
On Composing Generic Voting Schemes for
Improved Privacy

Oskar Goldhahn1

NTNU: Norwegian University of Science and Technology, Trondheim Norway
oskar.goldhahn@ntnu.no

Abstract. Hybrid encryption provides a way for schemes to distribute
trust among many computational assumptions, for instance by compos-
ing existing schemes. This is increasingly relevant as quantum computing
advances because it lets us get the best of both worlds from the privacy of
the post quantum schemes and the more battle tested classical schemes.
We show how to compose members of a very general class of voting
schemes and prove that this preserves correctness and integrity and im-
proves privacy compared to its constituent parts. We also show an ex-
ample composition using a lattice based decryption mixnet where the
improvement in privacy can indirectly lead to an improvement in in-
tegrity.

1 Introduction

Due to the looming threat of quantum computing on cryptography there is on-
going work to replace cryptographic protocols and primitives with ones that are
resistant against attacks by quantum computers. For many applications this is
urgent because data needs to stay private long into the future and attackers may
store encrypted data to extract information later once they have the capability.
E-voting is one such application. Votes should ideally be kept private far into the
future, though integrity only needs to hold until the election result is accepted.

Post-quantum voting is not without challenges. Despite the widespread study
of post-quantum cryptography some promising encryption schemes have turned
out to be insecure in the past [7, 2], even against classical attacks. Switching
to quantum-safe cryptography is therefore not without risks. Making efficient,
flexible and secure post-quantum schemes is also challenging. Practical post-
quantum schemes have large proofs [1], require votes to have low entropy [5, 4]
or sacrifice some security [6].

One way to guard against the risk associated with post-quantum cryptogra-
phy is through the use of so-called hybrid cryptography, where we can design
systems so that they remain secure as long as one of the (several) underlying
computational problems remain hard. We propose using hybrid voting schemes
to harden post-quantum voting schemes against attacks on their post-quantum
assumptions, and also make some post-quantum schemes more practical by im-
proving their security in a world where cryptographically relevant quantum com-
puters do not exist.

https://orcid.org/0009-0002-6873-2366


1.1 Related Work and Alternative Approaches to Hybridization

To our knowledge the idea of hybridizing voting schemes to retain privacy when
primitives are broken is absent from the literature, though there have been other
attempts at solving the problem.

Many attempts aim for everlasting privacy where rather than distributing
trust over many assumptions one seeks to avoid the need for any computa-
tional assumptions whatsoever for privacy after the tally. There are two main
problems with everlasting privacy in practice. Firstly, most schemes need strong
non-computational assumptions, such as trustees deleting their data after the
election, or voters having access to an anonymous channel to cast their bal-
lots [8]. Secondly, schemes need to be designed from the bottom up with ever-
lasting privacy in mind, which limits the available set of schemes.

Public key cryptography has standard methods for building hybrid encryp-
tion from multiple public key cryptosystems [3]. One such method is to use secret
sharing to split the message, encrypt the components in parallel and recombine
the decryptions to decrypt. This does not work as easily for voting schemes be-
cause voting schemes need messages to be valid votes, and filter out those that
are not. Checking validity of votes that are distributed between multiple differ-
ent ciphertexts using different encryption schemes requires heavy weight zero
knowledge proofs. This strategy can work for voting schemes where tally results
of the different buckets of shared votes can be recombined, such as with addi-
tively homomorphic voting schemes. It seems very difficult to make this work
with any shuffle based voting scheme.

For voting schemes that only use swappable cryptographic primitives that do
not tightly integrate with each other it is also possible to hybridize the primitives
instead of hybridizing the voting scheme itself. Schemes that use zero knowledge
proofs are incompatible with this approach when the zero knowledge proofs are
specialized and relate to one of the other primitives, such as encryption. One
might be able to get away with only hybridizing some of the primitives, but this
is voting scheme specific and requires additional analysis for each scheme. In
practice it also requires the primitives in use to have sufficiently efficient hybrid
alternatives, which poses a problem for generic zero knowledge proofs.

The approach of hybridizing primitives is compatible with some non-verifiable
decryption mixnets [6], which only use encryption and signatures. Despite this
we will see in Section 7 that our solution can provide better integrity than a
decryption mixnet with hybrid encryption in practice.

1.2 Our Contributions

We define a simple composition construction to build hybrid voting schemes
using layered encryption and prove that the correctness follows from the cor-
rectness of its components, the integrity follows from the integrity of both its
components, which only matters at the time of the election, and the post-tally
privacy follows from the privacy of either of its components. The idea is to have
an inner and an outer voting scheme (similar to onion routing schemes). The



voter casts their vote using the inner scheme to get a ballot, which is then cast
again using the outer scheme to get a ‘doubly encrypted’ ballot. In the tallying
process, the outer scheme is decrypted first, and then the inner is decrypted.
The votes stay private even if the malicious trustees remember the keys they
used during the tally, and we do not need an anonymous channel.

To make this composition work for a wide range of inner and outer schemes
we also propose a very flexible definition for voting schemes, modelling tallying
as a message passing process. Since the construction itself does not rely on
any assumptions beyond those on the inner and outer scheme, one can simply
swap out a voting scheme for another if new attacks arise. It is also possible to
use a scheme with everlasting privacy as a component, making the composition
inherit everlasting privacy, but also improve on privacy if the non-computational
assumptions are broken. One can also compose more than two schemes by nesting
the composition, though for the sake of conservative post-quantum making a
hybrid of two schemes is usually seen as sufficient.

Our example construction uses some classically secure inner scheme (typi-
cally a dlog-based scheme using verifiable shuffles and distributed decryption)
combined with an outer scheme based on a (quantum-safe) decryption mixnet.
This example illustrates how the composition can give us efficient voting schemes
with post-tally privacy at least as good as either of its constituent parts. Also,
the example improves on the security of the decryption mixnet by making it
unnecessary for voters to completely reveal their vote to the public to prove
tampering happened in the decryption mixnet when all trustees are malicious.

