps, and making qG, qH
queries to its respective random oracles. Let furthermore d and w be the combined query depth and
query width of A’s random oracle queries. Then there exist an OW-CPA adversary B against the
underlying PKE such that

AdvIND-CCA
KEM⊥ (A) ≤ 8(d+ qD) ·

√
w ·AdvOW-CPA

PKE (B) + 10 (qG + qD + 1)
2
δ+ 12qD (qG + 4qD) · 2−γ/2 .

The running time and quantum memory footprint of B satisfy Time(B) = Time(A) + O(qD) +
Time(eCO, qG + qH + qD, qD) and QMem(B) = QMem(A) + QMem(eCO, qG + qH + qD, qD).

4 Implicit → explicit: reduction in the (classical) ROM

Before capturing quantum adversaries, we first start with a classical proof in the ROM. This will
serve as a template for the subsequent quantum proof and help to build a better intuition. We want
to relate the security of KEM⊥ := FO⊥

m[PKE] to the security of KEM̸⊥ := FO ̸⊥
m[PKE]. To do so, we will

want to use the adversary against KEM⊥ to attack KEM ̸⊥ by means of a reduction. This reduction
needs to simulate decapsulation responses with explicit rejection, itself having access to implicitly
rejecting decapsulations. At a first glance, it might not be obvious how our simulation can notice
when it needs to reject a ciphertext, since the available oracle always returns keys that are in principle
of the right format. We will build on techniques from [HHM22], where the authors implemented a
simulation of the decapsulation oracle that worked without access to any decapsulation oracle at all,
by instead investigating the posed random oracle queries. We will use this as an initial idea, but at
the same time also utilize the extra capabilities given through the decapsulation oracle for KEM ̸⊥,
which allows us to give a more fine-grained security reduction.

Our reduction will fail to convince the attacker in one particular edge case, which is a particular
sub-case of failing plaintexts in which the attacker did not only find a plaintext m whose (deran-
domized) encryption will not decrypt to m, but even a failing plaintext m that created a form of
collision, meaning the decryption result m′ and m will encrypt to the same ciphertext. Clearly, this
edge case can be ruled out altogether if PKE has no correctness errors at all or if the encryption of
PKE is injective. To bound the edge case computationally, we introduce the following computational
notion, Find Failing Plaintext With Collision (FFPC). We have two types of this notion: under chosen
ciphertext attack and under chosen plaintext attack. We will interpret the meaning of this sub-case
after the formal definition.

Definition 9 (FFPC). Let PKEG = (Gen,EncG,DecG) be the derandomized version of a public-
key encryption scheme PKE = (Gen,Enc,Dec) as defined in Figure 1. For chosen ciphertext attack
(CCA), we define an FFPC-CCA game for PKEG as in Algorithm 13, where the FFPC-ATK advantage
functions of an adversary A against PKEG as

AdvFFPC-CCAPKEG (A) := Pr
[
FFPC-CCAA

PKEG ⇒ 1
]
.

12 K. Hövelmanns, M. Kudinov

Algorithm 13: FFPC-CCA

1 (pk, sk)← Gen

2 m← AoDecrypt,G(pk)

3 c← EncG(pk,m)

4 m′ = DecG(sk, c)

5 return Jm′ ̸= m ∧ EncG(pk,m′) =

EncG(pk,m)K

Algorithm 14: oDecrypt(c)

1 m = DecG(sk, c)
2 return m

Interpretation of FFPC. One might wonder if this definition is necessary (in the sense that it
captures an attack), or if it reflects a proof artifact. Intuitively, it seems that this case should not
matter in practice: this is a case where the ciphertext undeservedly passes the full sanity check made
during decapsulation, since it decrypts to a message and since the re-encryption also checks out.
Consequently, there’s no difference in how the two decapsulation variants respond to the ciphertext.
On the other hand, it is not clear how the security proof below could be adapted to dispenses with
the case. We note that FFPC-CCA can be trivially bounded by the less fine-grained correctness notion
FFP-CCA– any attacker who successfully found a failing plaintext with collision obviously found a
failing plaintext, thus succeeding in the FFP-CCA game. For perfectly correct schemes, this cannot
happen at all, hence the FFPC-CCA advantage always will be 0 for such schemes. On the other hand,
even for imperfectly correct schemes, this is a subset of failing ciphertexts that seem to be very rare.

The main result of this section indicates that FFPC-CCA indeed fully captures the difference
between the two KEMs, if there is any at all: assuming that the KEMs use suitable key length and
that the underlying encryption algorithm carries enough entropy (γ-spreadness), which is always
needed for their security, the bound in Theorem 6 shows that the only case where one can attack
the explicit KEM, but not the implicit one, indeed is the edge case captured via FFPC-CCA (which
completely vanishes for perfectly correct schemes.)

