
Constant latency and finality for dynamically available DAG

Hans Schmiedel
The University of Sydney

hans.mailbox@tutamail.com

Runchao Han
Babylon Labs

me@runchao.rocks

Qiang Tang
The University of Sydney

qiang.tang@sydney.edu.au

Ron Steinfeld
Monash University

ron.steinfeld@monash.edu

Jiangshan Yu
The University of Sydney

jiangshan.yu@sydney.edu.au

Abstract—Directed Acyclic Graph (DAG) based protocols
have shown great promise to improve the performance of
blockchains. The CAP theorem shows that it is impossible
to have a single system that achieves both liveness (known as
dynamic availability) and safety under network partition. This
paper explores two types of DAG-based protocols prioritizing
liveness or safety, named structured dissemination and Graded
Common Prefix (GCP), respectively.

For the former, we introduce the first DAG-based protocol
with constant expected latency, providing high throughput
dynamic availability under the sleepy model. Its expected
latency is 3∆ and its throughput linearly scales with partici-
pation. We validate these expected performance improvements
over existing constant latency sleepy model BFT by running
prototypes of each protocol across multiple machines.

The latter, GCP, is a primitive that provides safety under
network partition, while being weaker than standard consen-
sus. As a result, we are able to obtain a construction that runs
in only 2 communication steps, as opposed to the 4 steps of
existing low latency partially synchronous BFT. In addition,
GCP can easily avoid relying on single leaders’ proposals,
becoming more resilient to crashes. We also validate these
theoretical benefits of GCP experimentally.

We leverage our findings to extend the Ebb-and-Flow
framework, where two BFT sub-protocols allow different types
of clients in the same system to prioritize either liveness or
safety. Our extension integrates our two types of DAG-based
protocols. This provides a hybrid DAG-based protocol with
high throughput, dynamical availability, and finality under
network partitions, without running a standard consensus
protocol twice as required in existing work.

1. Introduction

Bitcoin [1] introduced the use of blockchain to enable
nodes in a permissionless environment to agree on an or-
dered set of transactions. In this setting, nodes are free
to join or leave the network at any time. Consequently,
Bitcoin guarantees liveness in a permissionless environment,
referred to as dynamic availability. However, to ensure secu-

rity, the network must be synchronous, meaning messages
must be delivered within a known time bound. It follows
that Bitcoin does not provide safety in the face of network
partitions, where the network becomes asynchronous and
message delivery time is unknown. A further known limi-
tation of Bitcoin and its derivatives is performance: latency
ranges from minutes to hours, and throughput is fewer than
10 transactions per second.

To remedy the limited performance of Bitcoin’s
blockchain consensus, traditional Byzantine Fault Toler-
ant State Machine Replication (BFT-SMR) techniques have
been considered for the blockchain setting. Some BFT-SMR
protocols are able to remain secure even under network
partitions and asynchronous communication networks [2],
[3], [4], [5]. However, a trade-off with BFT-SMR is that
the number of active nodes in the system must be known,
limiting dynamic availability. To address this challenge, the
sleepy model [6] was introduced, formalizing the concept of
permissionless networks. Recent advances in BFT within the
sleepy model have achieved constant expected latency [7],
[8] by regularly estimating for the current participation level.

While, ideally, both dynamic availability (liveness) and
security during network partitions (safety) are achieved
within a single protocol, the CAP theorem demonstrates this
to be impossible [9]. Consequently, two distinct approaches
have emerged: one prioritizes liveness with dynamic avail-
ability, and the other focuses on asynchronous safety.

Originally, both classes of protocols include transactions
in a linear sequence of batches or blocks. However, uti-
lizing a Directed Acyclic Graph (DAG) structure, blocks
are processed concurrently which has significantly increased
throughput for both approaches. This innovation allows
throughput to scale with network capacity [10], [11], [12].

We highlight the following research gaps regarding DAG
based protocols in each line of work.

DAGs when prioritizing liveness. As noted earlier, pro-
posals for BFT in the sleepy model have achieved constant
latency. Meanwhile, recent advances in DAG-based proto-
cols have primarily focused on asynchronous and partially
synchronous networks [11], [12], leaving the modern use of
DAGs in BFT for the sleepy model largely unexplored.



Although DAG-based proposals expanding on Bitcoin’s
longest chain idea exist [10], [13], their latency is linear
in certain security parameters. Achieving constant latency
for high throughput DAG protocols within the sleepy model
remains a significant open challenge.

DAGs when prioritizing safety. DAG-based protocols
such as Narwhal/Tusk [11] and Bullshark [12] disseminate
an unconfirmed DAG of blocks as a mempool, of which a
subset is finalized. However, there are multiple approaches
for the finalization process, and previous work has not pro-
vided a generic security analysis of finalization approaches
in a given DAG protocol. For instance, one way to finalize
Narwhal is by using a separate consensus primitive such
as Hotstuff to agree on a block and all its ancestors, as
presented by the authors. Alternatively, Tusk, which builds
on top of Narwhal, selects leaders using a common coin
but does not independently solve consensus. Similarly, Bull-
shark employs a round-robin leader schedule to finalize
a subset of the DAG, but the finalization mechanism in
isolation is not a consensus protocol in itself.

We observe that the common thread in the two latter
protocols is a finalization mechanism that leverages the DAG
structure to obtain consensus in the overall system. A key
advantage of this approach is that it avoids the need to
layer a full BFT protocol on top of the DAG dissemination
mechanism. However, there is no composable treatment
of DAG finalization in the literature beyond constructions
specific to monolithic DAGs.

Contributions

In this work we address the research gaps previously
highlighted, and leverage our findings to propose a hybrid
protocol simultaneously catering to clients favoring liveness
and clients favoring safety.

We introduce the first constant latency DAG based pro-
tocol in the sleepy model. Our protocol can commit a set
of DAG blocks in 3∆ latency, where ∆ represents the syn-
chronous network’s message delivery bound. This result not
only advances upon existing constant latency sleepy model
BFT, but also improves on existing DAG protocols whose
latency linearly scales with ∆. We provide a summary
comparison of our protocol with other dynamic availability
protocols in Table 1. Additionally, we experimentally show
the improved performance of our DAG protocol compared
to Mahlki et al. constant latency protocol. We can observe
that our DAG protocol indeed linearly scales throughput
with the number of nodes, achieving drastic throughput
improvements, and that it has lower expected latency.

Secondly, we introduce a generic primitive for DAG
finalization, named graded common prefix, and an efficient
construction. Graded common prefix allows a set of nodes
to quickly agree on the subset of a DAG common to all
honest nodes. Crucially, our primitive is lighter than standard
consensus, enabling simpler protocols. For example, our
construction runs in only 2 communication steps, compared
to the 4 expected steps per decision required by low latency
partially synchronous BFT [2], [3], [18]. It is also resilient

to crashes within the supermajority bound, unlike many
existing leader-based protocols for partially synchronous
networks [2], [3], [5], [18]. We experimentally observe the
resulting improved latency of our construction over a leader-
based BFT, Hotstuff [5], with and without crashes. Graded
common prefix can also be defined generically with sets of
values instead of block-DAGs, which may be of independent
interest for distributed protocols.

Thirdly, we propose a hybrid protocol that consists of
two sub-protocols, namely a dynamically available sub-
protocol and a partially synchronous finality sub-protocol.
The former provides dynamic availability for clients prior-
itizing liveness, and the latter provides more conservative
clients asynchronous safety. To accomplish this, we adapt
the Ebb-and-Flow framework [19], which, roughly speaking,
considers the sleepy model with a Global Awake Time
(GAT), the time after which all honest nodes participate
actively. GAT guarantees that the finality sub-protocol even-
tually progresses, as dynamic availability is not required
after GAT. We show that graded common prefix is sufficient
for finality after GAT, avoiding the need to perform standard
consensus twice as in existing schemes. Complementing our
hybrid protocol, we further relax the GAT assumption by
introducing Quorum Awake Time (QAT). Unlike GAT, which
assumes that all honest nodes are awake after this period,
QAT requires only that a sufficient number of honest nodes
are awake. To quantify the number of awake nodes after
QAT, we leverage the recently introduced Mobile Crash
Adaptive Byzantine (MCAB) model [20] that enables a
fine-grained treatment of the upper bound on crashed/sleepy
nodes for a protocol.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the system model and preliminaries used
in this work. Section 3 presents our dynamically available
DAG protocol and the formal definitions and properties it
achieves. Section 4 introduces the graded common prefix
primitive and a construction for it. Section 5 synthesizes
our results into the hybrid protocol described previously,
then presents QAT, the generalization of GAT. Section 6
contains the formal security proofs of our theorems and
lemmas. Section 7 provides the experimental evaluation of
our DAG protocol. Section 8 presents the literature related
to this work. The conclusion summarizes our findings.

In summary:

• We propose a constant latency dynamically avail-
able DAG BFT protocol with 3∆ latency. Its high
throughput is demonstrated experimentally.

• We introduce graded common prefix (GCP), a prim-
itive that allows a set of nodes to agree on the subset
of a DAG in common to honest nodes. Additionally,
we provide a construction of GCP that runs in 2
communication steps. Its low latency and resilience
to crashes is shown experimentally.