1.3 Challenges

At first glance our definitions and approach may seem needlessly complex. We
have considered multiple simpler alternatives that did not work out or were
deemed less desirable for various reasons, and we have favored flexibility over
simplicity in the approach we chose.

Much of the complexity of our approach, especially in the definitions, comes
from handling overlap between the two tallies in the composition. It is possible to
avoid this complexity by determining a separation point, either before or during
the tally, after which continuing with the outer tally is prohibited and starting
with the inner tally is permitted. One may for example designate two hours for
the tally and put the separation point in the middle.

One problem with this is that one needs to choose between a conservative
separation point where a lot of the tally is spent waiting and a risky separation
point where tallies can fail from being too slow, possibly due to an attacker.

Alternatively, agreeing on a separation point during the tally requires adding
signatures with additional assumptions, interacts badly with threshold tallying
and falls victim to the Two Generals’ Problem without additional assumptions.

A separation point also loses some efficiency and flexibility because some
trustees that could otherwise continue doing work will have to wait for the
separation point.



2 Networks

We will need to create a tally procedure that is a composition of two distinct
tally procedures. There are two main obstacles. The first is that we want to
support very different structures on the tally procedures with one compositional
design. The second is that the execution of the two tally procedures may end up
being interleaved.

The second obstacle is best illustrated by threshold schemes where we can
obtain a valid result before all trustees are done with their part of the tally. This
means that some or all of the trustees may proceed to the second tally before
everyone has finished the first tally. It therefore becomes difficult to separate the
two tallies in a composition without sacrificing the threshold functionality.

As noted, voting schemes are quite diverse. To make composition feasible
without restricting to a small subset of schemes we provide a flexible definition
that exposes the details of the tallying process by modelling it as message passing
between multiple trustees orchestrated by a possibly malicious network. This
should be sufficient to model most voting schemes that collect all ballots non-
anonymously before tallying.

Since we wish to capture precisely which assumptions are needed for which
properties we make minimal cryptographic assumptions on the network. There
is no implicit encryption, and a malicious network can insert, delete, reorder or
misdirect messages at will. If encryption or identification is needed for security,
the voting scheme has to handle this by itself. The network does get to know the
id of the sender, and the id of the intended receiver, which are either a trustee
id or a special ‘outside’ id indicating messages intended for public consumption
that will be used for audits and computing the result of the tally.

Messages can also be sent from the ‘outside’ id, which is used to give the
list of ballots to be tallied to the trustees. This is needed because some schemes,
such as the decryption mixnet in Section 7 [6], do not guarantee that there
is a unique valid result, tally uniqueness, and there is a potential attack in
the composition of schemes without tally uniqueness where the adversary can
make trustees disagree on the ballots they are tallying. It should be noted that
an adversary with full control over the ballots tallied can easily break privacy,
which is why the privacy definition requires messages sent from the ‘outside’ id
to be a superset of the submitted honest ballots. This is sufficiently weak for our
composition results to hold, even for schemes without tally uniqueness.

Termination is defined implicitly by having the network return a list of mes-
sages rather than the next message to be processed. In the honest case this is
the list of all messages sent to the special ‘outside’ recipient that is a standin for
the outside world and any auditors.

Definition 1. A Network is a set of three procedures modifying some state, as
follows:

– An initialization procedure I taking some public data and setting up the state
of the network.



– A send procedure S taking a sender id and a list of messages with recipient
ids.

– A processing procedure P producing a message with one trustee id each for
sender and receiver or producing a list of messages going outside.

Since our tallying process is orchestrated by a network we need to define when
networks are behaving honestly to get a correctness definition; when everyone is
honest everything goes as expected.

The intuition says that an honest network processes exactly those messages
that are sent, and with the correct recipient and sender. This works nicely for
schemes where all trustees need to participate in the tally and we know exactly
when we are done, but this is not the case for treshold schemes. In a treshold
scheme only some trustees are needed to complete the tally, and messages can
still be in flight even though we can compute a valid result. Because of this we
want to be lenient and allow semi-honest networks to withhold or drop some
messages. Instead we say that a network is finished if all the messages that
should have been processed have been, which will be the fully honest case.

Definition 2. A semi-honest network is one where for every sender, recipient
pair the set of messages that have been sent between them since initialization are
always a superset of the messages that have been processed between them since
intitialization.

A network is finished if the sets of sent and processed messages are equal for
every sender, recipient pair.

We can define a trivial semi-honest network HN that is always finished when
it processes a list. The internal state is a queue of messages with recipients, a set
of sent message trustee pairs, and a set of outgoing messages. The initialization
sets both sets to empty. The send procedure adds the input elements to the queue
and or the list of outgoing messages depending on whether the recipient is a
trustee or outside, given that it isn’t present in the queue or set of sent pairs
already, in which case we do nothing. The processing procedure outputs a message
and trustee id from the queue and adds it to the set of sent pairs, or outputs the
set of outgoing messages if the queue is empty.

3 Voting Schemes

When voting electronically, each voter encodes their intent into a vote, which can
for example be a candidate id or an ordered list of candidate ids, depending on
the electoral system used. With voting schemes we hide voter intent by making
voters cast their votes into a ballot in a way which should hide the underlying
vote. In our definition the ballot may also include some additional data, such as
zero knowledge proofs. The ballots can then, by using a tally, be transformed
into a result for the election.

Because the network returns a list of messages rather than a tally result we
combine tally validation with computation of the result. In practice any concrete
voting scheme is free to include the result in one or all of the messages and to



provide an additional algorithm to compute a tentative result that might be
invalid.