Theorem 6 (Classical ROM: Implicit → Explicit). Let PKE be a (randomized) PKE scheme
that is γ-spread and let KEM⊥ := FO⊥

m[PKE,G,H], generating keys of length n. Let A be an IND-CCA
adversary (in the ROM) against KEM⊥, making at most qD many queries to its decapsulation oracle
oDecaps. Then there exist an IND-CCA adversary Ã against KEM ̸⊥ := FO ̸⊥

m[PKE,G,H] and an
FFPC-CCA adversary B against PKEG such that

AdvIND-CCA
KEM⊥ (A) ≤ AdvIND-CCA

KEM̸⊥ (Ã) + AdvFFPC-CCAPKEG (B) + qD · 2−γ + (qD · qH) · 2−n ,

Adversary Ã makes qG queries to G and qH + qD queries to H, adversary B makes qG queries to
G and qD decryption queries, and both adversaries run in about the time of A.

Proof. Consider adversary A against KEM⊥. We now define the IND-CCA adversary Ã against
KEM ̸⊥, which has access to the implicitly rejecting decapsulation oracle oDecaps̸⊥ (Algorithm 15)
and simulates the explicitly rejecting decapsulation oracle oDecaps (Algorithm 16) to A via the
simulation oDecaps′⊥ below (Algorithm 18).

Explicit vs. implicit rejection in the FO transform 13

Algorithm 15: oDecaps̸⊥(sk, c)

1 m′ = Dec(sk, c)
2 if m′ = ⊥ then
3 return H(c, sk.seed)

4 else
5 c′ = Enc(pk,m′,G(m′)) if c′ ̸= c

then
6 return H(c, sk.seed)

7 else
8 return H(m′)

Algorithm 16: oDecaps⊥(sk, c)

1 m′ = Dec(sk, c)
2 if m′ = ⊥ then
3 return ⊥
4 else
5 c′ = Enc(pk,m′,G(m′)) if c′ ̸= c

then
6 return ⊥
7 else
8 return H(m′)

Ã runs b′ ← AG′,H,oDecaps′⊥ and returns its output b′. Here, G′ (see Algorithm 17) is like random
oracle G, except that it additionally book-keeps queried plaintexts and their encryptions. Simulation
oDecaps′⊥ does not decrypt and perform the re-encryption check: instead of decrypting, it will
look for suitable plaintexts in the random oracle query list. (Following the notation in [HHM22],
we denote this by m = L−1

G (c).) Instead of performing the re-encryption check, oDecaps′⊥ uses the
implicitly rejecting decapsulation oracle oDecaps̸⊥ (Algorithm 15) to identify invalid ciphertexts.

Algorithm 17: G′(m)

1 r = G(m)
2 c = Enc(pk,m; r)
3 LG = LG ∪ (m, c)
4 return r

Algorithm 18: oDecaps′⊥(c)

1 m = L−1
G (c)

2 if m = ⊥ then
3 return ⊥
4 K ′ = oDecaps̸⊥(sk, c)
5 if H(m) ̸= K ′ then
6 return K = ⊥
7 else
8 return K = H(m)

We note that unless Ã’s simulation oDecaps′⊥ fails to emulate oDecaps, Ã perfectly simulates
the game to A and wins if A wins. Let DIFF be the event that A makes a decryption query c for
which oDecaps′⊥ fails to emulate oDecaps, meaning oDecaps(sk, c) ̸= oDecaps′⊥(c). We bound

1

2
+ AdvIND-CCA

KEM⊥ = Pr[A wins]

= Pr[A wins ∧ ¬DIFF] + Pr[A wins ∧ DIFF]

= Pr[Ã wins ∧ ¬DIFF] + Pr[A wins ∧ DIFF]

≤ Pr[Ã wins] + Pr[DIFF]

=
1

2
+ AdvIND-CCA

KEM̸⊥ (Ã) + Pr[DIFF] .

To analyze the probability of event DIFF, we make a case distinction:

1. Original oracle oDecaps⊥(sk, c) rejects, and simulation oDecaps′⊥(c) doesn’t.

2. Neither oracle rejects, but the return values differ.

3. Simulation oDecaps′⊥(c) rejects, and original oracle oDecaps⊥(sk, c) doesn’t.

14 K. Hövelmanns, M. Kudinov

To analyze the first case, we notice that if the original oracle oDecaps⊥ rejects, then so does
its implicitly rejecting counterpart oDecaps̸⊥, by returning K ′ = H(c, sk.seed). If the simulation
oDecaps′⊥ does not reject, that means that oDecaps′⊥ found a message m such that H(m) =
H(c, sk.seed). In other words, the attacker found a collision, which in the random oracle model
happens with probability 1

2n per query. After qD many decapsulation queries, we have set up qD
possible targets. We can search for the solutions for these target by querying H, which gives an upper
bound on the complexity: (qD · qH)/2n.