• We show that GCP is sufficient as a finality sub-
protocol combined with a dynamically available sub-
protocol, to allow clients to prioritize dynamically
available liveness or asynchronous safety. In addi-
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TABLE 1: Comparison of optimal resilience SMR in the sleepy model. k is the security level and a is the fraction of awake
nodes.

DAG
structure∗ Expected latency

Bitcoin [1] ✗ O(k∆/a)
Ouroboros/ Snow White [14], [15] ✗ O(k∆/a)

Pass et al. [6] ✗ O(k∆/a)
Goyal et al. [16] ✗ O(k∆)

Prism [10] ✓ O(∆/a)
Garay et al. [17] ✓ O(∆/a)

Momose et al. [7] ✗ 16∆
Mahlki et al. [8] ✗ 4∆

(This work) ✓ 3∆
∗ A protocol uses a DAG structure if it commits multiple blocks of

the same height.

tion, we introduce and discuss a generalization of
Global Awake Time of Ebb-and-Flow [19], the time
after which honest nodes are assumed to be awake
to allow asynchronous safety. Our generalization,
Quorum Awake Time, relaxes the GAT assumption
by leaving the possibility of a parametrized bound
on the number of sleepy nodes.

2. System model and preliminaries

2.1. System model

We consider a set N of nodes, each equipped with
a public key and a unique identifier. This includes the
Proof-of-Stake setting where the smallest discrete amount of
stake is represented by one node. Time advances in discrete
slots and, for simplicity, nodes have access to synchronized
clocks. Our results can include bounded clock drifts using
a round transformation technique [7] at the cost of small
added latency.

Node corruptions. Nodes may be controlled by an ad-
versary, selected during the execution of a protocol. Nodes
controlled by the adversary are considered Byzantine, and
may behave arbitrarily. The remaining nodes are honest, and
behave according to protocol specifications.

Network communication. Nodes communicate with
each other through authenticated messages, within the lim-
itations set by one of the following network assumptions.

• Synchronous network. All messages sent between
honest nodes are delivered within a known number
of time slots ∆. The order in which they arrive can
be determined by the adversary.

• Partially synchronous network. Message delivery is
determined by the adversary, as long as all messages
sent between honest nodes are eventually delivered.
Messages between honest nodes cannot be dropped
or modified. After a Global Stabilisation time (GST),
the network behaves as a synchronous network. GST
is decided by the adversary, and unknown to honest
nodes.

Sleepy model. The adversary may cause honest nodes
to become sleepy at any time slot, during which the protocol

is not executed and messages are delayed until the next
slot where the node is awake again. Awake nodes behave
according to protocol specifications. The number of awake
nodes at any time slot t is denoted nt. The unknown time
after which all honest nodes in N are awake is called Global
Awake time (GAT). GAT is decided by the adversary, and
unknown to honest nodes.

Parameterized dynamic participation. We use the
extended sleepy model [8] that allows corrupted nodes’
participation to be dynamic. We define f(Tf , Tb, t) as the
number of corrupted nodes around time t for a time Tf

forward and a time Tb backwards. For a system model’s
fraction β of corrupted nodes, we have f(Tf , Tb, t) < β ·nt.
It has been shown in existing work that Tf = ∞ and
Tb = O(∆) is necessary for consensus under dynamic par-
ticipation without PoW [8]. We therefore consider Tf = ∞
and Tb = O(∆).

Two system models. As it is impossible to achieve
dynamic availability and asynchronous finality under the
same protocol [9], we consider two different system models
to allow clients to prioritize liveness or safety, as proposed
by the Ebb-and-Flow framework [19]. A system model is
defined by an adversary A, an environment Z , and a fraction
β of corrupted nodes.

System model (A1(β),Z1): In this system model, the
network is partially synchronous and there exist a bounded
GAT and a bounded GST.

System model (A2(β),Z2): In this system model, the
network is always synchronous (GST=0) and GAT can be
unbounded (GAT → ∞).

2.2. Preliminaries

Definition 1 (State machine replication protocol.). A state
machine replication protocol P takes transactions as input,
and outputs a ledger LOG. It is secure if it satisfies the fol-
lowing properties for a polynomial function Tfin of security
parameter κ.

• Safety: if at time t an awake honest node reports a
ledger LOG, then for every honest node that reports
a ledger LOG′ after time t′ ≤ t, LOG ⪯ LOG′ or
LOG′ ⪯ LOG where ⪯ denotes a prefix relation.
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• Liveness: a transaction given as input to all honest
nodes continuously from time t to time t+Tfin will
be reported in an honest node’s output LOG after
time t+ Tfin.

Definition 2. A flexible protocol is a pair of SMR proto-
cols (P1,P2) taking the same transactions as inputs and
outputting the ledgers LOG1 and LOG2 respectively.

Negligible function. A negligible function refers to a
function negl(x) where for every y ∈ N, there exists an
z ∈ N such that negl(x) < 1/xy for all x ≥ z.

Definition 3 (Ebb-and-flow protocol. [19]). A (β1, β2)-
secure Ebb-and-flow protocol P is a flexible protocol
(Pda,Pfin) with the same input transactions and outputs
an available ledger LOGda and a finalized ledger LOGfin,
such that for security parameter κ:

• Finality: Under (A1(β1),Z1), LOGfin is safe at
all times, and there exists a constant C such that
LOGfin is live after C(max{GST,GAT} + κ)
except with probability negligible in κ.

• Dynamic availability: Under (A2(β2),Z2), LOGda

is a secure SMR output except with probability neg-
ligible in κ.

• Prefix: For any honest node i and time t > 0,
LOGt

fin,i is a prefix of LOGt
da,i.

3. Dynamically available DAG

This section presents the first constant latency dynami-
cally available DAG-based protocol in the sleepy model, in-
troducing the possibility of high throughput while maintain-
ing latency comparable to existing sleepy model BFT [8].
Our construction is secure under (A2(β2),Z2) where β2 <
1/2. We first summarize Synchronous Hotstuff [21] and the
intuition behind its design that our protocol is based on.

Protocol flow. A leader proposes a block and honest
nodes vote for it if its valid. Honest nodes can then commit
after waiting 2∆, provided no conflicting vote was received.
Security intuition. Since a synchronous network is consid-
ered, it is guaranteed that if an honest node commits 2∆
after voting, all honest node receive the proposal and there
is no conflicting commitment.

Considering the sleepy model. Waiting 2∆ for conflicts
instead of collecting a fixed number of votes, a quorum, to
advance is an especially interesting technique in the sleepy
model, where fixed quorums are not useful. However, in
Synchronous Hotstuff, potentially faulty leaders must still
be dealt with, in a process called view-change that uses
fixed quorums.

From single leader to DAG proposals. For our pro-
tocol, we leverage Synchronous Hotstuff’s technique of
waiting 2∆ after voting to detect conflicts in dynamic par-
ticipation and guarantee consistency. By having every node
propose a block to the block-DAG, we are able to avoid the
fixed quorum based view change of Synchronous Hotstuff,
guaranteeing progress in the sleepy model.

3.1. Block-DAGs and structured dissemination

We define a Directed Acyclic Graphs of blocks (block-
DAG) which we use as a foundation for our DAG based pro-
tocols. Formally defining block-DAGs allows us to reason
about a generic DAG protocol without specifying a specific
algorithm. Block-DAGs can be seen as the generalization of
the blockchain data structure.

Definition 4. block-DAG. A block-DAG D = {E ,B} com-
prises a set E of directed edges and a set B of vertices, as
follows:

• A directed edge (B → B′) ∈ E represents a transi-
tive relation of B referencing B′, where B,B′ ∈ B.
B′ is a parent of B, denoted B′ ∈ B.parents.

• A vertex B ∈ B is called a block. Every block ref-
erences at least one other vertex, except the genesis
block Bgenesis where Bgenesis.parents = ∅. The
height of a vertex is B.height = h+ 1, where h =
max(B.parents.height) and Bgenesis.height = 0.
B is a tip if ∄B′ ∈ B s.t. B ∈ B′.parents.
Each block B has an author B.author and
Bgenesis.author = ∅.

• Extension: A block-DAG D′ = {E ′,B′} is an exten-
sion of D, denoted D ⊆ D′, if E ⊆ E ′ and B ⊆ B′.

• Height: The height h of D is max({B.height|B ∈
B}).

• Conflict: D and D′ are conflict if (D ⊈ D′)∧(D′ ⊈
D), denoted D ≁ D′. Otherwise, we use D ∼ D′.

A block B, contains referenced blocks B.parents which
recursively reference blocks until Bgenesis, representing a
block-DAG whose highest height block is B. We can there-
fore uniquely represents a sub-graph of D with height h by
the set of identifiers for blocks in D of height h.

We define properties for structured dissemination, guar-
anteeing that a distributed set of nodes maintaining a block-
DAG is able to obtain a consistent, growing view of the
block-DAG.