We use two algorithms, T I and T S to perform the tally. The first takes the
tally key and produces an initial state for the trustee, the second takes a message
and potentially produces new ones. In the honest setting messages received are
either the list of ballot-associated data pairs to be tallied, or an internal message
sent between trustees.

Definition 3. A Voting Scheme is a set of trustee ids, a set of votes, a set of
ballots, a set of results, a counting function mapping multisets of votes to results,
and 6 algorithms as follows:

– A key generation algorithm KG producing a casting key, a validation key,
and a list of tallying keys, one for each trustee.

– A casting algorithm C taking a casting key, a vote and associated data and
producing a ballot.

– A tally initialization algorithm T I taking a tallying key and producing a new
trustee state.

– A tally step algorithm T S taking a message, the id of the sender, and a
tallier state and producing a new tallier state and a list of messages with
recipient ids.

– A tally validation algorithm V taking a validation key, a list of ballot-associated
data pairs and a list of messages and producing a result or ⊥

Adversaries interact with the tally as a dishonest network, which intercepts
every message going through the network and may produce messages that were
never sent by honest trustees.

The associated data is tied to a unique voter and used to prevent copy-
attacks; making sure that one can’t take an honestly generated ballot from one
voter and repurpose it for another. Doing so would allow an adversary to skew
the result in a way that depends on hidden votes. The details of the associated
data depends on the system responsible for voter eligibility, which is beyond the
scope of this paper, but since hashing is always a possibility we will assume it is
a 256-bit value.

Now that we have the networks, voting schemes and tally adversary in place
we can define how the tally itself proceeds. To simplify reasoning we use se-
quential computation and assume that trustees only do computation after they
receive a message. In practice they may want to send one message at a time as
they are computed rather than making all the progress that is possible without
further messages before sending them all at once. Of course, the computation
can be made asychronous without compromising security, for example by having
the trustees use a message queue internally and only handling a new message
once no more progress can be made without handling a new message.

As mentioned in Section 2, we want to allow adversaries to have some control
over which ballots each trustee tries to tally, so we send the ballots over the
network instead of giving them to the trustees right away.



The tally starts by initializing the state of the trustees, continues by sending
the ballots to be tallied to each trustee over the network and finally hands
messages to trustees one at a time until the network decides that we are done.

We end the tally once the network decides to send a list of outgoing messages.
Semihonest networks have to do this once they run out of messages. The list of
outgoing messages can then be used with VSV to try producing a result.

Definition 4. The Tally procedure takes a casting key ck, a validation key vk, a

list of tally keys,
−→
sk, a list of trustee ids indicating honest parties, α and a list

of ballot-associated data pairs. It uses a voting scheme, VS, and interacts with
a network, N . It goes through the following steps:

1. Initialize an empty list of processed messages with ‘outside’ as sender.
2. Initialize the network by giving it ck and vk, and use NS to send the list of

ballot-associated data pairs to each of the honest trustees.
3. Use VST I with the tally keys to initialize the state of each honest trustee.
4. Use NP . If the obtained value is a list return it and the list of processed

messages with ‘outside’ as sender. Otherwise the value is a message with
sender and recipient.

5. If the sender is ‘outside’, add the message and recipient to the list of processed
messages with ‘outside’ as sender.

6. If the recipient is an honest trustee, use VST S to give them the message,
modify the state and send the returned list of messages.

7. Go back to step 4.

As mentioned, to support threshold schemes in the composition we need
the tally to proceed even if some trustees do not participate. This means that
schemes that may give the wrong result when messages are dropped cannot
be used in a correct composition. To address this we require that when using
semi-honest networks the tally does not produce a wrong result in addition to
it producing the right result when the network is finished. If the network is
unfinished the output of the tally may not validate, which means there is no
result.

We also allow networks with procedures that may not terminate because this
simplifies reductions. It also means that the tally may not terminate because the
network fails to advance. For correctness we require that this is the only case
where the tally does not terminate.

Rather than reasoning about unconditional correctness, we allow a small
chance of failure to allow schemes that defend against copy attacks by removing
duplicates. Removing duplicates turns out to be the only way we can defend
against copy attacks on the internal ballot in the composition. Usually one would
defend against copy-attacks by using the associated data, but for composition to
have privacy even when the internal voting scheme does not there cannot be any
information in the internal ballots that could identify the voters. The internal
ballots use random associated data instead, and the tally de-duplicates colliding
internal ballot-associated data pairs.



Definition 5. Given a list of votes −→v , a voting scheme, VS, with counting

function f is (−→v ,
−→
ad)-correct if for any semi-honest network N ;

1. With overwhelming probability, when we generate keys with KGVS , cast all
the votes in −→v with the resulting casting key and CVS and the associated data

from
−→
ad. When we complete a fully honest tally with those ballots we get a

list of messages, and using V on those messages either produces ⊥ or f(−→v ).
Additionally, if N was finished V does not return ⊥.

2. A fully honest tally with any inputs either terminates or gets stuck in one of
the N procedures with overwhelming probability.

A voting scheme is m-correct if it is correct for all lists of at most m vote
associated data pairs. It is simply correct if it is correct for all lists.

4 Composition

If we have one arbitrary scheme, VS i, and another, VSo whose counting function
is sorting and we can encode ballot associated data pairs from VS i into votes of
VS1 we can compose the two schemes by casting votes in a nested way using the
casting algorithm of both schemes and tallying by removing one layer after the
other, yielding a new scheme VS whose counting function is that of VS i. One
can think of VS i as the inner or final scheme and VSo as the outer or initial
scheme, depending on whether one is looking at the structure of the ballots or
the tallying procedure.

We separate messages for the two schemes by tagging them. The trustee-sent
messages for VS i and VSo are tagged with 1 and 2 respectively. We also have
additional messages tagged 1.5, which are copies of the outgoing messages of
VSo instead sent to the other trustees to make it possible for them to compute
the result of the initial scheme. The tags are only important for correctness and
are not encrypted.