The second case is impossible: in the case where oDecaps⊥(sk, c) does not reject, neither does
oDecaps̸⊥(sk, c), and both oracles would return H(m). Since we are in the case where oDecaps′⊥
also does not reject, oDecaps′⊥ returns K ′ = oDecaps̸⊥(sk, c), which is the return value of
oDecaps⊥(sk, c).

In the third case, the simulated oracle oDecaps′⊥ rejects, which can happen in two different
ways: a) it can be that no pre-image was found (L−1

G (c) = ⊥), or that b) oDecaps̸⊥(sk, c) ̸= H(m)
for the collected pre-image m = L−1

G (c). To capture sub-case a), we follow [HHM22]. The adversary
has to find a ciphertext c that passes the re-encryption check, meaning c is indeed of the form
c = Enc(pk,m,G′(m)) for some message m, without A having queried G′ on m yet. Intuitively, the
attacker guessed the right encryption randomness. Accordingly, [HHM22] denote this case as GUESS
and bound it using γ, the spreadness of the PKE scheme: due to [HHM22, Lemma 1], we can bound
the probability of this event as

Pr[GUESS] ≤ qD · 2−γ ,

where qD is the number of queries to the decapsulation oracle.

It remains to capture sub-case b), meaning oDecaps̸⊥(sk, c) ̸= H(m) for the collected pre-image
m = L−1

G (c). Since we are in the case that the original decapsulation oracle does not reject, we know
that c was sorted as valid, i.e., that m′ := Dec(sk, c) ̸= ⊥ and that Enc(pk,m′,G′(m′)) = c. In that
case, K ′ := oDecaps̸⊥(sk, c) is not a key that resulted from implicit rejection and it thus must be
that K ′ = H(m′), where m′ = Dec(sk, c). For H(m) and K ′ to differ, it must be that m ̸= m′ and c
thus fails to decrypt. In conclusion, the attacker must have posed a query m to G whose encryption
c = Enc(pk,m,G(m)) fails to decrypt, but nonetheless it holds that Enc(pk,m′,G′(m′)) = c for
m′ = Dec(sk, c). In other words, the attacker found a solution for the FFPC-CCA game. We bound this
via an FFPC-CCA adversary B against PKEG: B runsAG′,H,oDecaps′′ , where oDecaps′′ (Algorithm 19)
works exactly as oDecaps′⊥, except that it first checks for plaintexts solving the FFPC-CCA game
(line 3). We note that B’s simulation of oDecaps′⊥ is perfect – for the subroutine oDecaps̸⊥, it
uses a rejection seed which it randomly sampled at the beginning of the game, and B uses its own
decryption oracle oDecrypt (Algorithm 14) for PKEG to decrypt c. As soon as oDecaps′′ hits line
4, B returns the pre-image m, thus winning its game. If A finishes without line 4 ever being hit, B
returns ⊥. Since line 4 is hit whenever sub-case b) occurs, we can finish by collecting the probabilities
for all three cases:

Pr[DIFF] ≤ (qD + qH)/2
n + qD · 2−γ +AdvFFPC-CCAPKEG (B) .

Explicit vs. implicit rejection in the FO transform 15

Algorithm 19: oDecaps′′⊥(c)

1 m = L−1
G (c)

2 m′ = oDecrypt(c)

3 if m ̸= ⊥ ∧m′ ̸= ⊥ ∧ EncG(pk,m) = EncG(pk,m′) then
4 Abort A and return m to game

5 if m = ⊥ then
6 return ⊥
7 if m′ = ⊥ then
8 K ′ := H(c, seed)

9 else
10 c′ = Enc(pk,m′,G(m′))
11 if c′ ̸= c then
12 K ′ := H(c, seed)

13 if H(m) ̸= K ′ then
14 return ⊥
15 else
16 return H(m)

⊓⊔

5 Implicit → explicit: reduction in the eQROM

This section lifts Section 4 into the quantum setting. Before giving the result, we motivate why
this cannot be done in the ’normal’ quantum-accessible ROM, by summarizing the crucial parts of
the previous section. Given an IND-CCA adversary against KEM⊥ := FO⊥

m[PKE], we want to break
KEM ̸⊥ := FO ̸⊥

m[PKE], hoping to be able to utilize the decapsulation oracle for KEM̸⊥. This means that
the reduction needs to identify implicit rejections. In the classical ROM, we utilized that attackers
can only generate valid ciphertexts by querying the randomness-generating random oracle G. (This is
assuming that the scheme is sufficiently spread and that the proper encryption randomness for EncG

hence cannot simply be guessed.) Unfortunately, in the QROM we cannot observe random oracle
queries, thus not being able to distinguish implicit rejections from an ordinary response. This is
were we utilize the power of the extractable QROM – essentially, the extraction interface Ext allows
us to look into the random oracle queries. The extractable QROM was already utilized for KEMs
in [DFMS22,HHM22]. With Theorem 7 below, we now show that we can combine this utilization
strategy with the template for our new result in Section 4.