Definition 5 (Structured dissemination.). Structured dissem-
ination with parameters (k, τ, t, µ) takes transactions as
input and outputs a block-DAG. A structured dissemination
protocol is secure if it satisfies the following properties:

• δ-Consistency: If a block B of height h is considered
consistent (called confirmed) in an honest node’s
block-DAG at time t, B and its ancestors are con-
firmed in any honest node i’s block-DAG Di at time
t+δ, and no honest node confirms a block of height
h after t+ δ.

• τ, t-DAG growth: any honest node’s view of the
block-DAG at time t′+t must include τ ·t additional
blocks proposed by honest nodes compared to its
view at time t′.

• µ-DAG quality: any honest node’s view of the block-
DAG includes at least a fraction µ of blocks pro-
posed by honest nodes.
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• External Integrity: If a block B is consistent,
condition(B) = 1 holds for the protocol-specific
external integrity condition.

Obtaining total order. With δ-consistency among hon-
est nodes, confirmed blocks can be ordered by height. In
the blockchain special case, an ordered ledger is obtained
trivially since we have only one confirmed block per height.
In a block-DAG, a height h may have multiple confirmed
blocks. However, with δ-consistency, honest nodes confirm
the same set B of blocks for height h. Once blocks in B
are confirmed, a simple rule is therefore already enough
to totally order them, for example ordering based on block
proposers’ identifiers.

Designing more intricate block-DAG ordering rules that
may achieve application-specific fairness requirements is
orthogonal to this work.

Example in the literature. To illustrate our block-
DAG and structured dissemination definitions in the con-
text of existing DAG based protcols, we show that the
popular Narwhal [11] DAG mempool layer is a block-
DAGs that satisfies the properties of structured dissemi-
nation under (A2(α),Z2) after GAT in Lemma 1. Recall
that (A2(α),Z2) after GAT has a synchronous network
and honest nodes are awake, enabling Narwhal to achieve
structured dissemination properties while not guaranteeing
total order in its original, asynchronous network system
model. To translate Narwhal’s nomenclature into a block-
DAG, consider the following: a block is considered con-
firmed when it is certified, a block b extends a block b′ if
it includes its certificate, the height of a block is the round
in belongs to.

Lemma 1. Narwhal run by n nodes is a structured dissem-
ination of a block-DAG with ∆−consistency, 2n

9∆ , 3∆-DAG
growth, and 1/2-DAG quality under (A2(α),Z2) after GAT
where β2 < 1/3.

Proof. After GAT, the system model assumptions are
stronger to Narwhal’s original model, and the above lemma
can easily be proven using Narwhal’s established proper-
ties [11]. See Appendix C for the full proof.

3.2. Overview

We outline the main components of our protocol and
provide brief intuition behind its components

Propose. Every ∆ slots, nodes propose a block of trans-
actions sent by clients.

Vote. When proposing a block of height h + 1, nodes
include as references all received blocks with height h, and
start their confirmation timer for the set of referenced blocks
at height h.

Confirm. A block of height h proposed at time t is
considered confirmed 2∆ slots after the confirmation timer
for height h has started if no conflicts are detected for blocks
of height h. The confirmation timer starts at time t+∆ when
proposing a block of height h + 1, such that, by the time
t+ 3∆, it is confirmed and received by all honest nodes.

(a) Conflict is first received before 2∆.

(b) Conflict is first received after 2∆.

Figure 1: Two cases of conflicting proposals.

Order blocks. As mentioned in the previous section,
confirmed blocks of the same height h can be deterministi-
cally ordered by their proposer’s identifiers.

Resolving conflicts. Consider a Byzantine node’s con-
flicting block proposals B and B′. Simply discarding both
is not possible as some honest nodes may consider B
confirmed as illustrated in Figure 1b. If both are discarded
by node u1, node ui may confirm the blue block.

When an honest node broadcasts a conflict message
including B and B′, v is provably Byzantine. To handle
equivocating proposals by a Byzantine node B.author,
nodes concurrently run a generic Byzantine agreement (BA,
recalled in Appendix A) sub-protocol BYZAGREEMENT
with the first received block B as input. B.author serves as
an identifier for the Byzantine agreement protocol instance.
Blocks of a height h are only confirmed once all potential
instances of BYZAGREEMENT for height h are completed.

BYZAGREEMENT can be instantiated with existing
sleepy model protocols from the literature [7], [8], [22],
and benefits from future advances in Byzantine agreement
in the sleepy model. Additional timers may be required for
the specific BYZAGREEMENT implementation.

To understand why all conflicts are resolved, consider
the two cases depicted in Figure 1. In Figure 1a, the
first honest node u1 receiving the conflict does so before
2∆, guaranteeing that all honest nodes receive the conflict
before honest nodes confirm a proposal. Some nodes may
have received the orange block first while others may have
received the blue block first. BYZAGREEMENT then guar-
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antees agreement for the blue or orange block.
In Figure 1b, the first honest node u1 receiving the

conflict does so after 2∆. Honest nodes have seen blue
first when entering BYZAGREEMENT, and some may have
confirmed blue already. As all honest nodes input blue to
BYZAGREEMENT, blue is the output.

Handling late blocks A node u may also receive a block
B of height h at time t′ ≥ t + ∆ from a Byzantine node
where t is the time that u proposes a block of height h. Here,
u knows that B.author is Byzantine, but unlike in conflicts,
it is not straightforward to prove that u hasn’t received h
before t+2∆. Node u broadcasts an UNRECEIVED message
for B including all received blocks of height h + 1. Upon
receiving an UNRECEIVED message for B, nodes forward
the message and discard B if it is referenced by a minority
of known blocks for height h+ 1.

A node u checks all blocks of height h + 1 received
by time t + 2∆ and if none reference B, broadcasts the
set Bh+1 of all received blocks of height h + 1 received
by time t + 3∆ in a UNRECEIVED message. Upon re-
ceiving an UNRECEIVED message, a node rebroadcasts the
UNRECEIVED message and discards B if it is referenced
by a minority of blocks received for height h + 1 when
considering Bh+1 in addition to their received blocks.

A Byzantine node can not force honest blocks of height
h to be discarded as they are referenced by all honest nodes
at height h+1, the majority. A Byzantine block can achieve
a majority only if at least one honest node references it in a
block of height h+ 1, guaranteeing that it is shared among
all honest nodes before t+ 2∆.

3.3. Full protocol

Protocol flow We provide an overview of Psd from
Algorithm 1. The local view of the full block-DAG D and
confirmed block-DAG Dcon are initialized by the genesis
block (Line 1-3). Each time slot, network messages are
processed. Newly received blocks are processed according
to Lines 25-40 described below and conflict messages ac-
cording to Lines 41-61 describe below (Line 5-8).

Every ∆ time slots, RESETBLOCKTIMER(T) resets the
block timer, which can be accessed by BLOCKTIMER().
Upon RESETBLOCKTIMER(T), nodes broadcast a block of
height k extending all received blocks of height k − 1
(Line 9-13). The timer for consistency is started, and the
height to confirm is saved (Line 14-15). Nodes consider
a block B of height h proposed by node u consistent ∆
time after referencing B in its own block proposal at height
h + 1, unless a CONFLICTINIT message is received. If a
CONFLICTINIT message is received for a block of height
h, the consistency timer is reset to allow time to resolve
conflicts (Line 17-21).

New received blocks are processed in
SDPROCESSNEWBLOCKS. If a block B′ ̸= B of
height h proposed by u is received before receiving B,
they are broadcast in a CONFLICTINIT message including
B′ and B, and enter a BYZAGREEMENT(B′) instance with
input B′ as B′ was received first (Line 26-29). Otherwise a

valid block whose height is at least the consistency height
is added to the block-DAG (Line 30-33). A block B is
valid if condition(B) = 1 holds for the application-specific
external integrity condition condition(B). If a block of
height h is received 2∆ time after proposing a block of
height h, an UNRECEIVED message is broadcast including
B and all blocks of height h+ 1.

CONFLICTINIT and UNRECEIVED messages received at
slot t are processed in PROCESSCONFLICTMESSAGESSLOT
For a CONFLICTINIT message containing B and B′,
nodes forward CONFLICTINIT and enter the black-box
BYZAGREEMENT protocol (Line 42-45).

For an UNRECEIVED message containing the block B
and the set BB.height+1 of blocks, a node adds blocks
in BB.height+1 to its set B′

B.height+1 of blocks of height
B.height+1 and forwards the UNRECEIVED message with
B′
B.height+1 replacing BB.height+1 (Line 48-52). If B is

referenced in a minority of blocks in B′
B.height+1, B is

discarded from the block-DAG D (Line 53-54).
If a BYZAGREEMENT outputs a block Bout, all other

blocks of height Bout.height by Bout.author are discarded
from the block-DAG D (Line 57-60).

