Shielded CSV: Private and Efficient Client-Side Validation

Jonas Nick!, Liam Eagen?, and Robin Linus?

IBlockstream
2Alpen Labs
37eroSync

September 20, 2024

Abstract

Cryptocurrencies allow mutually distrusting users to transact monetary value over the internet
without relying on a trusted third party.

Bitcoin, the first cryptocurrency, achieved this through a novel protocol used to establish consensus
about an ordered transaction history. This requires every transaction to be broadcasted and verified
by the network, incurring communication and computational costs. Furthermore, transactions are
visible to all nodes of the network, eroding privacy, and are recorded permanently, contributing to
increasing storage requirements over time. To limit resource usage of the network, Bitcoin currently
supports an average of 11 transactions per second.

Most cryptocurrencies today still operate in a substantially similar manner. Private cryptocur-
rencies like Zcash and Monero address the privacy issue by replacing transactions with proofs of
transaction validity. However, this enhanced privacy comes at the cost of increased communication,
storage, and computational requirements.

Client-Side Validation (CSV) is a paradigm that addresses these issues by removing transaction
validation from the blockchain consensus rules. This approach allows sending the coin along with a
validity proof directly to its recipient, reducing communication, computation and storage cost. CSV
protocols deployed on Bitcoin today [1, |2] do not fully leverage the paradigm’s potential, as they
still necessitate the overhead of publishing ordinary Bitcoin transactions. Moreover, the size of their
coin proofs is proportional to the coin’s transaction history, and provide limited privacy. A recent
improvement is the Intmax2 [3] CSV protocol, which writes significantly less data to the blockchain
compared to a blockchain transaction and has succinct coin proofs.

In this work, we introduce Shielded CSV, which improves upon state-of-the-art CSV protocols
by providing the first construction that offers truly private transactions. It addresses the issues of
traditional private cryptocurrency designs by requiring only 64 bytes of data per transaction, called a
nullifier, to be written to the blockchain. Moreover, for each nullifier in the blockchain, Shielded CSV
users only need to perform a single Schnorr signature verification, while non-users can simply ignore
this data. The size and verification cost of coin proofs for Shielded CSV receivers is independent of
the transaction history. Thus, one application of Shielded CSV is adding privacy to Bitcoin at a rate
of 100 transactions per second, provided there is an adequate bridging mechanism to the blockchain.

We specify Shielded CSV using the Proof Carrying Data (PCD) abstraction. We then discuss two
implementation strategies that we believe to be practical, based on Folding Schemes and Recursive
STARKS, respectively. Finally, we propose future extensions, demonstrating the power of the PCD
abstraction and the extensibility of Shielded CSV. This highlights the significant potential for further
improvements to the Shielded CSV framework and protocols built upon it.

Contents

[4_Protocol
4.1 Non-interactive Schnorr Signature Halt-Aggregation with Commitments|
4.2 Protocol Description|

[Advanced Spending Policies|

JALL.2 Atomic SWaps|.o e e e e e e e
IA.1.3 Supporting Multiple Assets| o
|A.1.4 Reducing Proving Cost|
A2 Instantiating a ToS-accumulator| oo

11
11
11
11
11
13
14
16

17
17
17

22
22
22

23
23
24
24
24
25
25
26

1 Introduction

Cryptocurrencies and Blockchains Bitcoin, the first practical cryptocurrency, was created by
Satoshi Nakamoto as a means of enabling censorship-resistant online payments that eliminate the need
for a trusted intermediary. In Bitcoin, coins are typically associated with a public key, and knowledge
of the corresponding private key confers ownership of the coins. Using this private key, the owner can
cryptographically sign a transaction to transfer the coins to another participant. After preparing the
transaction, the owner broadcasts the signed transaction to the Bitcoin network. Nodes in the Bitcoin
network verify the transaction, which includes confirming the existence of the coins being spent and the
validity of the signature. In particular, nodes ensure that there is only one transaction spending the same
coins; otherwise, it is considered a “double-spend” attempt by the owner. If the transaction is accepted
and includes a sufficient fee, it is included in the blockchain, and the recipient can spend the received
coins. However, Bitcoin transactions can potentially reveal information about the parties involved, which
compromises the privacy of its users.

Many other blockchains and associated cryptocurrencies have emerged since Bitcoin. While certain
aspects of the protocols vary dramatically, the high-level structure described here has largely remained
the same. Some protocols, such as Ethereum, enrich the notion of ownership to support arbitrary
computation inside ”smart contracts,” while other protocols, like Zcash [4], publish zero-knowledge proofs
of transactions instead of transactions themselves. Transactions in these protocols are often larger and
more expensive to verify compared to Bitcoin’s transactions.

Despite these variations, the fundamental principle remains unchanged: transferring ownership requires
signing a transaction and broadcasting it to the peer-to-peer network. Valid transactions with sufficient
fees are included in blocks, which are then propagated to nodes across the network. Before extending
their local copy of the blockchain, all nodes must verify the validity of new blocks. This includes checking
every transaction by verifying signatures, zero-knowledge proofs, or smart contract executions. Blocks
containing invalid transactions are rejected.

To ensure that participants with restricted computational resources can verify the protocol rules,
a limit on transaction throughput is necessary. Bitcoin, for instance, can process an average of 11
transactions per second, which poses a limitation for widespread adoption.

Client-Side Validation Cryptocurrencies do not necessarily require broadcasting transactions nor the
validation of all transactions, an insight first published by Todd [5]. This approach, known as client-side
validation (CSV), fundamentally separates transaction validation from block validation.

In contrast to traditional cryptocurrencies, where blocks contain transactions that are validated by
all nodes, the CSV model allows blocks to contain arbitrary data. Individual nodes then interpret this
data ”client-side” (for example, as transactions) and do not reject blocks containing data they consider
invalid. The blockchain serves solely to establish consensus on the order of published data to prevent
double spending.

Consider, for example, that the data contained in a block is interpreted client-side as a list of
transactions. To make a payment, the sender publishes the transaction on the blockchain. If the receiver
deems the transaction invalid, they do not reject the block containing the transaction; instead, they
simply do not accept the payment. One can see that, while the blockchain can support multiple client-side
validated protocols, it is essential that the sender and receiver use the same protocol.

Because in the CSV model transaction validity rules are irrelevant for establishing consensus on the
blockchain, it is unnecessary to post full transactions to the blockchain. The blockchain’s primary function
is to prevent double-spending, for which the transaction details are unnecessary. Therefore, senders of
CSV payments write a piece of data derived from the transaction to the blockchain, which we refer to as
a nullifier.

As a result, senders only need to broadcast nullifiers, rather than entire transactions. To make a
payment, the sender provides the coin directly to the receiver, along with any proof that the receiver
requires to verify the validity of the coin. The receiver verifies the coin and ensures that the correct
nullifier is present in the blockchain to prevent double-spending.

The specific implementation of nullifiers varies across CSV protocols. Contemporary CSV protocols
on Bitcoin make use of ordinary Bitcoin transactions and the existing protocol rules for spending coins |1}
2]. In these cases, the nullifier is effectively a Bitcoin transaction. While client-side payments in those
protocols require making a Bitcoin transaction, they allow for the transfer of non-Bitcoin assets and the
implementation of more expressive spending policies than what is possible in native Bitcoin. In contrast,
recent CSV protocols [3} 6] and Shielded CSV employ a different approach. Here, the nullifier is smaller

than a blockchain transaction and is not interpreted by existing blockchain consensus rules.

In order to check the validity of a coin, receivers typically need to check more than just a single
transaction before accepting a payment. Each coin has a transaction history comprising all ancestor
transactions that led to its creation. A received coin is invalid if there exists a transaction in the coin’s
history that is invalid, for example, because it produces more coins than it consumes or because a coin
has not been nullified correctly. To allow the receiver to verify the validity of a coin, every coin in a
client-side validation protocol has an associated coin proof.