We note that while we gained more power through interface Ext when doing the security proof,
an attacker would not benefit from access to Ext: Ext mostly gives information about the adversary’s
own queries; thus, the attacker does not learn much that is new. This intuition is reflected in
the subsequent Theorem 8, in which we show that the best currently known QROM bounds for
KEM⊥ (recalled as Theorem 3 in Section 3) also apply in the eQROM. (The only obtainable extra
information would come from extractions of valid ciphertexts which the attacker created without first
querying the randomness-generating oracle G, but this is already being captured via γ-spreadness
anyways.)

Theorem 7 (Implicit secure in eQROM → Explicit secure in QROM). Let PKE be a (ran-
domized) PKE that is γ-spread, and KEM⊥ := FO⊥

m[PKE,G,H]. Let A be an IND-CCA adversary (in
the QROM) against KEM⊥, making at most qD many queries to its decapsulation oracle oDecaps,

16 K. Hövelmanns, M. Kudinov

and making qG, qH queries to its respective random oracles. Let furthermore d and w be the combined
query depth and query width of A’s random oracle queries. Then there exist an IND-CCA adversary
Ã against KEM ̸⊥

m := FO ̸⊥
m[PKE,G,H] and an FFPC-CCA adversary B against PKEG, where G is

modelled in the eQROMEnc in both cases, such that

AdvIND-CCA
KEM⊥ (A) ≤ AdvIND-CCA

KEM̸⊥
m

(Ã) + AdvFFPC-CCAPKEG (B) + 8
√
2qD (qG + 3qD) · 2−γ/2 + (qD · qH)/2n .

The main proof idea is the same is in the previous classical proof. However, we have to restructure
the games to utilize the eQROM, where we use a strategy similar to the one in [HHM22]. Note that
we will have to bound FFPC-CCA in the eQROM. As discussed before the classical proof, FFPC-CCA
is a sub-problem of FFP-CCA, a straightforward (but less fine-grained) bound on FFPC-CCA can
thus be obtained via Theorem 5.

Proof. We prove this theorem via a sequence of games.
Game G0 is IND-CCAKEM⊥(A).
Game G1 is like Game G0, except for two modifications: the quantum-accessible random

oracle G is replaced by G′ as defined in Algorithm 20 (i.e., it is simulated using an eQROMEnc). As
a preparation for the next game, we additionally introduce after each oDecaps query a query to
oDecaps̸⊥ whose results however will not be used anywhere. According to property 1 in [DFMS22,
Thm. 4.3] (which we recalled as Lemma 1), G′ perfectly simulates G until the first query to eCO.Ext,
and since we have not made any extraction queries yet, we have

AdvIND-CCA
KEM⊥

m
(A) = AdvGame G0 = AdvGame G1 .

Game G2 is like Game G1, except after the adversary has finished, we compute the oracle
pre-images for all ciphertexts on which oDecaps was queried. I.e., we compute m̂i = eCO.Ext(ci)
for all i = 1, . . . , qD, where ci is the input to the adversary’s i-th decapsulation query. Again, G′

perfectly simulates G until the first query to eCO.Ext, and the first such query occurs only after A
finished, we have

AdvGame G2 = AdvGame G1 .

Algorithm 20: G′, input registers X, Y

1 Apply eCO.ROXYD

2 return registers XY

Game G3 is like Game G2, except that m̂i = eCO.Ext(ci) is computed right after the query to
implicitly decapsulation oracle oDecaps̸⊥. Note thatGame G3 can be obtained fromGame G2 by
first swapping the call to eCO.Ext that produces m̂1 with all eCO.RO and eCO.Ext calls that happen
after the decapsulation query for c1 (including all RO calls performed by both decapsulation oracles),
then continuing with m̂2 and so on. We will now use that eCO.RO and eCO.Ext 8

√
2Γ (f)/|R|-almost-

commute (see Lemma 1). Since Γ (Enc(·, ·)) = 2−γ · |R| for a γ-spread PKE scheme, we have

|AdvGame G2 −AdvGame G3 | ≤ 8
√
2qD(qG + 2 · qD) · 2γ/2.

Now that we are equipped with a method of finding pre-images, we can deploy a strategy that is
similar to the one in the previous classical proof.

Explicit vs. implicit rejection in the FO transform 17

Game G4 is the same as Game G3, except that A is run with access to the simulated oracle
oDecaps′⊥ (Algorithm 21) instead of the original oracle oDecaps. Like in the classical proof,
the simulation uses oDecaps̸⊥ (Algorithm 22) as a subroutine. We also note that the simulation
oDecaps′⊥ issues the same number of G′ queries as oDecaps does. Note that all the queries needed
for simulations in oDecaps′⊥ are already done in Game G3 but the adversary was not given the
access to the results of that queries.