Intuitively having two layers of encryption on the ballots rather than one
should provide some additional security, and this can be done iteratively to
further increase it.

The restriction that VSo should compute sorting means that in practice this
currently has to be a mixnet. For the post-quantum case this means that one
might want VSo to be the classical one, allowing more flexibility for the post-
quantum voting scheme.

Definition 6. The composition of two voting schemes VSo and VS i with the
same trustee ids where VSo’s counting function is sorting and its consistency
check is independent of the ordering of the votes, where VS i’s tally step, valida-
tion and consistency check are independent from the ordering of the ballots and
where the set of ballot associated data pairs of VS i is a subset of the votes of VSo

is a voting scheme with the same counting function as VS i defined as follows;

– The key generation runs VSo
KG and VS i

KG seqentially and returns the keys
as pairs. We also add both validation keys to all the trustee keys.



– The casting algorithm runs VS i
C on the vote with the associated data being

sampled uniformly at random, and casts the resulting pair as a VSo vote with
VSo

C using the real associated data, yielding the final ballot.

– The tally initialization algorithm runs the tally initialization for VSo and
VS i. The initialized state is the pair of states returned by the two tally ini-
tialization algorithms, the validation key for VSo, an empty 1.5 message list
used for VSo messages to ‘outside’ and a 2-initialized state tag indicating
whether we are still waiting for a result for VSo or have properly started
tallying VS i.

– For the tally step algorithm any message received is first added to the message
queue. There are five cases;

• If we receive a message from ‘outside’, we use VSo
T S on it. We tag the

returned messages to other trustees with 1. Messages to ‘outside’ get a
1.5 tag and are also sent to all the other trustees. We use the new VSo

state to modify the state of the composition and add the messages tagged
with 1.5 to the 1.5 message list in the state. We return the new state and
the list of tagged messages.

• If we receive a message tagged 2 from a trustee we use VSo
T S on the

message with the tag removed and the VSo trustee state to produce the
new VSo state and a list of messages. For the messages we tag and add
additional messages as described in the previous case. We return the
modified trustee state and message list.

• If our state tag is 2 and we receive a message tagged 1.5 from a trustee
we add it to the 1.5 message list with the tag removed and try to use
VSo

V to validate this list of messages and obtain a result for VSo. If it
validates with a result we take the ballot associated data pairs in the result
as a message with sender ‘outside’ and feed it into VS i

T S together with
the VS i state to produce a new VS i state and list of messages, which we
tag with 1. The output state has the new VS i state and a 2 state tag.
The output messages are those we tagged with 2. If the result does not
validate we return the state with the modified 1.5 message list and an
empty message list.

• If we receive a message tagged 1 from a trustee we use VS i
T S on the

message with the tag removed and the VS i trustee state to produce the
new VS i state and a list of messages. We tag all the messages with 1
and return the modified trustee state and message list.

• In any other case we return the old trustee state and an empty message
list.

– The tally validation algorithm starts by using the tally validation of VSo on
the messages tagged 2. If this produces a result we use VS i

V on the resulting
list of ballots and the messages tagged VS i and return its output. If the tally
validation of VSo fails (returns ⊥) we return ⊥.

Theorem 1. If VSo is m-correct, VS i is m-correct, and they are composable,
then their composition, VS, is m-correct.



Proof. We permit ourselves to be somewhat imprecise and treat overwhelming
probability as certain to clarify the exposition. Adding more precise probability
bounds is simple. We also don’t construct any reductions explicitly.

Consider the tally for a given semi-honest network, N , in the correctness
game. From the correctness of VSo every trustee with state tag 1 must have
gotten a list of 1.5 messages yielding the correct result for the initial scheme.
It follows, using the correctness of VS i, that if the tally terminates then the
messages validate to the correct result, or ⊥.

Suppose N is finished when the tally is done. Then all messages tagged 2
and 1.5 must have been received, which from the correctness of VSo means
that every trustee must have been able to compute the correct list of ballots
associated data pairs for VS i. Due to the randomized associated data there
are no duplicates. Since N is finished all messages marked 1 must also have
reached their destination, which from the correctness of VS i means that the
tally produces a valid result.

As for termination; a non-terminating tally with a semi-honest network, N
either gets stuck in one of the N procedures, one of the VS procedures, or an
unbounded number of messages must have been sent. The correctness of VSo

and VS i eliminate the last two options, so if we get stuck this must be because
the network fails to proceed. ⊓⊔

5 Integrity

Integrity informally means that we don’t get the wrong result under adversarial
conditions. There are multiple ways to make this formal depending on what one
considers to be a ‘wrong’ result. The strictest version is that every ballot, even
the adversarially generated, have an underlying vote, and performing a tally
that validates gives the same result as just counting those votes directly. This
definition is too strict for us for two reasons. Firstly, this requires every ballot to
be valid, though this can be worked around by having an explicit blank vote that
doesn’t affect the tally. Secondly, it does not permit schemes where the result of a
valid tally is not uniquely determined by the ballots, such as decryption mixnets,
where ballots cast by a voter conspiring with a trustee can be substituted by
said trustee during the tally without detection. Instead we only require there to
be a sensible set of votes that could have produced the result after the fact and
that this set contains all the honest votes.

The above discussion indicates that we want to distinguish between adversari-
ally and honestly generated ballots somehow. We do this by making an adversary
submit ballots through a Ballot Box oracle, either as adversarially generated, or
as honestly generated from an adversarially chosen vote.

Definition 7. An integrity adversary is a stateful actor that can act as a net-
work and has an additional procedure FBB taking a public key and a list of
private keys, and producing a list of ballot associated data pairs. The adversary
has access to a stateful Ballot Box oracle with the following procedures;



– An initialization procedure taking a public key, storing it and initializing an
empty list.