Algorithm 1 Dynamically available structured
dissemination protocol Psd

1: procedure MAIN()
2: D,Dcon ← Bgenesis // initialize block-DAG D and confirmed

block-DAG Dcon with genesis block
3: hcon ← 0 // initialize to-confirm block height
4: for time slot t ∈ N do
5: PROCESSINCOMINGNETWORKMESSAGES()
6: Bnew ← GETLATESTBLOCKS()
7: D ← SDPROCESSNEWBLOCKS(D,Bnew, heightcon) //

see line 25
8: D ← PROCESSCONFLICTMESSAGESSLOT(t,D) // see line

36
9: if BLOCKTIMER(t) = 0 then

10: B ← CREATEBLOCK(clienttransactions)
11: B.parents← { All blocks of height D.height }
12: BROADCAST(< Propose,B >)
13: RESETBLOCKTIMER(t)
14: hcon ← B.height− 1
15: STARTCONSISTENCYTIMER(t, hcon) // start timer for

height hcon

16: end if
17: if (CONSISTENCYTIMER(t,Bcon) = 0) ∧ (∃BYZAGREE

with blocks in Bcon then // check for ongoing conflict resolution
instances

18: RESETCONSISTENCYTIMER(t,Bcon)
19: else if CONSISTENCYTIMER(t,Bcon) = 0 then
20: Dcon ← Dcon ∪ Bcon
21: end if
22: end for
23: end procedure

24: procedure SDPROCESSNEWBLOCKS(D,Bnew)
25: for B ∈ Bnew do
26: if ∃B′ ∈ D s.t. B′.author = B.author ∧ B′.height =

B.height then
27: // block B′ received first
28: BROADCAST(< CONFLICTINIT, B′, B >)
29: BYZAGREEMENT(B′) // input B′ to BA
30: else if condition(B) = 1 and B.height ≥ D.height

then
31: // check external integrity condition on B
32: // honest blocks of lower height are indirectly included by
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newer blocks
33: D ← D ∪B
34: else if ∆B.height > 2∆ where ∆B.height denotes the

time since block B of height B.height was proposed then
35: BB.height+1 ← All blocks in D of height

B.height+ 1.
36: BROADCAST(< UNRECEIVED, B,BB.height+1 >)
37: end if
38: end for
39: return D
40: end procedure

41: procedure PROCESSCONFLICTMESSAGESSLOT(t,D)
42: for all new < CONFLICTINIT, B′, B > messages do
43: if CONFLICTINIT not sent for B′.author and B′.height

then
44: BROADCAST(< CONFLICTINIT, B′, B >
45: BYZAGREEMENT(B′)
46: end if
47: end for
48: for all new < UNRECEIVED, B,BB.height+1 > messages do
49: B′

B.height+1 ← All blocks of height B.height+ 1
50: if UNRECEIVED not sent for B then
51: BROADCAST(< UNRECEIVED, B,B′B.height+1 >)
52: end if
53: if B referenced by minority of blocks in B′

B.height+1 then
54: D ← D \B
55: end if
56: end for
57: upon BYZAGREEMENTOUTPUT() do
58: Bout ← GETBYZAGREEMENTVALUE()
59: Bdel ← {All blocks of height Bout proposed by

Bout.author}
60: D ← D \ Bdel
61: return D
62: end procedure

The security of Algorithm 1 comes from the guarantee
that conflicts will be detected for all honest nodes and
handled with BYZAGREEMENT. Similarly, UNRECEIVED
guarantee that honest nodes can discard or keep blocks that
were not properly broadcast. The security analysis is given
in Section 6.1.

Theorem 1. Psd is a structured dissemination protocol
under (A2(β2),Z2) where β2 < 1/2 and Tb = 15∆.

Proof. See Section 6.1.
We also show that Algorithm 1 can recover security after

GST even if it was previously not secure due to an unstable
network.

Theorem 2. Psd is a structured dissemination protocol
under (A1(β1),Z1) where β2 < 1/2 after GST.

Proof. See Section 6.1.

4. Graded Common Prefix

In this section, we utilize the block-DAG structure to
introduce a novel primitive, the Graded Common Prefix.
This primitive is weaker than standard consensus but still
achieves finality for a subset of the blocks in a block-DAG,
in partially synchronous networks. Unlike Graded Byzan-
tine Agreement [23] that considers single values, graded
common prefix considers block-DAGs, represented by sets

of values, and outputs the common prefix amongst honest
node’s block-DAGs.

Intuition. To weaken standard consensus, agreement is
relaxed by introducing grades 1 and 2. An output of grade 2
must be obtained with grade ≥ 1 for all honest nodes and no
output of grade 2 can conflict. As outputs are block-DAGs,
an output may be a subset of another, hence different but
not conflicting.

By running GCP sequentially, a block-DAG D of grade
2 can be considered final even if some honest nodes have
only obtained grade ≥ 1, as all honest nodes will propose
D in the subsequent instance.

4.1. Definition

We define graded common prefix that is specific to
block-DAG inputs and outputs. We separate the weak va-
lidity property from validity as it is achievable before
max{GST,GAT} by a construction such as Algorithm 2
while validity is achieved after max{GST,GAT}.

Definition 6 (Graded Common Prefix. (GCP)). In a graded
common prefix protocol, every node i ∈ 1, ..., n can input
a block-DAG Di, and outputs a graded block-DAG where
each block a grade {1, 2}. A graded common prefix protocol
satisfies the following properties:

• Termination: Every honest node terminates.
• Validity: If all honest nodes propose a block-DAG

containing block-DAG D, D′ ⊇ D holds for any
output D′ by an honest node with grade 2.

• Weak Validity: If all honest nodes propose a block-
DAG containing block-DAG D, D′ ⊇ D holds for
any output D′ by an honest node with grade ≥ 1.

• Agreement: If an honest node outputs grade 2 for
a DAG D then all honest nodes output D and with
grade ≥ 1, and no honest node outputs a DAG D′ ≁
D with grade 2.

According the the properties of graded common prefix,
different honest nodes may output different block-DAGs and
different grades for the same blocks.

We additionally provide a generic version where nodes
input a set of arbitrary values, such that the output is a
graded set in Appendix B that may be of independent
interest for BFT.

4.2. Partially synchronous graded common prefix

We propose a protocol to solve graded common prefix in
a partially synchronous network for n > 3f nodes, defined
as pseudocode in algorithm 2.

Protocol flow. We provide a description of the protocol
from Algorithm 2. First, a node u broadcasts its input Du to
all other nodes in a propose message (Line 2). Second, nodes
wait for at least n − f propose messages, and broadcast a
vote with a block-DAG Dvote including every block-DAG
contained in at least n−f propose messages, or containing ∅
otherwise (Line 3-9). Thirdly, honest nodes wait for at least
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n− f vote messages. An honest node outputs a block-DAG
D2 with grade 2 that includes every block-DAG contained
in at least n − f vote messages (Line 11-12). An honest
node outputs a block-DAG D1 with grade 1 that includes
every block-DAG contained in at least 1 vote message (Line
13-14). Both D1 and D2 may be ∅.

Security intuition. We provide some intuition on the
components of our protocol that guarantee GCP agreement.
For D to be included in the output D2 with grade 2, a
quorum of n − f vote messages containing D is required.
With n > 3f nodes, the quorum implies that all honest node
receive at least 1 vote message containing D even when the
network is asynchronous before GST. A single vote should
therefore imply an output of grade 1 to guarantee agreement
at all times.

The quorum requirement also ensures that a quorum
for conflicting block-DAG is not obtainable, achieving the
second agreement condition. However Byzantine nodes may
attempt to broadcast votes for an arbitrary block-DAG D′,
that would also obtain grade 1. To prevent this scenario, a
valid vote for D contains the set of n− f received propose
messages whose block-DAGs include D.

Theorem 3. Algorithm 2 achieves the properties of graded
common prefix as follows: validity after max{GST,GAT},
termination in 2 network delays after GAT , and agreement
and weak validity for n ≥ 3f + 1 nodes and up to f
Byzantine nodes in a partially synchronous network.

Proof. To show the security of Algorithm 2, we use
quorum intersection arguments for each property of GCP.
See Section 6.2 for the full proof.

Algorithm 2 Partially synchronous graded common prefix
for a node u with input Du.
1: procedure PSGRADEDCOMMONPREFIX(Du)
2: BROADCAST(< PROPOSE, Du >)
3: upon receiving n− f PROPOSE messages do
4: if ∄D s.t. at least n−f PROPOSE messages include D then
5: BROADCAST(< VOTE,∅ >)
6: else
7: Dvote ←

⋃
{D|D included in at least n−f PROPOSE

messages }
8: Σvote ← {All PROPOSE messages including D s.t.

D ⊆ Dvote}
9: BROADCAST(< VOTE, Dvote,Σvote >)

10: end if
11: upon receiving n− f VOTE messages do
12: D2 ←

⋃
{D|D included in at least n− f VOTE message

}
13: OUTPUTGRADE2(D2)
14: D1 ←

⋃
{D|D included in at least 1 VOTE message }

15: OUTPUTGRADE1(D1)
16: end procedure

5. Hybrid protocol with block-DAG

Simultaneously achieving dynamic availability and par-
tition tolerance is a known impossibility due to the CAP
theorem [9]. However, it is possible to enable clients to
decide between prioritizing liveness or safety by running
two sub-protocols concurrently. We adapt the Ebb-and-Flow

framework [19] to obtain such a hybrid protocols. Pro-
posed constructions run a dynamically available protocol
for liveness-prioritizing clients, and a partially synchronous
BFT protocol for safety-prioritizing clients. In total, consen-
sus is performed twice, once in each setting.