Algorithm 21: oDecaps′⊥(c)

1 K ′ = oDecaps̸⊥(sk, c)
2 m = eCO.Ext(c)
3 if m = ⊥ then
4 return K = ⊥
5 if H(m) ̸= K ′ then
6 return K = ⊥
7 else
8 return K = H(m)

Algorithm 22: oDecaps̸⊥(sk, c)

1 m′ = Dec(sk, c)
2 if m′ = ⊥ then
3 return H(c, sk.seed)

4 else
5 c′ = Enc(pk,m′, G(m′)) if c′ ̸= c

then
6 return H(c, sk.seed)

7 else
8 return H(m)

Like in the proof of the classical counterpart, Theorem 6, we again analyze when the simulation
differs from the original oracle: let DIFF be the event that A makes a decryption query c in Game
G3 such that oDecaps(c) ̸= oDecaps′(c). With the same probability analysis as before,

1

2
+ AdvGame G3(A) ≤ 1

2
+ AdvGame G4(A) + Pr[DIFF] .

To analyze the probability of event DIFF, we make the same case distinction:

1. Original oracle oDecaps⊥(sk, c) rejects, and simulation oDecaps′⊥(c) doesn’t.
2. Neither oracle rejects, but the return values differ. (This case is impossible, as argued in the

classical proof.)
3. Simulation oDecaps′⊥(c) rejects, and original oracle oDecaps⊥(sk, c) doesn’t.

To analyze case 1, we perform exactly the same reasoning as before, only that we now have
to consider quantum access to the random oracles: if the original oracle oDecaps⊥ rejects, then
so does its implicitly rejecting counterpart oDecaps̸⊥, by returning K ′ = H(c, sk.seed). If the
simulation oDecaps′⊥ does not reject, that means that oDecaps′⊥ found a message m such that
H(m) = H(c, sk.seed). In other words, the attacker found a collision, which in the quantum-accessible
random oracle model happens with probability 1

2n . After qD many decapsulation queries, we have
set up qD possible targets. We can search for the solutions for these target by querying H, which for
the quantum case gives a quadratic speed-up and results in an upper bound: (qD · q2H)/2n.

For case 2 the same argument as in the classical proof of Theorem 6 is applicable. Returning
different values that are not rejects is impossible.

In case 3, the simulation oDecaps′⊥ rejects. Again, this can happen in two different ways: a) it can
be that m = eCO.Ext(c) = ⊥ (no pre-image was found), or that b) oDecaps̸⊥(sk, c) ̸= H(m) for the
collected pre-image m = eCO.Ext(c). Sub-case a) can only happen if Enc(pk,m′, G(m′)) ̸= c for the
decrypted plaintext m′ := Dec(sk, c) – otherwise, the database will have at least one record that will
satisfy the extraction query because the subroutine oDecaps̸⊥ performed the re-encryption check
and thus wrote m′ into the oracle database. But if Enc(pk,m′, G(m′)) ̸= c, we have a contradiction
with the prerequisites of case 3 since the original oracle oDecaps(c) will also reject (due to the
failing re-encryption check). Hence, this sub-case is impossible.

18 K. Hövelmanns, M. Kudinov

It remains to capture sub-case b). As reasoned in the classical proof, this means that a pre-
image m was collected for which c = Enc(pk,m;G(m)) fails to decrypt (meaning m ̸= m′ for
m′ := Dec(sk, c)), but nonetheless it holds that Enc(pk,m′,G′(m′)) = c. Again, this is a solution
for the FFPC-CCA game, with the only difference to the classical proof being how the pre-image
was collected. So we can again bound this case using FFPC-CCA– we only need to adapt the way
in which the classical reduction B collects its pre-images (line 1 in Algorithm 19). Concretely, this
means replacing m = L−1

G (c) by m = eCO.Ext(c). We note that the reduction plays against PKEG,
thus it could not simply redefine G to be extractable itself. By considering game FFPC-CCA in the
extractable QROM, we ensure that the reduction has the necessary access to interface Ext. Collecting
the probabilities yields the desired bound.

Game G5 is like Game G4, except that we move the oDecaps queries that we are not using
anymore to the very end (after the A finishes). The reasoning here is the same as in the hop from
G2 to G3. As a result we have the following bound

|AdvGame G4 −AdvGame G5 | ≤ 8
√
2q2D · 2γ/2.

Game G6 is the same as Game G5 but we drop the oDecaps queries. Since they are made
after the oracle A has already finished the work they do not affect the probability of success of the
adversary. Hence

AdvGame G6 = AdvGame G5 .