– A cast procedure taking a vote and associated data and producing a ballot
using the public key, adding all of the associated data, vote and ballot to the
list and returning the ballot.

– A read procedure that produces the list.

The first and the last are hidden from the adversary.

A standard, though we frame it unconventionally, way to define integrity
without the need for tally uniqueness is by having some algorithm that can look
at the result, the honest votes, and the number of ballots and determine whether
all the honest votes were taken into account for the result and whether the total
number of votes taken into account is bounded by the number of ballots. Let’s
call this a ‘consistency check’ because it checks whether the result is consistent
with the honest votes. Since this is part of the game we can give the algorithm
additional information about the tally, such as secret keys and the ballots used
in the tally. For counting functions that just sort or count the votes a consistency
check can perform the tally on the honest votes and then use the subset relation
and cardinality for multisets to check that the honest votes are in the computed
result and that the number of votes is correct. For many voting schemes the
consistency check can work by decrypting the ballots and tallying the plaintext
votes, though this is too strong for schemes lacking tally uniqueness. Since we
want to support a wide variety of voting schemes we leave the consistency check
abstract. Because of this we need a different definition than is common in the
literature, which usually has a specific consistency check, either implicitly or
explicitly.

It should be noted that this definition may still give voters conspiring with
trustees one advantage over others. They might be able to look at the result or
other votes before deciding their own vote. This is a problem with any scheme,
but for schemes with tally uniqueness this generally only works if the conspiring
trustees are many enough to compute tallies. For schemes without tally unique-
ness the attack can happen during the real tally, but this can be mitigated ad
hoc by hiding the election result until it is uniquely determined. The lattice
based decryption mixnet by Boyen, Haines and Müller [1] does this. Mitigations
for schemes with tally uniqueness include hiding the keys from the trustees until
all the ballots have been cast. We do not try to capture this attack with our
definitions, and instead leave the concern for specific instantiations.

The goal of the adversary is to produce an inconsistent tally result, so using a
conservative consistency check that has some false negatives is fine. It only makes
the adversary more likely to win the game. The advantage is that a conservative
consistency check may be more efficiently computable, which could make it easier
to use integrity in reductions.

Definition 8. A consistency check for a voting scheme is a function taking a
casting key, a validation key, a list of private keys, a multiset of ballot associated
data pairs Ai = (b, ad)i, a multiset of votes with ballot associated data pairs



Hi = (v, b′, ad′)i, and a list of messages, −→m, producing a boolean such that; if
V(−→m) gives a valid result r, then the consistency check producing true implies the
existence of a multiset of votes that is a superset of those in H with cardinality
bounded by #H +#A, such that counting them produces r. Meaning that there
exists an assignment of votes of a subset of the adversarial ballots such that
counting them together with the honest votes produces the result.

After the preceding discussion the integrity game follows naturally; we allow
the adversary to generate ballots, perform the tally, and check consistency at
the end.

Definition 9. The α-integrity game for a set of honest trustees α, a voting
scheme VS and an integrity adversary, IA, is defined as follows;

– Initialize VS and collect the trustee keys for the dishonest parties in a list.
– Initialize the ballot box with the public key.
– Use IAFBB with the keys for the dishonest parties and the public key to let

the adversary fill the ballot box and provide a list of ballots with associated
data.

– Read the contents of the ballot box and use it to add information about the
underlying votes to the adversarially provided ballots for those that match.

– Use the keys to perform Tally with the ballot associated data pairs from the
adversary, α as the honest parties and IA as the network.

– Use VSV to validate the tally with the ballot associated data pairs from the
adversary. If it does not, the adversary loses.

– Use the consistency check to check whether the tally output is consistent with
the ballot associated data pairs provided by the adversary, the underlying
votes for the honestly generated ballots from the ballot box and the keys. If it
is not, the adversary wins. If the result is consistent, the adversary loses.

The advantage of an adversary is just its probability of winning the game.
Because the adversary can replace messages it is not guaranteed that the

trustees use the list of ballots we took from the Ballot Box. They may not
even use the same list of ballots. If some form of synchronization is desired to
make sure that the honest trustees are tallying the same list of ballots that
is the responsibility of the voting scheme. It is strictly speaking not necessary
for integrity. What is important, however, is that the auditors have some way
of gaining confidence that the ballots they are checking were submitted by au-
thorized voters in a compliant way and that honestly generated ballots were
not prevented from being submitted, but this is orthogonal to the concerns we
address.

5.1 Composition integrity

This is the point where it becomes important that the adversary has some control
over the ballots that are tallied. The trustees might transition from tallying VSo

to VS i at different times, so a lot of messages for VS i can be sent before another



trustee even knows which ballots to tally. This is fine in the fully honest setting
because we are guaranteed that every party computes the same result from VSo

meaning we can just use the first result when simulating the interactions with
VSo, but this need not be the case in the adversarial setting, even in settings
where we have integrity for VSo. Consider a 2-threshold scheme with 3 trustees
where adversarial votes can be swapped out during the tally. Then an adversarial
trustee can use two different tallies with the other two parties where they replace
different votes, yielding two different, but consistent, results.

Definition 10. We define a consistency check for the composition that performs
honest VSo single ballot tally to get the inner ballots for the honest ones and then
uses the consistency checks for both VSo and VS i. If the single ballot tallies fail
we return false.

Theorem 2. If VSo is 1-correct, and VSo and VS i have α-integrity, then the
composition if they are composable, VS, has α-integrity.

Proof. We again permit ourselves to be somewhat imprecise and treat over-
whelming probability as certain to clarify the exposition. Adding more precise
probability bounds is simple.