We present the class of secure Ebb-and-Flow protocols
P that leverages a partially synchronous graded common
prefix protocol Pgcp such as Algorithm 2, in parallel with a
standard black box dynamically available protocol Pda, of
which many instantiations are available in the literature [1],
[10], [14], [15]. Pda is not limited to longest chain protocols,
and can also be instantiated with potentially high throughput
structured dissemination protocols presented in Section 3.1.

We therefore avoid performing standard consensus
twice, as Pgcp leverages the information contained in the
block-DAG (blockchains being special case of block-DAGs)
created by Pda.

Protocol instantiation. We assume the ledger LOGda

produced by Pda to be secure in the system model
(A2(β2),Z2) and in the system model (A1(β1),Z1) only
after GST. This is the case for our structured dissemination
protocol in Section 3.1 as shown in Theorem 1 and Theo-
rem 2. Alternatively, longest chain protocols have also been
shown to be secure in both system models [19].

We also assume Pgcp to solve graded common prefix in
the system model (A1(β1),Z1) and output a grade 1 block-
DAG Dg1 and a grade 2 output Dfin.

Protocol flow. Transactions are input to Pda, which
outputs LOGda and a confirmed block-DAG Dt

da. If all calls
to Pgcp have terminated, and Dt

da.height > Dfin.height
for the finalized block-DAG Dfin, nodes input the union of
Dt

da and the last grade 1 output Dg1 to the graded common
prefix protocol Pgcp. A grade 2 output of Pgcp becomes the
finalized ledger LOGfin, and a grade 1 output is saved in
local state as LOGg1 (Line 13-16).

Security Intuition.
The secure finality with Pgcp comes from its agreement

and weak validity properties. By guaranteeing that all honest
nodes output D with grade ≥ 1 if D is output with grade 2
due to agreement, all honest nodes will include D in their
input for next instance. As a result, weak validity ensures
that any future output will include D. The security of Pda is
easier as Ebb-and-Flow protocols with a secure dynamically
available protocol have already been proven [19]. The full
proof is included in Section 6.3.

Theorem 4. P is a secure ( 13 ,
1
2 )-Ebb-and-Flow protocol

Proof. We prove that P is a secure Ebb-and-Flow pro-
tocol, analyzing the security of each sub-protocol is shown
under both system models. See Section 6.3 for the full proof.

Algorithm 3 P protocol using a dynamically available
protocol Pda and graded common prefix Pgcp

1: procedure GCPSLOT(LOG)
2: if Dfin.height < D.height and ALLGCPTERMINATED()

then
3: PSGRADEDCOMMONPREFIX(D)
4: end if
5: end procedure

8



6: procedure MAIN()
7: if Dfin.height < D.height and ALLGCPTERMINATED()

then
8: PSGRADEDCOMMONPREFIX(D)
9: end if

10: DASLOT(t)
11: Dt

da ← DACONFIRMEDDAG(t)
12: GCPSLOT(Dt

da)
13: Dg1 ← GCPGRADE1DAGS(t)
14: Dfin ← GCPGRADE2DAGS(t)
15: end for
16: end procedure

5.1. Generalizing GAT with the MCAB model

In a real system, the assumption that GAT exists, the
time after which all honest nodes are awake, may be consid-
ered too strong. This is notably the case in public blockchain
deployments over the internet where nodes as public servers
may always be targeted by denial-of-service attacks.

From the perspective of protocol design, the GAT as-
sumption guarantees that enough honest nodes participate,
for example to reach a quorum of votes. We highlight that
enough awake honest nodes does not mean that all honest
nodes must be awake.

To weaken the GAT assumption while still providing a
time with enough participation, we define a system model
using the mobile crashes of the MCAB model [20]. We
obtain a more fine-grained treatment of GAT, the time
from which participation is lower bounded, which we call
Quorum Awake Time (QAT).

5.1.1. Definitions. Mobile crashes. Nodes that are mobile
crashed are nodes whose outgoing and incoming messages
are not delivered. Mobile crashed nodes may become cured,
causing all previously undelivered outgoing and incoming
messages to deliver.

Node corruptions. Up to f + c nodes may be corrupted
by the adversary, where f is the number of adaptive Byzan-
tine faults, nodes gradually chosen by the adversary during
protocol execution that may behave arbitrarily, and c is the
number of mobile crashed nodes chosen by the adversary for
every slot. A node that was crashed in slot t and not in slot
t + 1 eventually receives all incoming messages from slot
t. The remaining nodes are honest, and behave according
to protocol specifications. For ease of notation w.l.o.g. we
consider nodes numbered with i ∈ [1, n − (f + c)] to be
honest.

Quorum Awake Time. There is an unknown time after
which f + c ≤ n ·α called Quorum Awake time (QAT) for a
resilience fraction α. QAT is decided by the adversary, and
unknown to honest nodes.

Two system models. System model (A1(α)
′,Z1): In

this system model, the network is partially synchronous, c ≤
n− 1 and f ≤ (n− c) ·α, and there exists a bounded QAT
and a bounded GST.

System model (A2(α)
′,Z2): In this system model, the

network is always synchronous (GST=0), c ≤ n − 1 and
f ≤ (n− c) · α, and QAT can be unbounded (QAT → ∞).

f

c

n/3

n/3 n/2

n− 1

0

0

A1

A′
1 [19]

A2

A′
2 [19]

Figure 2: The highest number c of mobile crash faults and
the number f of Byzantine faults allowed for protocols
against A′

1 after QAT and A′
2 in our work, and their re-

spective equivalents from Ebb-and-Flow A1 after GAT and
A2 [19]

.

Ebb-and-Flow with MCAB liveness We say that a
(β1, β2)-secure Ebb-and-Flow protocol has MCAB live-
ness if finality holds under (A1(α)

′,Z1) and (A1(α),Z1),
and dynamic availability holds under (A2(α)

′,Z2) and
(A2(α),Z2).

5.1.2. Comparison with Ebb-and-Flow. Mobile crashes
behave in the same way as adaptive sleepiness from the
sleepy model [6]: both allow the adversary to prevent a
node’s messages from delivering, and allow a node to be
cured/awoken to become honest again. In the sleepy model,
there is no parameter for the number of simultaneous sleepy
nodes, while the MCAB model [20] provides a fine-grained
number of mobile crashes at any time.

As a result, the key difference with the system models
of Ebb-and-Flow [19]’s is that after QAT in our models,
there is still the possibility of mobile crashes, unlike after
global awake time where the all nodes are either honest
or Byzantine. Note that (A2(α)

′,Z2) describes the same
model as (A2(α),Z2) if QAT → ∞, and that setting
c = 0 after QAT for (A′

1(α),Z1) results in (A1(α),Z1) We
visualize the difference between (A2(α)

′,Z2), (A2(α),Z2),
(A1(α),Z1), and (A1(α)

′,Z1) in Figure 2.

5.1.3. Our protocols in the MCAB model. Deterministic
leader based protocols such as Hotstuff have been shown
to lose liveness in the presence of mobile crashes [20],
implying that even after max(QAT,GST ), Snap-and-Chat
protocols using Hotstuff or Streamlet are not able to guaran-
tee liveness. In contrast, every step in our constructions for
GCP involve every node performing the same protocol step.
It is easy to see that these fit the criteria for abundant roles,
shown to be sufficient for liveness in the MCAB model [20].
Our protocol P is therefore an Ebb-and-Flow protocol with
MCAB liveness, extending our results in Theorem 1 to A′

2.

9



Similarly, Theorem 4 can be extended to A′
1 and A′

2

as long as the sub-protocols Pda and Pfin only include
protocol steps that are abundant roles or concealed roles,
which guarantees liveness in the MCAB model [20].

6. Security analysis

6.1. Constant latency dynamically available struc-
tured dissemination

To analyze the security of Psd, we analyze how conflicts
and late blocks are resolved under (A2(β2),Z2) where β2 <
1/2 before showing that our full protocol achieves structured
dissemination.

Lemma 2. Unreceived message agreement. If an honest
node discards a block B of height h after receiving an
UNRECEIVED message, all honest nodes discard B.

Proof. We proceed by contradiction. Assume u discards
B and, w.l.o.g., is the first honest node that broadcasts an
UNRECEIVED message at time tu ≥ t+ 2∆ where t is the
time B was proposed. Also assume that v does not discard
B until it is consistent. Since v does not discard B, we have
two cases:

• Case 1: v has not received any UNRECEIVED
message, a contradiction as u rebroadcasts
UNRECEIVED message and it is received within ∆
slots.

• Case 2: v has received at least ft+∆ + 1 blocks
of height h + 1 referencing B by time t + 2∆,
where t is the time honest nodes propose blocks
of height h. This implies that at least one honest
node has proposed a block of height h + 1 at time
t + ∆, received by all honest nodes before t + 2∆
by the synchronous assumption. As a result, u re-
ceives B before t + 2∆ < tu, and does not send a
UNRECEIVED message, a contradiction.