In its simplest form, a coin proof consists of the coin’s entire transaction history. Given that transactions
commonly have multiple parent transactions, the history of a single coin is likely to encompass a substantial
portion of all transactions within the system. Consequently, this approach offers limited advantage over
broadcast-based systems in terms of communication efficiency.

Privacy Traditional client-side validation protocols, where the coin proof reveals the transaction history
of the coin, offer certain privacy advantages over transparent blockchain transactions. However, while
blockchain observers do not obtain the history of a CSV coin, coin recipients receiving the coin proof still
do. As demonstrated for transparent blockchains, the transaction history is rich source of information
that allows linking transactions and de-anonymizing users [7].

We consider a CSV protocol private if it discloses no information to the recipient beyond the coin’s
validity and, in particular, does not reveal the transaction history.

Publishing Nullifiers Depending on how nullifiers are published on the blockchain, we can distinguish
between permissioned and permissionless CSV protocols. In permissioned CSV protocols, users rely on
the honesty of an entity operating the protocol in order to transfer coins. That entity is responsible for
publishing nullifiers on the blockchain and may maintain additional state of the protocol.

Conversely, permissionless CSV protocols rely on the blockchain as a censorship-resistant bulletin-
board that makes sure the data necessary to create transactions is available. To minimize the cost
of posting nullifiers to the blockchain, permissionless CSV can utilize specialized participants called
publishers, a role open to any protocol user. Publishers collect nullifiers from users, aggregate them when
possible, and post them to the blockchain. Since publishers pay transaction fees on the blockchain, they
typically charge users for their service. Without publishers, users would have to incur the overhead of
making dedicated transactions on the blockchain to post a nullifier. Not only does this waste blockchain
space, but it also requires users to possess the blockchain’s native currency, rather than allowing payment
to publishers using the CSV protocol.

Bridging Using the native currency of the blockchain in a CSV protocol necessitates a bridging protocol
that allows the transfer between the two systems. Such a bridge can be instantiated by a group of entities
entrusted to honestly follow the bridging protocol.

A trustless bridging protocol, which does not rely on the honesty of individual entities, requires that
the CSV protocol’s rules be verifiable on the blockchain. In principle, sending a CSV transaction to
the blockchain to withdraw from the CSV protocol is not significantly different from sending it to any
other CSV recipient. To verify the CSV protocol, the blockchain requires either a sufficiently expressive
blockchain programming language or a dedicated change to the blockchain’s protocol rules. Nevertheless,
the substantial coin proofs required by traditional CSV protocols, which would have to be published
to the blockchain and verified by all protocol nodes, erase the advantages of client-side validation. For
bridging to be viable, CSV protocols must have a way to compress coin proofs significantly.

In the case of Bitcoin, the blockchain programming language currently lacks the expressiveness to
verify the CSV protocol, and proposing changes to Bitcoin’s protocol rules is a lengthy process with a very
uncertain outcome. Nevertheless, there is significant potential in building a bridge using the BitVM [§]
paradigm, which would not necessitate changes to the protocol rules. BitVM enables the verification of
any computation on Bitcoin, assuming that fraudulent computation can be challenged on the blockchain.

Apart from full-fledged bridging, there are innovative methods to derive an asset on the CSV protocol
from the blockchain’s native currency. One such approach is the “one-way peg”, which involves burning
coins on the blockchain and subsequently minting equivalent tokens on the CSV protocol.

1.1 Contributions

We present Shielded CSV, the first client-side validation protocol that is private.

Privacy Coin proofs reveal no information other than the validity of the coin and its creation time.
Short Coin Proofs The size of a coin proof is independent of its transaction history.

Blockchain Efficiency Each transaction requires only 64 bytes of data to be written to the blockchain,
plus a small constant overhead, regardless of the transaction size.

Permissionless Shielded CSV does not rely on any trusted party for transaction execution. All necessary
data is directly written to, and retrieved from, the blockchain.

Efficient Instantiability Shielded CSV can be instantiated with existing cryptographic primitives.
Coin proofs are designed to be proven and verified efficiently in zero-knowledge.

Trustless Publishing Publishers are guaranteed to receive a transaction fee when they are the first to
post a nullifier to the blockchain. Anyone has the opportunity to take on the role of a publisher.

Prunable Wallet State Shielded CSV wallets are not required to retain information about all received
coins and past transactions. This reduces the wallet’s storage requirements and prevents potential
adversaries from learning about previously received coins and historical transaction data in the
event of a wallet compromise.

Advanced Spending Policies Shielded CSV natively supports “t-of-n” shared ownership, which re-
quires signatures from ¢ out of n account owners to spend a coin. With the addition of time-locked
transactions, Shielded CSV supports atomic swaps with Bitcoin.

Shielded CSV offers substantial advantages over private cryptocurrencies. They require the validation
of all transactions, which contain relatively large and computationally expensive zero-knowledge proofs.
In contrast, Shielded CSV only requires the receiver of a coin to download and verify the coin proof,
resulting in substantial reductions in computational and bandwidth costs. Regarding security, Shielded
CSV derives its resistance to double-spending from the parent blockchain, eliminating the need for its
own consensus mechanism. Furthermore, Shielded CSV conceals the transaction history as effectively as
private cryptocurrencies, and in some cases, provides enhanced privacy. For instance, unlike systems such
as Zcash, Shielded CSV hides the number of transaction outputs from the receiver.

Shielded CSV is a promising candidate for significantly enhancing the privacy of existing cryptocur-
rencies, such as Bitcoin. It provides efficient coin proofs and data availability, allowing the development
of bridges that transfer assets between Shielded CSV and the blockchain, for example, using the BitVM
design. Given the 64-byte space requirement on the blockchain, the current Bitcoin block size limit
supports approximately 100 Shielded CSV transactions per second (irrespective of the number of coins
spent and created in each transaction). For Bitcoin nodes not using Shielded CSV, nullifiers appear as
raw blockchain data, requiring no signature verifications and having no impact on the set of unspent
transaction outputs.

1.2 Related Work

Client-side validation was first proposed by Todd in 2013 [5]. One of the suggested applications was to
enable the expression of more advanced spending policies (“smart contracts”) than those possible with
Bitcoin’s native language, Bitcoin Script [9], while simultaneously minimizing the computational cost for
protocol participants.

CSV achieves this by requiring only minimal data to be published on the blockchain to prevent double
spending and transmitting additional proofs necessary for the payment directly to the recipients. Although
implementing CSV to extend Bitcoin’s functionality requires either bridging protocols or significant
changes to Bitcoin’s protocol rules, it can be used to issue custom assets on the Bitcoin blockchain
without such additional requirements. Indeed, the ability to issue custom assets has emerged as a primary
application of CSV protocols inspired by Todd’s ideas.

In subsequent years, Orlovsky, Todd, Zucco, Tenga, and Ukolova proposed the RGB protocol [1],
with implementation beginning in 2019. RGB builds upon the original CSV proposals and incorporates
confidential transactions [10], which hides the amounts and types of assets being transferred, although it
does not conceal the transaction history.

In 2022, Lightning Labs published Taproot Assets [2], a CSV protocol that, while not supporting
confidential transactions, focuses on integration with the Lightning Network [11] to enable cheap and
instant transactions.

Table 1: Comparison of Shielded CSV with other client-side validation protocols. In the Privacy column,
“No” indicates that the recipient obtains the plain transaction history. Protocols are “LN-compatible”
when CSV assets can be transferred through Lightning Network channels, obscuring the transaction
history. The column “Coin Proof Size” shows the size of a coin proof. |tx_history| refers to the number
of ancestor transactions that led to the creation of the coin. The column “Blockchain Space” indicates
the space required per CSV protocol transaction. BitcoinTx(num_ins, num_outs) refers to the size of a
Bitcoin transaction with num_ins inputs spending Taproot outputs and num_outs Taproot outputs, which
is 12+ 107 num_ins +43 - num_outs bytes (for num_ins, num_outs < 252). The space required on the Bitcoin
blockchain for a RGB or Taproot Asset CSV transaction with num_ins inputs and num_outs outputs is
BitcoinTx(num_ins, num_outs). Intmax2 requires a 1.5-round interactive protocol with the publisher.