The advantage in Game 6 is bounded by the IND-CCA security of the KEM ̸⊥
m. Combining all the

bounds we get the claimed result. ⊓⊔

Impact of adversarial access to eCO.Ext on security of FO-KEMs. As argued at the beginning
of this section, attackers would not substantially benefit from access to Ext. We now make this
intuition formal with Theorem 8 below, stating that the best currently known QROM bounds for
KEM⊥ ([HHM22, Theorem 4], here recalled as Theorem 3) also apply in the eQROM: the theorem’s
proof still goes through even if the IND-CCA attacker has additional access to eCO.Ext.

Theorem 8 (IND-CCA security in the eQROM). Let PKE be a (randomized) PKE that is
γ-spread and δ-correct, and let KEM⊥ := FO⊥

m[PKE,G,H]. Let A be an IND-CCA adversary (in the
eQROM) against KEM⊥, making at most qD many queries to its decapsulation oracle oDecaps,
and making qG, qH queries to its respective random oracles and qE queries to the extraction interface
of oracle G. Let furthermore d and w be the combined query depth and query width of A’s random
oracle queries. Then there exist an IND-CPA-KEM adversary Ã in the eQROMEnc, such that

AdvIND-CCA
KEM⊥ (A) ≤ AdvIND-CPA

KEM⊥ (Ã) + 10 (qG + qD + 1)
2
δ + 12qD (qG + qE + 4qD) · 2−γ/2 .

This bound also applies for the implicitly rejecting counterpart KEM ̸⊥ := FO ̸⊥
m[PKE,G,H] (recall

[HHM22, Remark 1]).

In other words, when allowing the attacker to perform extractions, security degrades by the term
12qDqE · 2−γ/2. Since γ already needs to be reasonably large for plain IND-CCA security, we expect
that this additional term will be reasonably small for practical instantiations.

Proof. Our proof slightly adjusts the proof of [HHM22, Theorem 4] (here recalled as Theorem 3). The
main technique of the proof in Theorem 3 is to show that the decapsulation oracle can be simulated
to A without using the secret key, by suitably using the extraction oracle eCO.Ext. The only technical
difference between the setting of Theorem 3 and Theorem 8 is the following: in Theorem 3, only the
game has (internal) access to eCO.Ext, whereas in Theorem 8, the game also provides this interface to

Explicit vs. implicit rejection in the FO transform 19

A by forwarding A’s extraction queries. We thus only need to show that A’s queries do not interfere
with the simulation oDecaps′ of oDecaps given in the proof of Theorem 3. We thus first recall the
simulation oDecaps′: on a given input ciphertext c, oDecaps′ queries the extraction oracle on c to
obtain a plaintext m and then returns H(m). (If the extractor returned ⊥, then so does oDecaps′.)
In the proof, the switch from oDecaps to oDecaps′ is done through several steps:

1. Introduce extraction queries, but only after the fact: after A finished, extractions are performed
for all ciphertexts on which oDecaps was queried. (This does not change the behaviour of A.)

2. Move these extraction queries from the very end to the place where they would help define
oDecaps′, so perform them immediately when A issues the respective decapsulation query. The
additional measurements performed during extraction change the random oracle database and
thus introduce a disruption term relative to PKE’s γ-spreadness – using the almost-commuting
property (see item 4 in Lemma 1), the disruption is bound by 8

√
2qD(qG + qD) · 2−γ/2.

3. Use oDecaps′ instead of oDecaps. However, still perform a muted internal call to oDecaps
during oDecaps′ (for technical reasons). The switch from outputting oDecaps(c) to oDecaps′(c)

introduces a correctness-related term, AdvFFP-CCAPKEG (B), which is upper-bounded by 10 (qG + qD + 1)
2
δ

according to Theorem 5.
4. Delay these internal calls to oDecaps until after A finished. Technically, this means swapping

the eCO.RO calls within oDecaps with all extraction queries performed by the game. This intro-
duce the second disruption term relative to PKE’s γ-spreadness – using the almost-commuting
property again, the disruption is bound by 8

√
2q2D · 2−γ/2.

5. After that, omitting the oDecaps calls entirely does not change the behaviour of A, the game
thus effectively switched from oDecaps to oDecaps′. Lastly, the two disruption terms are
merged/simplified to 12qD (qG + 4qD) · 2−γ/2.

The only steps affected by adversarial extractions are steps 2 and 4. It thus remains to show that
adversarial extraction queries ’play nicely’ with these two steps.

Considering step 2, we note that the disruptions stem from the adversarial calls to the random
oracle, so every adversarial call to eCO.RO, but since these perfectly commute with the adversarial
extractions (see Lemma 1), the bound for step 2 is unchanged.

In step 4, we note that the same overall reasoning still holds – we still swap the eCO.RO calls
within oDecaps with all extraction queries performed by the game, only that these extraction
queries now also contain the additional qE many ones that are issued by A. Consequently, we bound
the commuting error for this second step by 8

√
2qD(qD + qE) · 2γ/2.