Lemma 3. Timing of conflict instance. For any two honest
nodes starting BYZAGREEMENT for an equivocating node
B.author at times t, t′, we have |t− t′| ≤ ∆.

Proof. Honest nodes always broadcast a CONFLICTINIT
message before starting BYZAGREEMENT for an equivocat-
ing node B.author. By assumption, all honest nodes receive
the CONFLICTINIT message in at most ∆ slots. All honest
nodes will therefore start BYZAGREEMENT at most ∆ slots
after the first honest node that starts BYZAGREEMENT.

Lemma 4. Security of BYZAGREEMENT Any instance
of BYZAGREEMENT is secure in Algorithm 1 under
(A2(β2),Z2) where β2 < 1/2 and Tb = 15∆.

Proof. Our conflict resolution protocol
BYZAGREEMENT can be instantiated with a single
view of the atomic broadcast protocol [8] in sleepy model
with backward time Tb = 11∆. The confirmation of blocks
of the same height h depends on the proposals at height h
sent synchronously at time t, on the messages sent between

t and t + 3∆, and all messages of BYZAGREEMENT
instances where B.height = h. All honest nodes start
instances of BYZAGREEMENT where B.height = h
between t and t + 4∆ by Lemma 3. We therefore have
Tb = 4∆+ Tbm = 15∆.

6.1.1. Full protocol.

Lemma 5. Consistency. Psd achieves δ−consistency of a
structured dissemination protocol under (A2(β2),Z2) where
β2 < 1/2, δ = 3∆, and Tb = 15∆.

Proof. Part 1: We proceed by contradiction in two parts.
Assume a block B proposed by an arbitrary node B.author
of height h is consistent in an honest node u’s block-DAG,
but in another honest node v’s block-DAG, no block by
B.author of height h is consistent. Since B is consistent
for u, u has waited 2∆ time slots after proposing a block Bu

of height h+1 such that Bu → B at time slot th+1. Since v
is honest, v has proposed a block Bv at height h+1 at time
th+1. If B was received before th+1 by v, Bv references
B, and considers B δ-consistent after time th+1 + 2∆, a
contradiction. If v has not received B before th+1, it is
received before th+1 +∆ from u through the synchronous
network. v therefore broadcasts an UNRECEIVED message,
received by all honest nodes before th+1+2∆. By Lemma 2,
if an honest node discards B due to the UNRECEIVED
message, all nodes discard B a contradiction. If no honest
node discards B, v will confirm B at time th+1 + 2∆, a
contradiction. This completes the first part of our proof.

Part 2: Assume a block B proposed by an arbitrary
node B.author of height h is consistent in an honest node
u’s block-DAG, but in another honest node v’s block-DAG,
a block B′ ̸= B by B.author of height h is consistent.
Consider two cases for time t when u extends B with a
proposal and time t′ when v receives B′. We assume w.l.o.g.
that u is the first honest node receiving B and v is the first
honest node receiving B′:

• Case 1: t′ > t + 2∆. All honest nodes received B
as a parent of u’s block of height h + 1 at time
t + ∆. As a result, when CONFLICTINIT message
is broadcast after receiving B′, all honest nodes
propose B in BYZAGREEMENT and, by validity, B
is output for all honest nodes and B′ is discarded.
BYZAGREEMENT is secure by lemma 4.

• Case 2: t ≤ t′ ≤ t + 2∆. If all honest nodes
receive B first, this is the same case as case 1. If
some nodes may receive B first while others receive
B′ first, we will show that all honest nodes enter
BYZAGREEMENT and that no two honest nodes
will exclusively discard B,B′ respectively. By time
t′+∆, all honest nodes have received B from u and
B′ from v by the synchronous network assumption.
Since t′ + ∆ ≤ t + 2∆, u receives B′ before
the confirmation timer for B runs out, and enters
BYZAGREEMENT. By the agreement property of
BYZAGREEMENT, all honest nodes obtain the same
output B or B′.
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Part 3: Assume a block B of height h is consistent at
time t in an honest node u’s block-DAG, but another honest
node v confirms a block B′ ̸= B of height h after t. Since
B is confirmed for u, all instances of BYZAGREEMENT
for blocks in height h have terminated. When receiving B′,
v broadcasts an UNRECEIVED message. However, as we
have shown in Part 1 of the proof, if no honest node has
confirmed B′ by time t, B′ will be discarded. Otherwise, B′

is confirmed by all honest nodes by time t, a contradiction.

Theorem. Psd is a structured dissemination protocol under
(A2(β2),Z2) where β2 < 1/2 and Tb = 15∆.

Proof. δ-Consistency: Follows from Lemma 5.
τ, t-DAG growth: An honest node’s block timer

BlockT imer() triggers every ∆b time, upon which an
honest node broadcasts a new block. Within t time, there at
least t

∆b
· (n∗) additional blocks proposed by the n∗ nodes

that are honest and awake during t. In cases with conflicts,
the termination of BYZAGREEMENT guarantees that blocks
of any height with honest proposals are eventually confirmed
or discarded. We therefore have τ, t-DAG growth where
τ = n∗−f

∆b
.

µ-DAG quality: We first show by contradiction that at
any height k for an honest node, there are up to n blocks
proposed by distinct nodes. Assume that at height k, an
honest node u includes n′ > n blocks. This either implies
that there are n′ distinct nodes, a contradiction, or that u
has included more than one block of height k proposed by
the same node. This is also a contradiction as the protocol
is consistent.

External Integrity: External integrity is guaranteed as
honest nodes only add a block B to their local block-DAG
if condition(B) = 1 holds.

6.1.2. Self-healing DAG after GST. We defer the proofs
for Psd’s security after GST under (A1(β1),Z1) to Ap-
pendix C.1.

Lemma 6. Consistency of blocks before GST after GST.
All blocks proposed before GST under (A1(β1),Z1) where
β1 < 1/2 are eventually discarded or consistent for all
honest nodes after GST.

Proof. See Appendix C.1.

Theorem. Psd satisfies a structured dissemination proto-
col’s properties under (A1(β1),Z1) where β1 < 1/2 after
GST.

Proof. See Appendix C.1.

6.2. Graded Common Prefix

Theorem. Algorithm 2 achieves the properties of graded
common prefix as follows: validity after max{GST,GAT},
termination in 2 network delays after GAT , and agreement
and weak validity for n ≥ 3f + 1 nodes and up to f
Byzantine nodes in a partially synchronous network.

Proof. Validity. For a block-DAG D, that is a subset
of all honest proposals, it is included in n − f Proposal

messages after GAT and which are received by all honest
nodes after waiting ∆ time slots after GST. All nodes
therefore include D in their VOTE messages, and all honest
nodes therefore receive n− f vote messages containing D
after ∆ time slots, hence including D in their grade 2 output.

Weak Validity: We proceed by contradiction. Assume
that a block-DAG D is a subset of all honest proposals
and an honest node u outputs D′ with grade ≥ 1 such that
D ⊈ D′. To output D′ with grade ≥ 1, u has received at
least one VOTE message where n−f proposals don’t include
D. This is a contradiction as all honest nodes include D in
their proposal, and only up to f nodes are Byzantine.

Agreement. We proceed by contradiction. Assume that
an honest node u has included a block-DAG D in its grade 2
output, and that another honest node doesn’t include D in its
output ≥ 1 at protocol termination. For u to include D in its
grade 2 output, at least f+1 honest nodes have sent a VOTE
messages whose block-DAG Di ⊇ D i ∈ {1, ...f + 1}, of
which at least 1 is included by u in its set of 2f + 1 vote
messages. This is a contradiction as the honest node v would
include D with grade at least 1.

Assume that an honest node u has decided D with grade
2, that another honest node v decides D′ ≁ D with grade 2.
To decide D with grade 2 and not D′, u has received n−f
votes that contain D and not D′. By quorum intersection,
v can not obtain n − f votes that also contain D′ unless
D′ ∼ D, a contradiction.

Termination: Termination is guaranteed in 2 network
delays, or 2 ·∆ after GST, as honest nodes receive at least
n−f proposals and n−f votes since n−f nodes are honest
and awake.

6.3. Ebb-and-Flow using Graded Common Prefix

We prove that P is a secure Ebb-and-Flow protocol,
using a similar proof structure as for snap-and-chat protocol
[19].

Theorem. P is a secure ( 13 ,
1
2 )-Ebb-and-Flow protocol

Proof. We first show the safety of LOGfin under
(A1(β1),Z1) where β1 = 1

3 . Due to agreement of graded
common prefix, when an honest node outputs a final block-
DAG B with grade 2, all honest nodes output B with grade
at least 1. As a result, every honest node i will input Bi ⊃ B
to the next instance of graded common prefix. By validity,
B ⊆ D for a block-DAG output D of B ⊈ D with grade 2.

For the liveness of LOGfin after time
max{GST,GAT} under (A1(β1),Z1), consider the
following: After time max{GST,GAT}, Pda is safe
and live and all nodes input the same latest confirmed
block-DAG B from Pda. The validity property of Pgcp then
ensures that B is included in the output with grade 2.