Privacy Coin Proof Size Blockchain Space

Encrypted amounts & assets,

RGB LN-compatible O([|tx-history|) Bitcoin Tx(num_ins, num_outs)
Taproot Assets No, LN-compatible O(|tx_history|) BitcoinTx(num_ins, num_outs)
Intmax2 No O(1) Asymptotic to 4 to 5 bytes (interactive)
Shielded CSV Yes o(1) Asymptotic to 64 bytes (non-interactive)

Both RGB and Taproot Assets share a common issue: the coin proof comprises the entire transaction
history of the coin. This quickly becomes unwieldy, as each transaction typically has multiple ancestors,
causing proof sizes to grow rapidly over time. However, recent advancements in succinct non-interactive
arguments of knowledge (SNARKS) allow compression of coin proofs to a modest size, fundamentally
improving the practicality of CSV. Todd had mentioned this approach in 2015 |12], but no practical
SNARK existed at that time.

In early 2023, Linus reintroduced the idea with zkCoins [6], the first proposal combining CSV with
a zero-knowledge SNARK (zk-SNARK), improving both scalability and privacy of previous protocols.
Moreover, zkCoins proposes an alternative to using Bitcoin transactions as nullifiers, diverging from the
approach used in RGB and Taproot assets. Instead, zkCoins nullifiers only consist of “about 64 bytes”
that are written to the blockchain and are neither verified by regular blockchain users nor affect the set
of unspent transaction outputs. In contrast to RGB, which only encrypts amounts and assets, zkCoins
also hides the transaction history. While the ideas suggested in zkCoins represent significant progress,
the proposal does not describe the complete protocol and lacks some important details.

In late 2023, Rybakken, Hioki, and Yaksetig published Intmax2 |3], a ZK-rollup that shifts data and
computation to the client and requires posting nullifiers to the blockchain. As a result, it can also be
characterized as a permissionless CSV protocol. Intmax2 utilizes SNARKS to obtain succinct coin proofs,
but does not provide privacy. However, it offers extremely efficient nullifier sizes, requiring only 4 to 5
bytes per transaction. This efficiency is achieved by identifying user accounts with short integers and
using an interactive protocol between publisher and sender.

See Table [I] for a comparison of Shielded CSV to other CSV protocols.

2 Technical Overview

This section provides an overview of Shielded CSV by building it up step-by-step from a simpler protocol.
The starting point is a toy client-side validation protocol with transactions similar to Bitcoin transactions,
i.e., they have outputs and inputs that spend outputs of previous transactions.

We refer to transaction outputs as coins to clearly distinguish them from other types of outputs we
encounter in Shielded CSV. In contrast to Bitcoin’s transaction outputs, for now coins only consist of an
amount and do not include a public key, implying that anyone can spend any coin in the toy protocol.
This issue will be addressed later.

A coin proof in our basic protocol is simply the transaction history of the coin, i.e., the entire directed
acyclic graph of transactions that connects the coin to some issuance transactions. We do not discuss
issuance transactions in detail as their specifics depend on the scenario in which Shielded CSV is used;
we just assume that there is an existing supply of coins. To verify the coin proof, the receiver checks that
all transactions in the graph are valid, e.g., that non-issuance transactions do not create more coins than
they spend.

Double Spending Thus far, our protocol lacks a mechanism to prevent double spending. To address
this issue, we require that all coins spent in a transaction are "nullified” by publishing a corresponding
nullifier on the blockchain. We observe that each coin can be uniquely identified by the hash of the
transaction that created it and its index in the transaction’s output list. Therefore, before giving the coin
and coin proof to the receiver, senders post a nullifier consisting of the coin identifier and the hash of the
transaction to the blockchain.

Nullifier := (Coin Identifier,Transaction Hash)

Shielded CSV users maintain a data structure we call nullifier accumulator that stores all nullifiers
that have been published so far. When users receive a new block, they scan for nullifiers and insert every
encountered nullifier into the accumulator if the nullifier’s coin identifier has not been inserted previously.
During a blockchain reorganization, nullifiers in blocks that are absent in the new chain are removed from
the accumulator. For non-users of Shielded CSV, nullifiers are just arbitrary data in the blockchain.

To actually prevent double spending, we add the following rule to coin proof validation: for every coin
spent in the transaction graph, its corresponding coin identifier must be present in the accumulator and
the stored transaction hash must match the transaction that spends the coin. Should a sender attempt to
double spend by publishing a nullifier with the same coin identifier and a different transaction hash, the
receiver’s nullifier accumulator would only contain the original transaction hash and therefore, validation
of the coin proof would fail.

Accounts One undesirable property of the design so far is that the sender has to publish a nullifier
for every coin spent in a transaction. To improve upon this, we introduce the concept of accounts, each
uniquely identified by an account ID. Users generate a new account by generating a Schnorr key pair,
where the public key serves as the account ID. Accounts allow that senders only nullify an account state
instead of all spent coins. Each account has a single associated account state that is not nullified.

An account state consists of the account ID, balance, nullifier public key, and spent accumulator
value. The nullifier public key is a Schnorr signature public key that is used to nullify this account state.
Therefore, we change our definition of nullifiers: instead of coin identifiers, senders post nullifier public
keys to the blockchain instead. The spent accumulator contains the coins this account has already spent
and allows to enforce that an account can only spend a coin once. The spent accumulator value, which is
contained in the account state, is a commitment to the spent accumulator.

Nullifier := (Nullifier Public Key,Transaction Hash)

Account states are updated in transactions. Thus, we require that every transaction has a special
account state output and ”spends” an account state output, except when the transaction creates a new
account.

Transaction := ((Previous State,Previous Coins), (New State,New Coins))

In order to create a new transaction, the sender first collects coins to spend and to create. They then
create a new account state, with the same account ID and updated balance. They also generate a fresh
elliptic curve key pair, whose public part becomes the nullifier public key of the new account state.

To obtain the new spent accumulator value, senders insert the coins they spend into the account’s spent
accumulator and compute the commitment to the new accumulator. Verifiers check every transaction in
the coin proof follows the account state update rules: the account ID stays the same, and the balance and
spent accumulator were updated correctly. Additionally, they consult their nullifier accumulator to check
that the previous account state was correctly nullified with the nullifier public key and the transaction
hash.

Coins and Addresses At this point of the protocol description, coins only consist of an amount and
can be spent by anyone. To address that, we mandate that coins contain a hiding commitment to the
account ID of the receiver. Furthermore, coin proofs must include the opening of these commitments for
all spent coins to prove that their account ID matches the account ID of the state update.

Consequently, to create a coin that only the receiver’s account can spend, the sender obtains a hiding
commitment to the receiver’s account ID. These commitments therefore effectively serve as user addresses
in Shielded CSV.

Signatures The protocol developed up to this point has a major problem: should someone obtain an
account’s nullifier public key, they can update the account state and make transactions on their behalf.
To prevent this issue, we add a Schnorr signature for the nullifier public key over the transaction hash to
the nullifier. Users only insert a nullifier into their nullifier accumulator if the Schnorr signature is valid
for the nullifier public key. As such, creating a valid transaction requires knowledge of the nullifier secret
key.