Lastly, we merge/simplify the two terms to 12qD (qG + qE + 4qD) · 2−γ/2.

6 Implicit → explicit: indirect proof in the QROM (without extractions)

In this section, we re-investigate the security relation in the simpler QROM, that is, with a proof in
the compressed oracle without the additional extraction interface. To do so, we will unbox the FO
transformation: according to Corollary 1 in Section 3, we can (non-tightly) base INDCCA security of
KEM⊥ := FO⊥

m[PKE] on OW-CPA security of the underlying PKE, in the standard model. Concretely,
the theorem states that any INDCCA attacker A on KEM⊥ can be turned into an OW-CPA attacker
B on PKE. Using that adversary B, we can build an INDCCA adversary C against the implicitly
rejecting KEM ̸⊥ := FO ̸⊥

m[PKE]. Hence, we obtain the following (non-tight) theorem.

Theorem 9 (Implicit → Explicit). Let PKE be a (randomized) PKE that is γ-spread and δ-
correct, and let KEM⊥ := FO⊥

m[PKE,G,H]. Let A be an IND-CCA adversary (in the QROM) against
KEM⊥, making at most qD many queries to its decapsulation oracle oDecaps, and making qG, qH
queries to its respective random oracles. Let furthermore d and w be the combined query depth

20 K. Hövelmanns, M. Kudinov

and query width of A’s random oracle queries. Then there exists an IND-CCA adversary C against
KEM ̸⊥ := FO ̸⊥

m[PKE,G′,H′] such that

AdvIND-CCA
KEM⊥ (A) ≤ 8(d+ qD) ·

√
w · 4 ·AdvIND-CCA

KEM̸⊥ (C)+10 (qG + qD + 1)
2
δ+12qD (qG + 4qD) ·2−γ/2

The running time and quantum memory footprint of C satisfy Time(C) = Time(A) + O(qD) +
Time(eCO, q, qE)+O(1) and QMem(A)+QMem(eCO, q, qE) for q = qG+ qH+ qD and qE = qD, and
where O(1) hides a single query to H and the comparison of the hash value with the challenge K∗

b .

Proof. According to Corollary 1, there exists an OW-CPA adversary B against the underlying PKE,
running A as a subroutine for which it simulates the random oracles and the decapsulation oracle,
such that

AdvIND-CCA
KEM⊥ (A) ≤ 8(d+ qD) ·

√
w ·AdvOW-CPA

PKE (B) + 10 (qG + qD + 1)
2
δ + 12qD (qG + 4qD) · 2−γ/2 ,

with footprints Time(B) = Time(A) + O(qD) + Time(eCO, q, qE) and QMem(B) = QMem(A) +
QMem(eCO, q, qE) for q = qG + qH + qD and qE = qD.

We will now argue that we can turn OW-CPA adversary B into an IND-CCA adversary C against
KEM ̸⊥: note that adversary B is playing against the underlying (non-derandomized) PKE scheme
that does not involve random oracle G, and expects a challenge ciphertext that uses uniform ran-
domness. While the IND-CCA game for KEM ̸⊥ creates its challenge ciphertext for C by computing
c∗ = Enc(pk,m∗;G(m∗)), using randomness generated via random oracle G, adversary B has no
access to the independent oracle G and thus could not distinguish the KEM challenge ciphertext
c∗ = Enc(pk,m∗;G(m∗)) from the ciphertext it expects.

Hence, given a challenge (c∗,K∗
b) for KEM ̸⊥, C can run B on c∗ to get m∗. Note that B does

not have access to the random oracles of KEM ̸⊥ and does its own simulations of the respective
oracles for A. The simulation can be done with different techniques, for example q-wise independent
functions [Zha12]. The important aspect is that the adversary B does not need the access to the
random oracles of the IND-CCA game for KEM ̸⊥. After obtaining B’s one-way solution m, C queries
the key derivation oracle H′ to obtain the corresponding key K = H′(m). Assuming B’s guess was
right, then C can determine the IND-CCA bit: if K = K∗

b , then b = 0, otherwise b = 1. Lets break
it down. In case C get a challenge (c∗,K∗

1) we run B on c∗ and get m∗ with probability equal to
AdvOW-CPA

PKE (B). We compute H ′(m∗) = K. Since K∗
1 is random, the probability K = K∗

1 is 1/2n

otherwise we get a different value. In case C get a challenge (c∗,K∗
0) there will be no mistake if B

succeeds in finding the correct plaintext. If B fails then C always returns 1. As a result we have

AdvIND-CCA
KEM̸⊥ (C) = Pr[b = 0] · Pr[C → 0|b = 0] + Pr[b = 1] · Pr[C → 1|b = 1]− 1