To show the security of P under (A2(β2),Z2) where
β2 = 1

2 , Pda must be secure and its output LOGda must be
consistent with the finalized output LOGfin. The security
of Pda follows from our black box secure dynamically
available protocol assumption.
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By the external integrity property, Pgcp can only out-
put a block-DAG Dfin such that Dfin ⊆ Dda for the
confirmed block-DAG output Dda of Pda. The security of
Pda guarantees that Dda is confirmed for all honest nodes
by the security of Pda. LOGfin is therefore consistent
with LOGda as they are directly extracted from Dfin, Dda

respectively.

7. Experimental evaluation

We evaluate our protocols experimentally to show the
following:

1) Our DAG protocol Psd for the sleepy model
throughput scales with the number of nodes, while
current state-of-the-art sleepy model BFT does not.
In addition, our protocol’s common case latency is
lower.

2) The latency of our graded common prefix protocol
is not affected by crashed nodes, unlike existing
leader based BFT such as Hotstuff [5].

7.1. Setup

We implemented both our protocols and their respective
baselines in Haskell using the distributed-haskell library1

to instantiate asynchronous nodes and their communication
network. The code is available online2. We ran our exper-
iments on a national research cloud, using 10 m3.xsmall
instances which have with 2GB of RAM and one vCPU.
Each instance ran up to 6 nodes for a total of 60 nodes in
our experiments.

In each protocols, arbitrary data is proposed by nodes,
and we consider 8B of data as 1 operation. For each
committed block of operations, its latency and the current
throughput is tracked. Throughput measures the number of
committed operations divided by the elapsed time of the
experiment. Latency measures the elapsed time between the
moment a operation is proposed by a node, until the moment
a client receives its confirmation. As different nodes may
commit a operation at slightly different times, the average
is computed.

7.2. Dynamically available protocols

Since constant-latency BFT in the sleepy model has no
publicly available implementation to our knowledge, we
implemented a prototype for sleepy model BFT based on
Mahkhi et al.’s sleepy BFT [8] as our baseline.

To show that our protocol scales with participating
nodes, we increase the number of nodes from 10 to 60
in steps of 10 (1 additional node per instance), and run
each protocol for 600 seconds. Blocks are set to contain
5 operations, for a total of 200B per block. The protocol’s

1. https://github.com/haskell-distributed
2. Code will be made available after paper acceptance, and upon request

by chair

timers (∆) were set to 1 second, such that nodes collect
messages for 1 second before proceeding to the next step.

Results. As depicted in Figure 3a, the baseline protocol’s
throughput remains relatively stable and obtains no increase
with more participating nodes. The performance of the
baseline protocol does not noticeably degrade either due to
the relatively large timeout set to 1 second, meaning that
messages have more than enough time to deliver between
protocol steps.

In contrast, in our dynamic DAG protocol, new blocks
are proposed every ∆ = 1s which inherently contributes
a x4 increase in throughput, compared to the baseline that
proposes a block every 4∆. There are also n more blocks
proposed, for n nodes, for a theoretical increase of x4n in
throughput. Our observed linear throughput growth matches
our intuition. Note that a pipelined version of the baseline
could potentially mitigate the x4 factor difference, proposing
every ∆ instead.

At 60 nodes, our instances’ modest resources (CPU,
RAM, Network) were saturated and throughput drops. We
expect stronger machines to be able to support more
throughput before saturation, as is the case in DAG BFT
works with access to such resources [11], [12].

As shown in Figure 3b, our protocol exhibits slightly
lower latency, almost 1 second less than the baseline. With
timers set to ∆ = 1 second, these results align with the the-
oretical expectations outlined in Table 1, where our protocol
commits in 3∆, compared to the baseline’s 4∆. For refer-
ence, in simulations for DAGs with participation-dependent
latency, 22 seconds was the best case in Prism [10].

Variance in our latency measures can be explained by
temporary clock de-synchronization between our instances
as the protocols run, causing occasional drift in the latency
measurement. However, the highest statistical standard devi-
ation of our latencies was ∼ 0.1s, and these inacurracies do
not prevent us from observing the expected 1 second lower
latency.

7.3. Partially synchronous protocols

To fairly compare our GCP protocol to a partially syn-
chronous BFT, we implemented Hotstuff [5] under the same
Haskell framework and distributed-haskell library.

To show the impact of crashes on latency for our GCP
protocol and a leader based BFT like Hotstuff, we increase
the number of crashes from 0 to 6 in steps of 1, and run
each protocol for 300 seconds. Each of the 10 instances
run 2 nodes for a total of 20 nodes. Hotstuff blocks are set
to contain 10 operations, while GCP proposals contain 10
block-DAG identifiers, represented by 10 operations of the
same size, for a total of 200B per block or proposal for each
protocol. Hotstuff’s timeout was set to 1 second.

Results. As depicted in Figure 4, in the baseline protocol
that relies on leaders, crashes increasingly affect the average
latency due to the expensive leader change operation, and
waiting for timeout timers.
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(a) Throughput vs. number of nodes.

(b) Latency vs. number of nodes.

Figure 3: Throughput and latency evaluation with a grad-
ually increasing number of nodes for our proposed DAG
protocol and Malkhi et al.’s constant latency sleepy BFT [8].

In contrast, the latency of our GCP is faster without
crashes and remains stable as the crashes increase, matching
our theoretical expected benefits of GCP.

8. Related work

Sleepy model. Protocols for the sleepy model such as
Ouroboros [24] and Snow White [15] circumvent Bitcoin’s
need for Proof of Work (PoW) with Proof of Stake (PoS).
However, they inherit the long latency of longest chain pro-
tocols and low participation further lengthens latency. The
feasibility of constant expected latency has been achieved in
follow-up works [7], [8], [22] by adapting design principles
from classical BFT, but their throughput is still limited by
their single block output.

DAG protocols. Prism [10] is a low latency, high
throughput, dynamically available PoW protocol. It im-
proves upon previous PoW DAG attempts [13], [25] to
obtain a provably secure PoW DAG protocol achieving
network capacity throughput and low latency. As discussed
for Ebb-and-Flow [19], it can provide a high performance

Figure 4: Latency evaluation with a gradually increasing
number of crashes for our proposed GCP protocol and
Hotstuff [5].

available ledger for Snap-and-Chat protocols, but requires
high participation to obtain the desired low latency.

The asynchronous and partially synchronous DAG based
BFT line of work [11], [12] offers high throughput BFT-
SMR. Narwhal notably finalizes a partially consistent asyn-
chronous DAG using BFT, similarly to our Ebb-and-Flow
protocol that finalizes a structured dissemination protocol’s
block-DAG. The crucial difference is that no dynamic avail-
ability can be offered by asynchronous DAGs that use fixed
quorums during dissemination. As Prism shows for PoW
DAGs, Narwhal also demonstrates the throughput benefit
of separating transaction dissemination in a DAG and con-
sensus, motivating our work to expand from throughput-
restricted single blockchains to generic block-DAG con-
structions in the dynamic availability setting.

Ebb-and-Flow. Ebb-and-Flow [19] introduces optimal
hybrid protocols with dynamic availability and full final-
ization using two concurrent protocols, a longest chain
and BFT protocols. Additionally, the Snap-and-Chat class
of protocols is introduced, solving Ebb-and-Flow with a
longest chain and BFT running concurrently. Our work
extends the Ebb-and-Flow framework by offering protocols
with low latency and a lighter finalization primitive, graded
Byzantine agreement or graded common prefix.

Graded agreement. Our graded common prefix primitive
is similar to graded agreement for arbitrary values [23].
However, graded agreement considers single arbitrary val-
ues and not sets of values that can take advantage of the
underlying data structure, as graded common prefix does
with block-DAGs. For example, if all honest nodes propose
a different block-DAG but where a common prefix is avail-
able, graded agreement can not easily guarantee that the
overall protocol will progress, while graded prefix can as
we show in Section 4.

Graded agreement for blockchains [8] has also been
introduced, and is specific to the blockchain data structure,
while we allow a generic integrity condition and block-DAG
data structure. This version of graded agreement foregoes
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the termination property, and allows nodes to gradually
output multiple, potentially conflicting blocks. In contrast
graded common prefix has a single output set before termi-
nating. Although the block-DAG output is also represented
by a set of blocks, terminating with a single output set allows
nodes to finalize blocks, without later potentially receiving
another block in the output for the same instance, especially
for non-synchronous constructions.

Constructions for both works focus on graded agreement
in a synchronous network, while we provide a partially
synchronous construction of graded common prefix.

9. Conclusion

This work introduces the first constant latency dynami-
cally available DAG protocol, and a new primitive, graded
common prefix, to finalize block-DAGs in the partially
synchronous setting without resorting to standard consensus.
These findings are synthesized in a hybrid protocol consist-
ing of the dynamically available DAG protocol, coupled with
GCP. The hybrid protocol lets clients choose prioritizing
liveness or safety. By leveraging the DAG structure in each
sub-protocol, we obtain high throughput and finalization
without the redundant work of running standard consensus
again for asynchronous safety.
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Appendix A.