It is possible to save blockchain space by removing the transaction hash from the nullifier. Instead,
we commit to the transaction hash with the signature, using a technique known as sign-to-contract:

Recall that for a Schnorr signature (R, s) we have sG = R + Hsig(R, P, m)P where G is the generator
of a group, P is the public key, and Hs;, is a hash function. To commit to transaction hash A in the
signature (R, s), the sender draws random scalar k, computes R’ = kG, R = R' + Hsijgcomm(R', h)G, and
s such that sG = R + Hsjg(R, P,m)G where m is some fixed string, for example, “Shielded CSV: state
update”. As a result, users no longer insert transaction hashes into the accumulator, only commitments
R to the transaction hash. Coin proofs must contain an opening of every transaction’s commitment to
prove that the commitments in the accumulator commit to the correct transaction hash.

Nullifier := (Nullifier Public Key,Signature)

Publishers To post a nullifier to the blockchain, users can create a dedicated blockchain transaction.
However, a dedicated transaction for a single nullifier creates significant blockchain space overhead.
Therefore, it is more efficient to send nullifiers to an entity who collects nullifiers and posts them all at
once to the blockchain. We call this entity publisher, a role that is open to any protocol participant. The
publisher will typically demand a fee payment as compensation for the transaction cost on the blockchain.
The fee mechanism will be elaborated later in this section.

Signature Aggregation To minimize the size of the nullifiers, we half-aggregate their signatures.
Schnorr signature half-aggregation [13] allows to non-interactively aggregate n Schnorr signatures into
a signature (Ry,...,Ry,s) that is about half the size of the individual signatures. To make use of
half-aggregation, we stop posting individual nullifiers to the blockchain and post aggregate nullifiers
instead. Aggregate nullifiers consist of a list of nullifier public keys and a Schnorr half-aggregate signature.

Aggregate Nullifier := (Nullifier Public Keys,Aggregate Signature)

Half-aggregation is compatible with sign-to-contract: After aggregation, R; remains the transaction
commitment corresponding to the ¢-th nullifier public key. Thus, when encountering an aggregate nullifier
in a block, users iterate through every nullifier public key and if it is not present in the accumulator
already, they insert it along with the corresponding transaction commitment R;.

Publishers typically collect nullifiers and create an aggregate nullifier by half-aggregating the nullifiers’
Schnorr signatures. To clarify, aggregate nullifiers are allowed to consist of only a single nullifier public
key and the half-aggregate of a single signature.

As a result, the blockchain space necessary to nullify n accounts is n Schnorr public keys, n group
elements for the signature, and a constant overhead, comprising the s part of the signature and the
remainder of the blockchain transaction. For a 256-bit elliptic curve, the space used per Shielded CSV
transaction approaches 64 bytes, independent of the transaction size.

Interim Summary See Fig. [1] for a diagram of the protocol developed so far.

Succinct & Private Coin Proofs The coin proofs in the protocol presented thus far, which include
all ancestor transactions involved in creating the coin, have a significant drawback. As time progresses,
the number of transactions in the proof grows rapidly, eventually making verification computationally
expensive.

To remedy this, we base the protocol on a proof-carrying data (PCD) scheme. This approach allows
creating a coin proof with verification time and size that is independent of the number of transactions.
Moreover, a PCD scheme that is zero-knowledge provides near perfect privacy: the coin proof hides
transactions, balances, accounts, and more, revealing only the nullifier that generated the coin.

PCD was originally introduced in the context of distributed computing [14]. In the original setting,
there is a network of distrusting nodes that output the result of certain computations and use each other’s
output data as input to subsequent computations. Proof-Carrying Data requires that every output is

Block i Block i+1 Block i+2

(nullifier pubkeys,
——»| aggregate sig),

aggregates

& publishes "
reads & verifies

aggregate sig

nullifier pubkey, _
Schnorr signature Receiver

/ coin, e — .

@ coin proof | accumulator :
1

' nullifier pubkey -> transaction |

[}

!]

l !

Transaction: commitment

((previous state, previous coins),
(new state, new coins))

Figure 1: Schematic depiction of a sender sending a payment to a receiver in a simplified variant of
Shielded CSV.

accompanied by a proof that all computations that led to this output were done correctly. Fig. 2] shows
an example of a PCD communication graph that connects nodes of computation.

W1 W3

@21, M1 —569—23, M3 —»
v ~N
_—

Z2, T2 Za, T4
A

w2

Figure 2: Exemplary Proof-Carrying Data communication graph. Nodes u; and wus receive local inputs
w1, we and output zi, 29, respectively. They also output proofs 7y, w9 that z1, zo were correctly computed
from wy,ws. Node ug receives (z1,m1) and (29, 72) and outputs z3 and z4, each with a proof that the
outputs were correctly computed from inputs z1, zo and w3, and that inputs z1, zo themselves were
correctly computed.

Intuitively, the proof is generated as follows: a node receives the output of other nodes, along with
proofs of correctness. The node checks the proofs, outputs the computations result and proves correctness
of the computation and the proofs of the input. This results in a recursive proof of correctness of all
preceding computation that contributed to the output.

In order to make use of PCD, we need to describe Shielded CSV in terms of PCD: nodes in the graph
correspond to protocol transactions and outputs of the computation are either account states or coins.
Local inputs to the computation include, for instance, account ID and openings of the commitments.
The core of the protocol description in Section [4] is the definition of the rules that constitute a correct
computation.

Shielded CSV does not rely a specific PCD scheme, but we require it to be efficient (proving time,
verification time and proof size do not depend on the size of the graph) and zero-knowledge (the proof
does not leak any information about the inputs or local input). Section discusses PCD schemes with
these properties.

Fees One remaining issue with the protocol as described so far is the lack of built-in support for fee
payments to publishers. One possible but flawed approach would be to add a coin to the transaction that
effectively serves as a fee payment to a specific publisher. The idea is that once the publisher posts the

corresponding nullifier as part of an aggregate nullifier to the blockchain, the transaction becomes valid,
permitting the publisher to claim the coin. However, before the nullifier is included in the blockchain, the
sender is unable to create a coin proof. Thus, the publisher would have to trust the sender to provide a
valid coin proof after the nullifier has been published.

We aim to develop a protocol that does not require trust between publisher and sender: the first party
to publish a nullifier should be guaranteed to receive the corresponding fee payment. Additionally, the
protocol must not compromise on privacy, introduce interaction between the two parties, or force senders
to commit to a particular publisher.

To achieve this, we first modify the definition of aggregate nullifiers to allow publishers to append
their address for collecting fees:

Aggregate Nullifier := (Nullifier Public Keys, Aggregate Signature,Publisher Address)

When scanning for aggregate nullifiers and storing a nullifier in the accumulator, users append the
publisher’s address to the stored transaction commitment.

The other modification to the protocol effectively transforms payments into a two-step process (which
is implemented by representing payments with multiple PCD vertices instead of a single one). The process
now works as follows:

1. The sender creates a transaction and a corresponding nullifier, then generates an intermediate proof.
This proof can be created before the nullifier is included in the blockchain.

2. The publisher receives nullifier and proof, adds their address to the nullifer and publishes it. Once the
nullifier is included, the publisher can create a regular coin for the fee payment and a corresponding
coin proof. The address of the coin must match the address in the previously published aggregate
nullifier. The sender, on the other hand, notices the nullifier in the nullifier accumulator and can
subsequently create coin proofs for the transaction.

As a consequence of not requiring senders to commit to a specific publisher in the first step, it is
possible to build a gossip network of Shielded CSV users and publishers. In this network, nullifiers are
broadcast similarly to transactions in cryptocurrencies. Publishers learn about nullifiers from the network,
aggregate them, post them to the blockchain, and claim a fee in Shielded CSV.