If an adversary, A wins the α-integrity game, then the consistency check
must have failed, but all the others must have passed. Since VSo is 1-correct the
internal ballots used in the consistency check are correct. The consistency check
for either VSo or VS i must have failed, which means that for the two adversaries
Ao and Ai against the α-integrity game of VSo and VS i respectively that use A
and simulate the interactions with the other voting scheme, one of the two must
win. Therefore we can bound the advantage of A by the sum of the advantages
of Ao and Ai. ⊓⊔

6 Privacy

We frame privacy as a distinguishing game between two sets of honestly gener-
ated ballots. As in integrity the adversary generates them by using a Ballot Box
oracle, though in this case the Ballot Box maintains two lists of ballots, only one
of which is revealed to the adversary.

Usually one would require the adversary to provide pairs of votes, one for
each side of the distinguishing game, but this is not sufficient for composition be-
cause the outer layer may produce distinct ballots for identical votes. To address
this we instead allow the adversary to provide pairs of randomized algorithms
producing the votes. At the end the game checks that for the indices of the
ballots used, the algorithms used to generate them are just a permutation of
the algorithms on the other side. It is easy to see that this is stronger than the
usual game since that is equivalent to only permitting deterministic algorithms,
but the other direction is not so easy. We do have both reductions if we restrict
the adversary to have to use all generated ballots, meaning only static attacks
against the voters. However, this is not so realistic and fails to capture some



attacks where the adversary is looking for some kind of collision in the ballots
and makes voters re-cast their votes until such a collision is found, or where
the adversary can learn information about ballots that are not being counted.
Morally, allowing randomized vote generation should not strengthen the adver-
sary since using randomly generated votes only reduces the information available
to the adversary. We believe that existing schemes can have their privacy proofs
modified to work in the randomized setting.

Definition 11. A privacy adversary is a stateful actor that can act as a network
and has two additional procedures, a guessing procedure, G, taking no input and
returning a bit, and a ballot box filling procedure, FBB, taking a public key and
a list of private keys and producing a list of ballots. The adversary has access to
a stateful Double Ballot Box oracle, with the following procedures;

– An initialization procedure taking a bit, b, and a public key, storing both and
initializing two empty lists.

– A cast procedure taking associated data and two randomized vote producing
algorithms. The cast procedure produces ballots from the randomized algo-
rithms by sampling a vote from the algorithms, using the public key and
adding the associated data, first algorithm and ballot to the first list and the
associated data, second algorithm and ballot to the second. It returns the
inserted ballot corresponding to b.

– A read procedure that produces the lists.

Only the second procedure is accessible to the adversary.

We use a somewhat weak privacy notion where we only require indistinguisha-
bility between pairs of tallies where the honest votes are permuted. There are
stronger notions that instead require indistinguishability between tallies yielding
the same result, but this cannot in general be used for voting schemes that do
not have tally uniqueness because adversarial trustees can replace adversarial
votes during the tally, changing the result. A more fine grained analysis may
be possible, but since deployed voting schemes are often mixnets which cannot
support more than indistinguishability of permuted votes anyways we leave this
as future work.

Definition 12. The α-privacy game for a set of honest trustees α, a voting
scheme VS and a privacy adversary, PA, is defined as follows;

– Initialize VS and collect the trustee keys for the dishonest parties in a list.
– Flip a coin to select b and initialize the double ballot box with b and the public

key.
– Use PAFBB with the keys for the dishonest parties and the public key to let

the adversary cast the honest votes.
– Read the contents of the double ballot box.
– Check that for the intersection of the ballot associated data pairs provided by

the adversary, and those in the b side of the ballot box, the list of algorithms
corresponding to the b − 1 side of the ballot box are just a permutation of
those in the b side. If not, flip a coin to decide whether the adversary wins.



– Use the keys to perform Tally with the list of ballots provided by the adversary,
with α as the honest parties and PA as the network.

– The tally reveals the processed messages with ‘outside’ as sender. We check
that all these messages are lists of ballots containing the intersection of the
ballots in the double ballot box list corresponding to b and those originally
provided by the adversary, and that none of them contain any other ballots
from the ballot box list. If not, flip a coin to decide whether the adversary
wins.

– Use PAG to get the guess of the adversary. The adversary wins if the guess
equals b, the bit used to select which ballots to tally.

The advantage of the adversary is the difference between their winning and
losing probability.

The list of ballots queried through the C procedure of the oracle are the
honest votes, and the list of ballots provided by PAFBB are the submitted ballots,
which need not be the same as those sent to the trustees, but we require that
the trustees get all the submitted honest ballots, and no unsubmitted honest
ballots.

In the real world an adversary could sneak in an honest ballot by copying one
of the unsubmitted ones. This could cause issues in practice if an honest voter
had their vote duplicated from an earlier ballot they failed to submit. Preventing
this is the task of the associated data. The voting infrastructure should prevent
submission of multiple ballots with the same associated data.

In the composition there is no such implicit voting infrastructure between the
two voting schemes, so we have to handle this explicitly instead. The associated
data of the internal ballots cannot be associated with any given voter, so even
assigning unique associated data becomes difficult. This means that solving this
requires a different solution, which we discuss in the end of the next section.

6.1 Composition Privacy

We reach our main contribution, the result that after the tally we only need
to rely on the privacy of one scheme for the composition to have privacy. Note
that privacy of the second scheme is not sufficient. We also need integrity of the
first in that case. We also need privacy of the first scheme at the time of the
tally to prevent copying of the internals of unsubmitted ballots, though there
are ways to avoid this which we discuss at the end of this section. We discuss
the implications of these conditions after the statement of theorem 4.

Theorem 3. If VSo has α-privacy then its composition with VS i, VS has α-
privacy.