Definition 7 (Byzantine Agreement (BA).). In a Byzantine
agreement protocol, each node i has an input value vi, and
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outputs a value v. A Byzantine agreement protocol satisfies
the following properties:

• Termination: Every honest node outputs a value and
terminates.

• Validity: If all honest nodes propose the same value
v, all honest nodes output v.

• Agreement: If an honest node outputs v then all
honest nodes output v.

Appendix B.

Definition 8 (Generic Graded Common Subset.). A generic
graded common prefix protocol takes as input a set Di of
values for every node i ∈ 1, ..., n, and outputs either a set
of values with grade 1 or a set of values with grade 1 and a
set of values with grade 2. A generic graded common prefix
protocol satisfies the following properties:

• Termination: Every honest node terminates.
• Validity: If all honest nodes propose a set of values

containing the value v, v ∈ D′ holds for any output
D′ by an honest node with grade 2.

• Weak Validity: If all honest nodes propose a set of
values containing the value v, v ∈ D′ holds for any
output D′ by an honest node with grade ≥ 1.

• Agreement: If an honest node u outputs grade 2 for
a set D of values then all honest nodes output D
and with grade ≥ 1, and no honest node outputs a
set D′ with grade 2 where (D′ ⊈ D) ∧ (D ⊈ D′).

Appendix C.

Lemma. Narwhal Narwhal run by n nodes is a structured
dissemination of a block-DAG with ∆−consistency, 2n

9∆ , 3∆-
DAG growth, and 1/2-DAG quality under (A2(α),Z2) after
GAT where β2 < 1/3.

Proof. ∆-Consistency: We proceed by contradiction.
Assume an honest node u considers a block b with digest
d consistent, but another honest node v does not. Since
u considers b confirmed at time t, it is certified and the
write(d,b operation has completed. By the block-availability
property of Narwhal and the synchronous network assump-
tion, read(d) completes by time t + ∆. By the integrity
property of Narwhal, d outputs the same block b for all
honest nodes, completing our contradiction.

Assume a block b of round r and height h is consistent at
time t in an honest node u’s block-DAG, but another honest
node v confirms a block b′ ̸= b of round r and height h after
t+∆. Since the network is synchronous, b′ is received after
b is certified, implying that honest blocks of round r are also
certified. This further implies that honest nodes are at least
in round r + 1 since they certified 2f + 1 honest blocks of
round r. b′ is therefore not valid for honest nodes due to the
round number, and unable to obtain a quorum certificate, a
contradiction.

2n
9∆ , 3∆-DAG growth: We proceed by induction. For the

first round of the protocol, at least 2n/3 honest node propose

a block certified within 3∆ time. For a round r + 1, every
honest node has received at least 2n/3 blocks from honest
nodes at round r and is able propose a block delivered within
∆ time. We therefore have 2n

3 blocks certified in 3∆ time,
and τ = 2n

9∆ , completing the induction.
1/2-DAG quality: 1/2-DAG quality directly follows

from Narwhal’s 1/2-chain quality property.
External Integrity: External integrity for condition(B)

can be trivially satisfied by adding condition(B) = 1
as a requirement for honest nodes to certify blocks. If
condition(B) ̸= 1 for a block B, B can not obtain a
certificate from at least 2f + 1 nodes’ signatures.

C.1. Structured dissemination

Lemma. Consistency of blocks before GST after GST. All
blocks proposed before GST under (A1(β1),Z1) where
β1 < 1/2 are eventually discarded or consistent for all
honest nodes after GST.

Proof. At time t > GST , consider the set C containing
every pair of blocks B and B′ ̸= B of the same height
where B.author = B′.author, and B is confirmed for an
honest node u while B′ is confirmed for another honest
node v. We also consider the set M containing every block
B of height h such that B is confirmed in an honest node
u’s block-DAG, but in another honest node v’s block-DAG,
no block by B.author of height h is confirmed.

For pairs in C, consider the following proof by contra-
diction. Assume a block B proposed by an arbitrary node
B.author of height h is consistent in an honest node u’s
block-DAG, but in another honest node v’s block-DAG, a
block B′ ̸= B by B.author of height h is consistent. Since
the network is synchronous after GST, Lemma 3 holds and
all honest nodes enter an instance of BYZAGREEMENT.
Lemma 4 also holds since BYZAGREEMENT is started after
GST and the network is synchronous. By the agreement
property of BYZAGREEMENT, all honest nodes obtain the
same output B or B′, a contradiction.

Honest nodes therefore eventually agree on a consistent
block for all pairs in C.

For blocks in M, consider the following recursive proof
once C = ∅. We order the blocks in M by height such that
the block with the largest height has index i = 0. Blocks of
the same height have neighboring indexes.

For i = 0, we denote the block B0 of height h0. There
are no blocks of larger height in M by definition, and
blocks of height h0 + 1 are confirmed since C = ∅. Once
an honest node broadcasts an UNRECEIVED message after
receiving B0 after GST at time tu, all honest nodes receive
the UNRECEIVED message after t + ∆ and either discard
or keep B0 after t+3∆. We prove by contradiction that all
honest nodes discard B0 if an honest node u discads B0.
Since u discards B0, it has received blocks of height h0+1
such that a majority does not reference B0. Since C = ∅
and B0 has the highest height in M, the blocks of height
h0+1 are confirmed for all honest nodes, a contradiction as
they would all discard B0 too. As a result, all honest nodes
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either discard or confirm B0 after GST. For the recursion
proof, we now replace B0 with the empty element ∅ in M,
maintaining the same indexes for the other elements.

For i+1, blocks of height hi in M are either discarded
or confirmed. The block Bi+1 is therefore the block with
the largest height in M. Using the same proof as for i = 0,
all honest nodes either discard or confirm Bi+1 after GST,
completing the recursive proof.

Theorem. Psd satisfies a structured dissemination proto-
col’s properties under (A1(β1),Z1) where β1 < 1/2 after
GST.

Proof. Before GST, δ-Consistency, τ, t-DAG growth, and
µ-DAG quality are not guaranteed and honest nodes may
have differing views of confirmed block-DAGs, with no
guaranteed growth rate or fraction of honest blocks. External
integrity is still guaranteed as honest nodes only add a block
B to their local block-DAG if condition(B) = 1 holds,
irrespective of network conditions.

We now analyze each property after GST. Compared to
the proofs for Theorem 1, the system model is equivalent as
both networks are synchronous, and the fraction of Byzan-
tine nodes is bounded by 1/2. The only difference with the
proofs for Theorem 1 is therefore that honest nodes don’t
start with the same consistent block-DAG. We now show
that δ-Consistency, τ, t-DAG growth, and µ-DAG quality
eventually hold after GST.

τ, t-DAG growth: The proof is the same as for Theo-
rem 1.

δ-Consistency: Since before GST, honest nodes have dif-
fering confirmed block-DAGs, and are eventually discarded
or confirmed as shown by Lemma 6. For blocks proposed
after GST, the proof is the same as for Lemma 5.

µ-DAG quality: The proof is the same as for Theorem 1,
since we have shown that the protocol is consistent after
GST.

C.2. Graded common prefix

Theorem. Algorithm 2 achieves the properties of graded
common prefix as follows: validity after max{GST,GAT},
termination in 2 network delays after GAT , and agreement
and weak validity for n ≥ 3f + 1 nodes and up to f
Byzantine nodes in a partially synchronous network.

Proof. Validity. For a block-DAG D, that is a subset
of all honest proposals, it is included in n − f Proposal
messages after GAT and which are received by all honest
nodes after waiting ∆ time slots after GST. All nodes
therefore include D in their VOTE messages, and all honest
nodes therefore receive n− f vote messages containing D
after ∆ time slots, hence including D in their grade 2 output.

Weak Validity: We proceed by contradiction. Assume
that a block-DAG D is a subset of all honest proposals
and an honest node u outputs D′ with grade ≥ 1 such that
D ⊈ D′. To output D′ with grade ≥ 1, u has received at
least one VOTE message where n−f proposals don’t include
D. This is a contradiction as all honest nodes include D in

their proposal, and there are only up to f < n−f Byzantine
nodes.

Agreement. We proceed by contradiction. Assume that
an honest node u has included a block-DAG D in its grade 2
output, and that another honest node doesn’t include D in its
output ≥ 1 at protocol termination. For u to include D in its
grade 2 output, at least f+1 honest nodes have sent a VOTE
messages whose block-DAG Di ⊇ D i ∈ {1, ...f + 1}, of
which at least 1 is included by u in its set of 2f + 1 vote
messages. This is a contradiction as the honest node v would
include D with grade at least 1.

Assume that an honest node u has decided D with grade
2, that another honest node v decides D′ ≁ D with grade 2.
To decide D with grade 2 and not D′, u has received n−f
votes that contain D and not D′. By quorum intersection,
v can not obtain n − f votes that also contain D′ unless
D′ ∼ D, a contradiction.

Termination: Termination is guaranteed in 2 network
delays, or 2 ·∆ after GST, as honest nodes receive at least
n−f proposals and n−f votes since n−f nodes are honest
and awake.
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