Dealing with Blockchain Reorganizations Blockchain nodes keep track of the current “best” chain,
for example, the chain with the most proof-of-work. In some blockchains, such as those based on
proof-of-work, it is possible for a node to experience a blockchain reorganization. This happens when the
node receives a better blockchain that lacks at least one block from the previous best chain. A blockchain
reorganization could replace a transaction with a conflicting transaction that sends the spent coins to
someone other than the original receiver. Hence, receivers of transactions are recommended to wait for
blockchain confirmations, i.e., a number of blocks chained on top of the block containing the transaction,
which reduces the chance of a blockchain reorganization. If a blockchain reorganization occurs nonetheless,
and the newly accepted best chain contains a conflicting transaction, the receiver cannot spend the coins
created by the replaced transaction and all transactions depending on the replaced transaction are invalid
and not part of the best best chain.

In the account-based private client-side validation setting, the effect of a blockchain reorganization is
different because dependent transactions may still appear on the new best blockchain. Consider a scenario
where a transaction recipient waits for some confirmations before publishing a nullifier to the blockchain
that commits to a transaction. If the blockchain then reorganizes such that this user’s account update
nullifier remains in the chain, but the spent coins no longer exist, the user not only loses the received
coins but also the entire account balance is effectively burned. This happens because the user published
an account update on-chain spending non-existing coins, which prevents them from creating a coin proof.

Shielded CSV solves this problem by allowing users to add a conditional nullifier accumulator value
(conditional NAV) to the transaction, which commits to the nullifier accumulator that contains the
nullifiers of all the dependencies of the transaction, i.e., the previous state and the previous coins:

Transaction := (Conditional NAV,(Previous State,Previous Coins), (New State,New Coins))

Once the nullifier of the transaction is published on the blockchain, there are two different scenarios.
Either the current best chain includes all nullifiers present in the conditional nullifier accumulator, or a
reorganization has occurred, and it does not. In the former case, all dependencies of the transaction are

10

in the current best chain and the user can create a coin proofs as usual. In the latter case, the user is
permitted to create a proof for a specific transaction that differs from the one originally committed. This
specific transaction has no effect: it neither spends nor creates new coins and the new account state’s
balance equals that of the previous account state. Therefore, despite the blockchain reorganization, the
user has a proof for an account state as if the transaction was never committed and can continue to make
new transactions with the account.

3 Preliminaries

3.1 Notation

The security parameter is denoted .

System-wide parameters pp are generated by a setup algorithm Setup taking as input the security
parameter. For notational simplicity, we assume that pp is given as implicit input to all algorithms
described below. We write x < y to denote the assignment of the value of y to x. Similarly, for a
randomized algorithm A, we write y <$ A(z) to denote that y is distributed according to the output of
A(z) (over uniformly sampled random coins).

We denote the set of polynomially-bounded functions in the security parameter A by poly(A) = {f :
Ja € N, f(A) € O(A*)}, the set of negligible functions in the security parameter A by negl(\) = {f :
£ & poly(V)}-

A probabilistic interactive Turing machine is probabilistic polynomial-time (PPT) if its runtime is in
poly(\); it is probabilistic expected polynomial-time (expected-PPT) if its expected runtime is in poly()\).

We use additive notation for the group operation.

3.2 Tuple

A tuple y is a prefiz of ¢ if |y| < |y’| and y; =y, for all ¢ = 1..|y|. We define the predicate IsPrefix(y,y’)
to output 1 if y is a prefix of 4’ and 0 otherwise.

We also define the predicate DistinctElement(y,y’) to output 1 if there exists ¢ < min(|y|, |y’|) such
that y; # y; and 0 otherwise.

3.3 Commitment

A commitment scheme consists of algorithm Comcommit:

e Comcommit(m;r) — C outputs a commitment C to message m with randomness r.
Security A commitment scheme is binding if no PPT adversary produces two distinct messages mq, m,
and randomness g, r1 such that Com(mg;rg) = Com(mq;r1) (except with probability negligible in). A
commitment scheme is hiding if no PPT adversary obtains any information about the message from the
commitment.
3.4 Non-interactive Signature Half-Aggregation with Commitments

Starting from the notion of a non-interactive signature half-aggregation scheme [13], we add the ability to
commit to messages in the signature. The resulting scheme consists of the following algorithms:

® SigkeyGen() — (sk, pk) outputs a signing key sk and a public key pk.

® Siggign(sk,m,msc) — (0, rsc) outputs a signature o on message m € M that commits to message
msc € MSC using randomness rsc.

° Sigverify(m, pk,o) — b outputs b = 1 if o is a valid signature on message m for public key pk and
b = 0 otherwise.

® Sigaggregatesig((M1, Pky, 1), ... (M, pk,,, 07)) — Oager OUtputs an aggregated signature oagg, given
triples of message, public key and signature.

® Sigaggregateverify (TAgar, (M1, PKy), - .. (Mn, pk,,)) — b outputs b = 1 if the aggregate signature is valid
for the tuples of message and public key and b = 0 otherwise.

11

® SigcommRetrieve (TAger, ©) — C outputs the commitment made in the i-th signature from aggregate
signature oaggr.

® Sigcommverify (C; Msc, rsc) — b outputs 1 if C' is a commitment to message msc with randomness rsc
and 0 otherwise.

The sets M and MSC are specified by parameters pp.
A non-interactive signature half-aggregation scheme with commitments must satisfy the following
completeness properties:

1. For all (sk, pk) < Sigyeygen(), and for all m € M, msc € MSC,

(U, rsc) —$ SigSign (Sk7 m, msc)

Sigverity (M, Pk, o) = 1.
2. For all n € N, for all (sk;, pk;) <8 Sigkeycen(), and all m; € M, msc; € MSC for = 1..n,

(0, rmsgi) <8 Sigsign(sk;, mi, msc;) for i = 1.n
Opger < Sigaggregatesig((M1; Py, 1), - - . (My, Pk, 00))
Ci <= SigcommRetrieve (TAger, ©) for i = 1..n
1= SigAggregateVerify(UAggf7 (m1, pky), ... (Mn, pky,))

N1l = Sigcommverify(Ci7 msc;, rmsgz’) for i = 1..n.

Security The algorithms Sigyeycens Sigsign: Si8veriy, define a signature scheme. A signature scheme is
existentially unforgeable under chosen message attacks (EUF-CMA) if no PPT adversary (except with
probability negligible in A) with access to the public key pk and a signing oracle that produces signatures
for pk and messages chosen by the adversary can produce a signature for a message the adversary has not
previously given to the signing oracle.

An non-interactive signature half aggregation signature scheme is chosen-key aggregate existential
forgery under chosen-message attacks (CK-AEUF-CMA) secure if a PPT adversary that is given public key
pk and access to a signing oracle for pk cannot produce an aggregate signature that passes AggregateVerify
with a list of tuples that contains pk and a new message (except with probability negligible in A).

For a non-interactive signature half-aggregation with commitments we define a new security no-
tion chosen-key aggregate existential forgery under chosen-commitments and chosen-message attacks
(CK-AEUF-CC-CMA). In this game the adversary can request signatures with commitments to messages
chosen by the adversary. The adversary wins the game if they break the binding property of the com-
mitment, create a signature forgery, if the signature commits to a new message, or if the commitment
cannot be opened. More specifically, a non-interactive signature half-aggregation with commitments
scheme is CK-AEUF-CC-CMA secure if no PPT adversary (except with probability negligible in A) wins
the following game:

12

CK-AEUF-CC-CMAA()) OSign(m, msc)

1:
2:

3

10 :
11
12
13:
14 :
15 :
16 :
17
18 :
19 :
20 :
21 :
22
23 :

pp <$ Setup(l/\) 1: (0,rsc) 8 Siggg, (sk, m, msc)
(sk™, pk™) <= Sigke,en() 2: L+ LU (m,msc,rsc)
L+ 0 3: return o
(oAger, Msc, r'sc, Mscz, rsc2,
(m1,pky), -, (M, pk,,)) =5 A% (pp, pk*)
if SigAggregateVerify(UAggr: (m1,pky), ..., (mn,pk,)) =0
return 0
fori=1.n
C' < SigcommRetrieve (TAger: 1)
if Sigcommverity (Cs Msc, rsc) = 1 A Sigcommyerity (Cs Msca; rsc2) = 1
// Commitment is not binding
return 1
if pk; = pk*
ifv(m',..)eL:m #m;
/| Signature Forgery
return 1
if 3(m’,msc,...) € L:m' = m; Amsc # msc
A Sigcommverity (Cs Msc, rsc) = 1
/ Signature commits to new message
return 1
if V(m’,msc,rsc) € L:m' #m; v Sigcommverify (C msc, rsc) = 0
// Commitment cannot be opened
return 1

return 0

3.5 Accumulator

An

accumulator is an efficient representation of a set [15]. The type of accumulator used in Shielded

CSV supports insertion of elements, verification of the insertion operation, and non-membership proofs.
There are two types of parties involved in operating an accumulator: the accumulator manager and the
accumulator verifier.