Proof. Similar to the integrity game we use the adversary against the α-privacy
game of the composition to build another, Ao against the α-privacy game of VSo

that simulates the interactions with VS i. The resulting games are equivalent, so
the result follows. ⊓⊔



Theorem 4. Let AdvVS
PrivA be the advantage of A against the α-privacy game of

VS, and AdvVS
IntegA be the advantage of A against the α-integrity game of VS, and

Coll(q) be the collision probability in a set of q uniformly sampled 256 bit values.
Let VS be the composition of inner scheme VS i and outer scheme VSo, with t
trustees. Let A be an adversary against the α-privacy game of VS that submits
or queries at most q ballots, then there exist adversaries Ai and Ao against the
α-privacy games of VS i and VSo respectively and an adversary AInteg against
the α-integrity game of VSo that all use A as an oracle, where Ao and AInteg do
not use AG such that

AdvVS
Priv(A) ≤ AdvVS

Priv(Ai) + AdvVS
Priv(Ao) + t · AdvVS

Integ(AInteg) + Coll(q)

The proof for this theorem can be found in appendix A.
The AdvVS

Priv(Ao) and AdvVS
Integ(AInteg) terms detract somewhat from the result,

but it is important to note that Ao and AInteg do all the calls to A at the
time of the election, and only to the parts of A that would need to be used
during the election for A to mount an attack. This means that A being able to
learn additional information about the votes in a current election in the future
means that the current elections would need to be vulnerable to attacks today.
Contrapositively this means that security in the present is sufficient for the
AdvVS

Priv(Ao) and AdvVS
Integ(AInteg) terms to vanish in practice.

We make some observations about the implications of this time dependence.
Firstly, an attack that requires sophisticated techniques cannot be performed
in the past before those techniques were developed, and the same also holds
for technology such as quantum computers. Additionally, while many attacks
against privacy can be performed against static data over long periods of time,
attacking the privacy of the composition through the privacy or integrity of the
first scheme requires the attacks to be performable in the time period between
when the attack is discovered and the election is held, and any computation that
requires the public keys or ballots need to wait until these are made available.
Still, there is a possibility for an efficient attack against the first scheme that is
kept hidden from the public for a long time to break the privacy of an election.

The AdvVS
Integ(AInteg) term can be strengthened by using an inner scheme where

integrity does not rely on computational assumptions.
As we will see in the proof, α-privacy of VSo is only needed to prevent the

adversary from getting to the internals of unsubmitted ballots before the tally
is finished, so if we can do this in a different manner we can have privacy of the
composition even if the privacy of VSo fails at the time of the tally. One way of
doing this is to add an external layer of threshold encryption to the ballots that
becomes transparent after the tally. Since we only need to hide the unsubmitted
ballots until after the tally we can even publish the secret keys of the threshold
decryption after the tally, which means the auditors do not need to be sent any
additional proofs for each voter. It is still necessary to check the decryption
proofs however, both for the trustees before the rest of the tally and for the
auditors on proofs they generate themselves using the secret keys. Depending
on the threshold decryption scheme there may be a way to optimize the work



necessary for the prove and check steps of the auditors since they are done by
the same party and they hold all the secret keys at that point.

Using a threshold decryption scheme allows us to switch out AdvVS
Priv(Ao) in

Theorem 4 for the advantage of some adversary against IND-CCA2 of the tresh-
old decryption, but we can minimize the number of computational assumptions
in this reduction by using the same computational assumption for IND-CCA2
of the treshold decryption as for the privacy of VS i.

7 Example Construction

As an example instantiation of the composition, consider the post-quantum ver-
ifiable decryption mixnet with tripwires by Boyen, Haines and Müller [6]. Their
scheme is efficient for a post-quantum scheme, can handle unstructured votes,
and the counting function is sorting, which makes it eligible for the outer voting
scheme in a composition. For the inner scheme in the composition we have ample
choice between efficient classical voting schemes.

Note that we do not prove that the decryption mixnet, or any other voting
scheme, satisfies our security notions. In fact, the decryption mixnet fails to
be private against attacks copying the internals of unsubmitted ballots, though
this can be addressed by adding an external layer of threshold decryption as
described in the end of the previous section. For the example we entertain the
idea that a similar scheme can be proven secure, and that some efficient classical
voting scheme also can be.

The main weakness of the decryption mixnet is the fact that it does not
have integrity in the fully adversarial setting when every part of the tally is
tranparent to the trustees. This weakness can be mitigated by having voters
check the tally, but proving misbehavior here requires revealing the vote, which
might dissuade voters from doing so. This is also the case for a decryption mixnet
using hybrid encryption. By using composition with a classical voting scheme
the voters would only need to reveal the classical ballot, keeping their vote secret
in the short term, which would lower this barrier.

The benefit against other post quantum schemes comes from efficiency since
post-quantum schemes tend to have large proofs in the case of verifiable mixnets,
or limitations on votes in the case of homomorphic voting.

Additionally, in a possible future where lattice cryptography is broken yet we
still do not have quantum computers the composition would leave votes private,
which using the decryption mixnet by itself would not have.

References

[1] Diego F. Aranha et al. “Verifiable Mix-Nets and Distributed Decryption for
Voting from Lattice-Based Assumptions”. In: ACM CCS 2023: 30th Con-
ference on Computer and Communications Security. Ed. by Weizhi Meng
et al. Copenhagen, Denmark: ACM Press, Nov. 2023, pp. 1467–1481. doi:
10.1145/3576915.3616683.

https://doi.org/10.1145/3576915.3616683


[2] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In:
Advances in Cryptology – CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis
and Thomas Shrimpton. Vol. 13508. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Cham, Switzerland, Aug. 2022, pp. 464–
479. doi: 10.1007/978-3-031-15979-4_16.

[3] Nina Bindel et al. “Hybrid Key Encapsulation Mechanisms and Authenti-
cated Key Exchange”. In: Post-Quantum Cryptography - 10th International
Conference, PQCrypto 2019. Ed. by Jintai Ding and Rainer Steinwandt.
Chongqing, China: Springer, Cham, Switzerland, May 2019, pp. 206–226.
doi: 10.1007/978-3-030-25510-7_12.