2
=

= AdvOW-CPA
PKE (B) · 1

2
+ (AdvOW-CPA

PKE (B) (1− 1/2n) + (1−AdvOW-CPA
PKE (B))) · 1

2
− 1

2
=

= AdvOW-CPA
PKE (B) (1− 1/2n) · 1

2

Hence,

AdvOW-CPA
PKE (B) ≤ 2n+1

2n − 1
AdvIND-CCA

KEM̸⊥ (C) ≤ 4 ·AdvIND-CCA
KEM̸⊥ (C) .

with footprints Time(C) = Time(B)+O(1) and QMem(C) = QMem(B)+O(1), where O(1) hides a
single query to H and the comparison of the hash value with the challenge K∗

b . This concludes the
proof. ⊓⊔

Explicit vs. implicit rejection in the FO transform 21

References

BHH+19. Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti.
Tighter proofs of CCA security in the quantum random oracle model. In Dennis Hofheinz and
Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892
of Lecture Notes in Computer Science, pages 61–90, Nuremberg, Germany, December 1–5, 2019.
Springer, Cham, Switzerland.

Den03. Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th IMA
International Conference on Cryptography and Coding, volume 2898 of Lecture Notes in Computer
Science, pages 133–151, Cirencester, UK, December 16–18, 2003. Springer, Berlin, Heidelberg,
Germany.

DFMS22. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the
quantum random-oracle model. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in
Cryptology – EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in Computer Science,
pages 677–706, Trondheim, Norway, May 30 – June 3, 2022. Springer, Cham, Switzerland.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryp-
tion schemes. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 537–554, Santa Barbara, CA, USA, August 15–19,
1999. Springer, Berlin, Heidelberg, Germany.

FO13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology, 26(1):80–101, January 2013.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory
of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages
341–371, Baltimore, MD, USA, November 12–15, 2017. Springer, Cham, Switzerland.

HHM22. Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Failing gracefully: Decryption fail-
ures and the Fujisaki-Okamoto transform. In Shweta Agrawal and Dongdai Lin, editors, Advances
in Cryptology – ASIACRYPT 2022, Part IV, volume 13794 of Lecture Notes in Computer Science,
pages 414–443, Taipei, Taiwan, December 5–9, 2022. Springer, Cham, Switzerland.

HKSU20. Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic authenticated
key exchange in the quantum random oracle model. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC 2020: 23rd International Conference on Theory
and Practice of Public Key Cryptography, Part II, volume 12111 of Lecture Notes in Computer
Science, pages 389–422, Edinburgh, UK, May 4–7, 2020. Springer, Cham, Switzerland.

HM24. Kathrin Hövelmanns and Christian Majenz. A note on failing gracefully: Completing the picture
for explicitly rejecting fujisaki-okamoto transforms using worst-case correctness. In Markku-
Juhani Saarinen and Daniel Smith-Tone, editors, Post-Quantum Cryptography - 15th International
Workshop, PQCrypto 2024, Part II, pages 245–265, Oxford, UK, June 12–14, 2024. Springer,
Cham, Switzerland.

JZC+18. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key
encapsulation mechanism in the quantum random oracle model, revisited. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993
of Lecture Notes in Computer Science, pages 96–125, Santa Barbara, CA, USA, August 19–23,
2018. Springer, Cham, Switzerland.

JZM19. Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism with explicit rejec-
tion in the quantum random oracle model. In Dongdai Lin and Kazue Sako, editors, PKC 2019:
22nd International Conference on Theory and Practice of Public Key Cryptography, Part II, vol-
ume 11443 of Lecture Notes in Computer Science, pages 618–645, Beijing, China, April 14–17,
2019. Springer, Cham, Switzerland.

KSS+20. Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun. Measure-rewind-
measure: Tighter quantum random oracle model proofs for one-way to hiding and CCA security. In
Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part III,
volume 12107 of Lecture Notes in Computer Science, pages 703–728, Zagreb, Croatia, May 10–14,
2020. Springer, Cham, Switzerland.

22 K. Hövelmanns, M. Kudinov

NIS. NIST. Post-quantum cryptography. https://csrc.nist.gov/projects/

post-quantum-cryptography. Accessed: 2024-10-17.
SXY18. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mech-

anism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, ed-
itors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes
in Computer Science, pages 520–551, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Cham,
Switzerland.

Zha12. Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 758–775, Santa Barbara, CA, USA, August 19–
23, 2012. Springer, Berlin, Heidelberg, Germany.

Zha19. Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part II, volume 11693 of Lecture Notes in Computer Science, pages 239–268, Santa Barbara, CA,
USA, August 18–22, 2019. Springer, Cham, Switzerland.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

	Treating dishonest ciphertexts in post-quantum KEMs – explicit vs. implicit rejection in the FO transform