The accumulator manager has access to the following algorithms:

o AccMpew () — state outputs the initial state state of the accumulator.
o AccMys,jue(state) — v outputs the accumulator value v given accumulator state state.

o AccMproveNonMembershipAndinsert (State,) — (state’, m) outputs a new state state’ after inserting the
element x € Xa. into the accumulator with state state and outputs a proof 7 that attests to the
correctness of the insertion and to the non-membership of z in the accumulator with state state.

The accumulator verifier has access to the following algorithms:

e AccVnew() — v outputs the value v of an empty accumulator.

o AccVverifyNonMembershipAndinsert (U, V', ©, ™) — b outputs b = 1 if the proof 7 proves that € Xacc is not
a member of the set represented by accumulator value v and v’ is the value of the accumulator after
inserting x into the set represented by v. Otherwise, it outputs b = 0.

The set Xacc is specified by parameters pp.
The accumulator state may be dependent on the order of insertion. We denote the set of states after

inserting all elements in some set X C Xacc by Sxy.

13

The accumulator scheme must satisfy the following completeness property: For all X C Xac, all
states state € Sy and all elements © ¢ X, we have

v 4— AccMy,),e (state)
(State/a ﬂ—) % AccM ProveNonMembershipAndInsert(State7 l‘)
v" < AccMy, e (state’)

’
1= ACCVVerinyonMembershipAndInsert('U7 v,T, 7T)-

Security An accumulator scheme is A-SEC (“accumulator secure”) if no PPT adversary (except with
probability negligible in \) given pp outputs tuples v, «, 7 such that

ACCVVerinyonMembershipAndInsert('Uia Vi1, Lg, 7Ti) =1fori= 1|£L‘|

3.6 ToS-Accumulator

A ToS-accumulator represents a tuple of sets. The ToS-accumulator allows appending a set to the
tuple and membership proofs for the union of sets in the tuple. Moreover, the ToS-accumulator allows
proving that the tuple represented by one ToS-accumulator is a prefix of the tuple represented by another
ToS-accumulator or that the represented tuples have distinct elements.

Similar to regular accumulators, there are two types of parties involved in a ToS-accumulator: the
manager and the verifier.

The ToS-accumulator manager has access to the following algorithms:

e ToSAccMpew() — state outputs the initial state state of the accumulator.
e ToSAccMyae(state) — v outputs the accumulator value v given accumulator state state.

e ToSAccMappendset (state, X') — state’ outputs a new state state’ after appending the set X C Xrosacc
to the tuple of sets represented by the accumulator with state state.

e ToSAcCcMRemoveset (State) — state’ outputs a new state state’ after removing the last appended set
from the accumulator with state state.

o ToSAccMproveUnionMembership (State, &) — m outputs proof 7 that € Xrosace is @ member of the union
of sets represented by the accumulator with state state.

o ToSAccMpovelsprefix (State, state’) — 7 outputs a proof 7 that the tuple represented by the accumula-
tor with state state is a prefix of the tuple represented by accumulator with state state’.

e ToSAccMp oveDistinctElement (State, state’) — 7 outputs a proof 7 that DistinctElement(X, X’) for tuple
X represented by the accumulator with state state and tuple X’ represented by the accumulator
with state state’.

The ToS-accumulator verifier has access to the following algoritms:
e ToSAccVnew() — v outputs the value v of an empty accumulator.

o ToSACCV verifyUnionMembership (U, &, T) — b outputs b = 1 if the proof 7 proves that & € Xrosacc is a
member of the union of sets represented by accumulator with value v. Otherwise, it outputs b = 0.

o ToSAcCVverifyisprefix (v, v/, m) — b outputs b = 1 if the proof = proves that the tuple represented by
accumulator value v is a prefix of the tuple represented by v’. Otherwise, it outputs b = 0.

o ToSAccVverifyDistinctElement (v, v',) — b outputs b = 1 if proof 7 proves that DistinctElement(X, X') =
1 for tuple X represented by accumulator value v and tuple X’ represented by accumulator value
v’. Otherwise, it outputs b = 0.

The set Xtosace is specified by parameters pp.
To simplify the definition of ToS-accumulator completeness and security we define the algorithm
ToSAccMappendsetmulti (X)) for tuple X whose elements are in Arosacc:

14

ToSAccMappendsetMulti (X))

1: state < ToSAccMnew()

2: fori=1.|X|

3: state +— ToSAccMappendset (state, ;)
4:

return state

The ToS-accumulator scheme must satisfy the following completeness properties for all n € N; all
tuples X € P(Xrosace)™

1. For all z € |J X}, we have

state <— ToSAccMappendsetMulti (X))
7 <% ToSAccM ProveUnionMembership(Statea ‘r)
v <~ ToSAccMy, e (state)

1= TOSACCVVerifyUnionMembership(Ua z, TF)'

2. For all n’ € N and all tuples X’ € P(/YTOSACC)”l , let

state <— ToSAccMappendsetMulti (X), v <= ToSAccMya1ue (state)
state’ <~ ToSAccMappendsetMulti (X”), v <= ToSAccMy e (state’).

Then, if IsPrefix(X, X’) = 1, we have

7 <8 ToSACCMpovelsprefix (State, state’)

1 = ToSACCV verifyisprefix (v, V',)
and if DistinctElement(X, X’) = 1, we have

TS TOSACCM ProveDistinctElement (Statev State/)

’
1= TOSACCVVerifyDistinctEIement('Ua v 771')-

Security To characterize the security of ToS-accumulators, we define the game ToSA-SEC. In this
game, the adversary outputs a tuple of sets for ToSAccMappendset state transitions. They win if they
either provide a set membership proof for an element not in the union of tuple elements, a IsPrefix proof
for a tuple that is not a prefix, or a DistinctElement proof for tuples that do not have distinct elements.
More specifically, a ToS-accumulator is ToSA-SEC (“ToS-accumulator secure”)if no PPT adversary A
wins the following game (except with probability negligible in A):

ToSA-SEC*(\)
1: pp «s Setup(1?)
(X, n,z, X',) <3 A(pp)
state <= ToSAccMappendsetmulti (X))
fori=1.|X|—-n
5 : state < ToSAccMRemoveset (State)
6: X<+ (X1,...,4)
7: v 4+ ToSAccMy,iue (state)

n
g: ifx g_ﬁ Ui*l X A TOSACCVVerifyUnionMembership(Ua z, 7T) =1

=W N

9: return 1
10: v + ToSAccMvaie (TOSACCMAppendsetMum(X/))
11 if IsPrefix(X, X') = 0 A ToSAccVverifyisprefix (U, v,) = 1

12: return 1
13: if DistinctEIement(X, X/) =0A TOSACCVVerifyDistinctEIement (U, Ul7 7T) =1
14 : return 1

15: return 0

15

3.7 Proof-Carrying Data
We define a proof-carrying data (PCD) scheme for a class of compliance predicates @ as follows (similar
to 16]).