[4] Ian Black et al. Practical Quantum-Safe Voting from Lattices, Extended.
Cryptology ePrint Archive, Report 2022/1686. 2022. url: https://eprint.
iacr.org/2022/1686.

[5] Xavier Boyen, Thomas Haines, and Johannes Mueller. Epoque: Practical
End-to-End Verifiable Post-Quantum-Secure E-Voting. Cryptology ePrint
Archive, Report 2021/304. 2021. url: https://eprint.iacr.org/2021/
304.

[6] Xavier Boyen, Thomas Haines, and Johannes Müller. “A Verifiable and
Practical Lattice-Based Decryption Mix Net with External Auditing”. In:
ESORICS 2020: 25th European Symposium on Research in Computer Se-
curity, Part II. Ed. by Liqun Chen et al. Vol. 12309. Lecture Notes in Com-
puter Science. Guildford, UK: Springer, Cham, Switzerland, Sept. 2020,
pp. 336–356. doi: 10.1007/978-3-030-59013-0_17.

[7] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on
SIDH”. In: Advances in Cryptology – EUROCRYPT 2023, Part V. Ed. by
Carmit Hazay and Martijn Stam. Vol. 14008. Lecture Notes in Computer
Science. Lyon, France: Springer, Cham, Switzerland, Apr. 2023, pp. 423–
447. doi: 10.1007/978-3-031-30589-4_15.

[8] Thomas Haines et al. “SoK: Secure E-Voting with Everlasting Privacy”.
In: Proceedings on Privacy Enhancing Technologies 2023.1 (Jan. 2023),
pp. 279–293. doi: 10.56553/popets-2023-0017.

A Concrete Reduction

Definition 13. Given two composable voting schemes VSo and VS i, and an
adversary A against the privacy game of the composition we define an adversary
Ai against the privacy game of VS i as follows;

– We use the oracle, Oi given to Ai to construct one, O for A as follows:
• Initialization takes an VSo casting key and collection of VSo secret keys
and initializes a list of queries

• The cast procedure takes algorithms generating votes for VS i, casts them
using Oi and adds another layer by generating random associated data
and using VSo

C, whose output is returned. Before returning, all the values
used in this procedure are added to the list of queries.

• The read procedure produces the list of queries.

https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-030-25510-7_12
https://eprint.iacr.org/2022/1686
https://eprint.iacr.org/2022/1686
https://eprint.iacr.org/2021/304
https://eprint.iacr.org/2021/304
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.56553/popets-2023-0017


– The ballot box filling procedure generates keys for VSo, initializes O with
them and calls AFBB, which yields a list of double layered ballots. Single
ballot tallies for VSo are used to strip off the outer layer, and the new list
of single layered ballots is returned.

– The network initialization procedure runs the tally initialization of VSo for
each of the trustees and stores their states together with an empty list of 1.5
tagged messages for each trustee, and an empty list of VS i ballots.

– The network sending procedure adds an 1 to messages not marked with ‘out-
side’ and feeds all messages to AS

– The network processing procedure first uses AP to get a message and recip-
ient. We proceed differently based on the tag of the message;
• If the message is tagged with 1 we strip off the tag and return it.
• If the tag is 1.5 we append it to the list of 1.5 messages for that trustee
and try to validate it with VS i

V . If it validates we return the list of ballots
we get from the validation, with sender ‘outside’ and recipient being the
trustee who got the 1.5 tagged message. We also add it to our list of VS i

ballots for the trustee. If it does not validate we return nothing.
• If the message is tagged with 2 we strip off the tag and use the VSo

T S
procedure to advance the state of the relevant VSo trustee. The messages
returned are passed through A, with an added 2 tag if they are addressed
to a trustee and an 1.5 tag if they are addressed to ‘outside’. After send-
ing it we go back to the start of this procedure and use AP again.

– The guessing procedure just uses the guessing procedure of A

Ai behaves almost the same in the privacy game of VS i as A does for the
game of VS. The differences are only in the checks performed on the submitted
ballots and ballots sent to the adversaries. In the VS i game we check the inner
ballots, while in the VS game we check the outer ballots. For these checks to give
the same result it is sufficient for the VSo tally result to include the submitted
honest votes and not add any additional unsubmitted honest votes.

Since we validate the tally results for each of the trustees the first condition
amounts to the guarantee made by integrity. That is, if the tally validates all
the honest votes were included. Since we need this to be true for all the trustees
we get a loss equal to the number of trustees here.

The second condition is more complex. Intuitively it should be impossible to
add unsubmitted votes without decrypting the ballots. Using this idea we can
build an adversary against the privacy of VSo that checks the ballots in the VSo

result against the unsubmitted VSo ballots in the left and right game. If there is
duplication with the left game we guess 0, if there is duplication with the right
we guess 1, if there is duplication in neither or both we guess at random. Note
that the probability of duplication with the game that is not being played is
bounded by the collision probability of the random 256 bit associated data, so
we expect duplication, if any, to just be in the game being played. If VSo has
privacy then the probability of such duplication must thus be negligible.

Of note is that the adversary against the privacy game of VSo described
above does not require using AG , which means that the attack implied by the



reduction remains valid at the time of tally even if AG requires techniques or
hardware that is not available at that time.

Theorem 4 follows from the above discussion.
Also note that instead of using the privacy of VSo we could also modify

the scheme to add a layer of encryption, and use IND-CCA2 of that. The only
important part is that we can hide a challenge amongst the internals of the
unsubmitted ballots. This modification would incur a loss proportional to the
number of ballots because we would need to guess a ballot that stays unsubmitted
to inject the challenge.


	On Composing Generic Voting Schemes for Improved Privacy