A PCD transcript T is a directed acyclic graph where each vertex u is labeled by local data Wl(:C) and
each edge e is labeled by a message 2(¢) # 1. The output of a transcript out(T) is the message 2(¢) where

e = (u,v) is the lexicographically-first edge such that v is a sink.
A vertex u is ¢-compliant for ¢ € ® if for all outgoing edges e = (u, v):

e (base case) if u has no incoming edges, ¢(z(¢), w® L,)=1

loc

e (recursive case) if u has incoming edges ey, ..., em, ¢(2(%, Wl(:c), Zlen) o glem)y =1,

We say that PCD transcript T is ¢-compliant if all of its vertices are ¢-compliant.
A PCD scheme consists of the following algorithms:
o PCDkeygen(¢) — (prk, vk) outputs a proving key prk and a verification key vk.

e PCDpyove(prk, z, Wioc, [2i, 3|7 1) — 7 outputs a proof m that ¢(z,Wiec, 71, - - -, 2m) = 1 and that all
proofs 7; for messages z; are valid.

e PCDverify (Vk, z,m) — b outputs 1 if the proof 7 is correct for verification key vk and message z, and
outputs 0 otherwise.

The PCD scheme must satisfy the following completeness property: For every adversary A, we have

pp < Setup(17)
(¢, 2, Wioc, [2i, mility) 5 A(pp)
(prk, vk) <—$ PCDkeyGen(¢)
7 % PCDpyove (prk, 2, Wioc, [2i, mi]itq)

—_

((b edA ¢(Z7W|OC7ZI7 e 7Zm) =
A (VZ =1lm:z,=1V PCDVerify(Vk, Zi,’/Ti) = 1)) B PCDVerify(Vk,Z,’]T) =1.

For a PCD scheme to be considered efficient, both the prover and verifier must run in polynomial time.
Additionally, the verification time, proving time, and proof size must be independent of the transcript’s
length.

Security A PCD scheme has knowledge soundness if for every expected polynomial time adversary A
there exists an expected polynomial time extractor Exty4, such that for compliance predicate ¢ € ®:

pp <% Setup(1*)
PCDverify (Vk, 2, 7) = 1 (pr, k) 5 PCDKeycen(6) | 0y
(out(T') # z VT not ¢-compliant) (z,m) < A(prk) | — g
T s Ext 4 (prk)

Pr

A PCD scheme has statistical zero knowledge if there exists a probabilistic polynomial-time simulator
Sim such that for every honest prover P the distributions

pp < Setup(1*)
(0, 2, Wioe, [2i, Tili21) 8 P(pp)
Pr (pp,¢,2,m) (prk, vk) <=5 PCDkeyGen ()

T <8 PCDProve(prka 25 Wioc, [Zi; 7-(1-]7.” 1)

1=

and
(pp,T) < Sim(1*)
Pr (ppad))'z’ﬂ-) (¢7Z;W|OCa[zi7ﬂ-i]£1) S P(pp)
T 3% Sim(7, ¢, 2)]

are statistically close.

16

4 Protocol

In this section, we define the protocol using the primitives introduced in Section [3] While most primitives
remain abstract, we make certain primitives concrete to specify the exact number of bytes that need
to be written to the blockchain for each payment. The data written to the blockchain, referred to as
aggregate nullifiers, consists of a commitment to the fee receiver’s account, a half-aggregate signature,
and corresponding public keys.

For the commitment scheme, we employ Pedersen commitments which consist of a single group
element. The details of the aggregation scheme used in the protocol will be described in the following
section.

4.1 Non-interactive Schnorr Signature Half-Aggregation with Commitments

We construct our scheme, Non-interactive Schnorr Signature Half-Aggregation with Commitments
(NISSHACQ), by extending non-interactive Schnorr signature half-aggregation [13] with a simple method
for adding commitments. Non-interactive Schnorr signature half-aggregation allows aggregating ordinary
Schnorr signatures into a single signature that is about half as large as the individual signatures.

NISSHAC modifies the Sigg,, algorithm of the original half-aggregation scheme and introducing two
new algorithms: SigcommRetrieve a0d Sigcommveriy- 1 he technique for incorporating commitments, known
as “sign-to-contract” in Bitcoin folklore, bears resemblance to pay-to-contract commitments [17]. In
NISSHAC, a public key is an element of group a G (as in ordinary Schnorr signatures) and an aggregate
of n signatures is a tuple consisting of a scalar and n group elements.

Let G be the generator of group G of order p, where p is A-bit prime, and let Hs;, and Hsjgcomm be
hash functions. We modify the Sigg;,,, algorithm of Schnorr signatures to enable commitments to message
msc, with the changed line highlighted:

SigSign (Sk7 m, mSC)
1: k+«sF, R + kG
R = R/ aF HSigComm (R/7 mSC)G

2
3: x< sk, P« zG

4: s=k+Hsig(R, P,m)
5: o< (R,s)

6

return (o, R')

Furthermore, we add algorithms Sigcommgetrieve @14 Si€commverify

SigCommRetrieve<0Aggf’ l) SigCommVerify(C7 msc, rSC)
1: (Rl,-~~7Rn,SAggr)<—0Aggr 1: R/(—rsc
2: return R; 2 if C=R + HSigComm(R/7 msc)G
3: return 1
4: return 0

Claim 1. NISSHAC is CK-AEUF-CC-CMA secure in the random oracle model under the discrete logarithm
assumption.

Claim 2. Commitments R; in a NISSHAC signature (Ry,...,R,,s), are (statistically) hiding in the
random oracle model.

4.2 Protocol Description

We provide pseudocode of the protocol in the form of a program written in the Rust Programming
Language, available at https://github.com/ShieldedCSV/ShieldedCSV/tree/paper. The remainder
of this section is a high-level description of the key concepts and data structures used in the protocol.

Account ID An account ID is an element of group G that is generated by running Sigge,cen at the
time of account creation.

17

https://github.com/ShieldedCSV/ShieldedCSV/tree/paper

Address An address is a hiding commitment to an account ID.

Accumulators There are two types of accumulators in Shielded CSV:
e spent accumulator: an accumulator for every account, managed by the owner of the account.

o nullifier accumulator: a ToS-accumulator managed by each user of the protocol.

Coin In Shielded CSV, a payment involves the sender providing the receiver with a Coin and a coin
proof. A Coin contains contextual information dependent on both the transaction that created it and
the current blockchain state. To accommodate situations where Shielded CSV needs only essential coin
information without full context, we define a CoinEssence object. This object contains:

e The address of the owner

e The amount, which is the number of units of the asset represented by this Coin

e The index of the Coin in the transaction that created it
A complete Coin consists of:

e The CoinEssence

e The hash of the transaction that created the Coin

e The location of the nullifier in the blockchain that created this Coin

e The value of a nullifier accumulator containing the nullifier that created this Coin
There are two ways to identify a Coin in Shielded CSV:

1. The CoinID is the hash of the transaction that created the coin and the index of the Coin in the
transaction.

2. The CoinIDOnChain is the location of the nullifier in the blockchain that created this Coin and the
index of the Coin in the transaction.

The coin proof is a PCD proof that, along with the Coin, is passed to PCDyerif, before the receiver
accepts the payment.

AcctState An AcctState represents the state of an account and, similarly to Coin, is dependent on
blockchain state. Thus, we define AcctStateEssence that contains only the essential information of an
account state:

e The account ID
e The account balance
e The Schnorr public key that will nullify the account state
A complete AcctState consists of:
e The AcctStateEssence
e The value of a spent accumulator committing to the coins already spent by the account
e The value of a nullifier accumulator containing the nullifier that created this AcctState

The spent accumulator uses the CoinIDOnChain to identify coins. E|

IThe purpose of the on-chain coin ID is to reduce the state required to maintain the spent accumulator. In contrast to
CoinIDs, a lexicographically sorted list of CoinIDOnChain is ordered by the time of creation. Thus, if the spent accumulator
is implemented as a sorted Merkle tree, the order of CoinIDOnChain elements allows the manager of the accumulator to
forget old subtrees without losing the ability to run AccMpoveNonMembershipAndinsert- Forgetting old subtrees of the spent
accumulator reduces the data that a wallet needs to store and the data that an adversary can obtain when a wallet is
compromised.

18

Nullifiers and AggregateNullifier Nullifiers "nullify” an account state and commit to a Shielded
CSV transaction that creates a new account state. They are published on the blockchain, allowing the
protocol to ensure that an account state is nullified only once. In Shielded CSV, nullifiers appear only in
the form of AggregateNullifiers.

AggregateNullifier is a data structure that contains a list of Schnorr public keys, a NISSHAC
signature, and the address of the entity that added the aggregate nullifier to the blockchain and collects
the fee in Shielded CSV. The aggregate nullifier is valid if the signature verifies for the public keys and
the static message “Shielded CSV: state update”. Conceptually, each public key nullifies an account state
and the corresponding commitment in the NISSHAC signature commits to a Shielded CSV transaction
that creates a new account state.

process_block The Node: :process_block algorithm is run by every user of Shielded CSV when
receiving a new block. It scans the block for aggregate nullifiers and verifies their signatures. Shielded
CSV nodes maintain a key-value store that keeps track of all nullifiers encountered in the blockchain
so far. For each public key in the aggregate nullifier, process_block checks if the public key already
exists in the key-value store. If it does, the public key is ignored. Otherwise, the following information is
inserted into the key-value store: the public key, the commitment to the transaction retrieved from the
NISSHAC signature, the location of the nullifier in the blockchain, and the fee receiver’s address

Ignoring duplicate public keys is crucial because if a duplicate public key were to replace an existing
key-value entry in the store, an account state could be nullified multiple times while committing to
different transactions. This would be analogous to a double-spend in traditional blockchain designs.

In addition to the key-value store of nullifiers, the user also manages a nullifier accumulator (a
ToS-accumulator). After scanning the block, the user appends the set of new nullifiers to the accumulator.
As a result, the nullifier accumulator value commits to the sequence of nullifiers added for every block to
the accumulator.

Furthermore, the user keeps a record of all historical values of the nullifier accumulator. After updating
the nullifier accumulator, its value is appended to the list of historic nullifier accumulator values. This
list plays an essential role in the Node: :accept_payment algorithm.

If a blockchain reorganization occurs that disconnects n blocks, the user executes ToSAccMRgemoveSet
n times on their nullifier accumulator state, trims the list of historic nullifier accumulator values and
removes the affected nullifiers from the key-value store. After disconnecting the stale blocks, the user
runs process_block on each of the newly received blocks.

accept_payment The Node: :accept_payment algorithm takes a Coin and a coin proof as arguments. It
verifies the coin with PCDyerir, and the provided coin proof. However, this only proves that the coin is valid
with respect to the nullifier accumulator value contained within the Coin, and not necessarily that it is valid
with respect to the nullifiers the user obtained from the blockchain through the Node: :process_block
algorithm. This is where the list of historic nullifier accumulator values comes into play: accept_payment
checks that the nullifier accumulator value of the coin is contained in the list, ensuring that the coin is
valid with respect to some set of nullifiers the user computed from the blockchain in the past.

Transaction A Transaction consists of

e The conditional nullifier accumulator value

e The AcctStateEssence to nullify

The list of CoinIDs to spend
e The AcctStateEssence to create
e The list of CoinEssences to create

Note that the transaction outputs are essences because the corresponding AcctState and Coins can only
be created after the transaction has been included in the blockchain. Using essences for the transaction
inputs, rather than full AcctState and Coin objects, allows the transaction to be assembled (and signed)
before the existence of these inputs is confirmed in the blockchain. The conditional nullifier accumulator
value depends on the state of the blockchain: it is typically set to the value of the nullifier accumulator
that contains the nullifiers that create all the inputs of the transaction. As we will explore in more detail
below when examining the compliance_predicate, the purpose of the conditional nullifier accumulator
is to protect the user in case a blockchain reorganization erases a transaction input.

19

Payment To initiate a payment, we assume the sender has an account state that hasn’t been nullified
and either enough balance to pay the receiver or coins available that pass the Node: :accept_payment
algorithm. The sender obtains the receiver’s address and creates a new CoinEssence with the specified
amount. To prepare for the new account state, the sender generates a fresh Schnorr signature keypair
using Sigkeygen and inserts the coins to be spent into the spent accumulator managed for this account.
The sender then creates a new AcctStateEssence containing the account ID, updated balance, the newly
generated public key as the nullifier public key, and the value of the updated spent accumulator.

At this point, the sender has all components to assemble a transaction. So, the sender uses the
signing key corresponding to the nullifier public key of the current account state to run NISSHAC’s Sigg,,
algorithm with the message “Shielded CSV: state update” while committing to the transaction. The
public key and signature are then aggregated into a AggregateNullifier and posted to the blockchain
(which is typically done by a publisher) to nullify the account state and finalize the transaction. Once the
nullifier is included in the blockchain, all the data is available to construct AcctState and Coins objects
from the AcctStateEssence and CoinEssences created in the transaction.

The final step is to create a coin proof. The sender creates a PCD transcript that takes the previous
AcctState and Coins as inputs, outputs the new AcctState and Coins, and provides the correct local
inputs wiec for the transcript to comply with the predicate. Finally, the sender runs PCDpove using the
transcript to generate a coin proof for the receiver.

compliance_predicate The compliance _predicate used in the PCD scheme plays a crucial role as it
encodes many of the protocol’s key rules.

We begin by discussing a simplified variant of the compliance predicate that doesn’t handle fee
payments. This variant is less complex than the one actually used in Shielded CSV. It consists of two
predicates that are chosen based on the number of incoming edges: the issuance predicate when there are
no incoming edges, and the payment predicate otherwise. We do not specify the issuance predicate as it
heavily depends on the actual asset being issued. Edges are labeled either by an AcctState or by a Coin.
In addition to the incoming edges, Shielded CSV vertices also receive local witnesses w_loc as input. These
include, in particular, the current blockchain’s nullifier accumulator value w_loc.nullifier_accum and
the commitment to the transaction w_loc.nullifier_tx_comm as it appears in the AggregateNullifier.

The simplified payment predicate verifies certain conditions for a vertex in the PCD transcript. These
conditions include:

e Either there is a single incoming edge labeled by an AcctState and the rest of the edges are labeled
by a Coin, or there is no incoming AcctState edge and there is at least one incoming Coin edge.
The latter scenario occurs when creating a new account.

e One of its outgoing edges is labeled by an AcctState. Any other outgoing edges, if present, must
carry a Coin label.

e The sum of the account balance and coin amounts of the incoming edges equals the sum of the
balance and amounts of the outgoing edges.

e None of the incoming coins were spent previously by the account, and these coins are correctly
inserted into the new account state’s spent accumulator. This is verified using the algorithm

ACCVVerinyonMembershipAndInsert .

e The commitment w_loc.nullifier tx_comm commits to the transaction as verified via Sigcommverify -
e Exactly one of the following two conditions must be met:

— The tuple represented by the conditional nullifier accumulator value contains an element distinct
from the element at the same position in the tuple represented by w_loc.nullifier_accum.
This is verified using the ToSAccVverifyDistinctElement algorithm. In this case, the committed
transaction is largely ignored, and the predicate allows only one outgoing edge: an AcctState
with the same balance and spent accumulator as the incoming AcctState.

— All tuples represent