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Abstract. In this paper, we define the conditional constant function
problem (CCFP) and, for a special case of CCFP, we propose a quan-
tum algorithm for solving it efficiently. Such an algorithm enables us to
make new evaluations to the quantum security of Feistel block cipher in
the case where a quantum adversary only has the ability to make online
queries in a classical manner, which is relatively realistic. Specifically,
we significantly improved the chosen-plaintext key recovery attacks on
two Feistel block cipher variants known as Feistel-KF and Feistel-FK.
For Feistel-KF, we construct a 3-round distinguisher based on the spe-
cial case of CCFP and propose key recovery attacks mounting to r > 3
rounds. For Feistel-FK, our CCFP based distinguisher covers 4 rounds
and the key recovery attacks are applicable for r > 4 rounds. Utilizing
our CCFP solving algorithm, we are able to reduce the classical memory
complexity of our key recovery attacks from the previous exponential
O(2cn) to O(1). The query complexity of our key recovery attacks on
Feistel-KF is also significantly reduced from O(2cn) to O(1) where c’s are
constants. Our key recovery results enjoy the current optimal complex-
ities. They also indicate that quantum algorithms solving CCFP could
be more promising than those solving the period finding problem.

Keywords: Feistel cipher · chosen-plaintext · classical queries · Grover’s
algorithm · constant function

1 Introduction

Compared with classical computing, quantum computing exhibits significant
speed-up in handling certain problems, such as linear systems [10,35,20], dimen-
sionality reduction [23,27,40], and so on [32,19,41,21]. In particular, it seriously
threatens the security of classical cryptographic schemes. In the field of asym-
metric cryptography, Shor’s algorithm [30] can solve factorization and discrete
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logarithms in polynomial time, which will completely break the currently used
public-key systems, such as RSA and ECC. In the field of symmetric cryptogra-
phy, Grover’s algorithm [9] offers a quadratic speedup on an exhaustive search
attack. This gives rise to the common assertion that symmetric-key schemes
only retain roughly half of their classical bits of security. When aiming for post-
quantum security, doubling the key size is necessary.

Nevertheless, exhaustive search for key recovery is just one of many poten-
tial attack methods. The post-quantum security of symmetric schemes requires
more nuanced consideration. The report on quantum computing by the National
Academy of Sciences [28] indicates that some currently unknown smart quan-
tum attacks could be more efficient than Grover’s algorithm. For instance, by
utilizing Simon’s algorithm [31], the Even-Mansour cipher [17] and three-round
Feistel cipher [16] were shown to be broke in polynomial time.

Quantum attacks can be primarily classified into two models [44], namely Q1
model and Q2 model, under different abilities of the attacker. In the Q1 model,
attackers can perform any offline quantum computation, while they are only per-
mitted to make classical queries to an encryption oracle. In the Q2 model, other
than offline quantum computations, attackers can make quantum superposition
queries to an encryption oracle. Currently, some polynomial-time Q2 attacks
(e.g. Even-Mansour cipher [17]) have been proposed, while the assumption of
attacks in the Q2 model (i.e., requiring the ability of quantum superposition
queries) is rather strong such that the practical impact of these attacks remain-
s blurry. This motivates us to investigate the Q1 attack, since it is relatively
realistic.

Feistel block ciphers are one of the most important and extensively researched
cryptographic schemes. The n-bit internal state of a Feistel block cipher is up-
dated by iterative calls of an F function which takes half of the internal state
and a n/2-bit round-key as inputs and produces a new n/2-bit state for updating
another half of the internal state. Under the assumption of round-key indepen-
dence, the key length of r-round Feistel block ciphers is nr/2 bits. Based on
the different definitions of F , the Feistel block cipher can be further partitioned
into 3 categories, namely Feistel-F, Feistel-KF and Feistel-FK. The security of
the Feistel block ciphers against quantum attacks has been studied in various
settings for both Q1 and Q2 models.

As a generic exhaustive search, Grover’s algorithm [9] can recover the nr/2-
bit key of Feistel block ciphers with O(2nr/4) times, O(1) classical queries and
O(n) qubits. When O(n2p) qubits are available, the parallel Grover’s algorith-
m [8] can further reduce the time complexity to O(2nr/4−p/2). There are also
dedicated quantum attacks utilizing the structural features of Feistel block ci-
phers.

For the Q2 model, Kuwakado and Morii [16] proposed a quantum distin-
guisher on 3-round Feistel-F constructions. Their idea is to construct a periodic
function based on the construction of Feistel-F which can then be distinguished
from the random function, using Simon’s algorithm [31]: the quantum period
finding algorithm with polynomial complexities. Such an idea was employed by
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Leander and May for designing the Grover-meet-Simon algorithm [18], which
is the basis of almost all quantum attacks on Feistel block ciphers afterwards.
Based on the 3-round distinguisher, in 2018, Dong et al. [7] recovered the nr/2-
bit key of r-round (r > 3) Feistel-F block ciphers with time O(n32(r−3)n/4) and
O(n2(r−3)n/4) quantum queries. Based on Zhandry’s quantum collision algorith-
m [43], in 2023, Chartouny et al. [5] put forward quantum distinguishing attacks
on the 5-round Feistel-F construction, with a time complexity and query com-
plexity of O(2n/3). In 2024, Chartouny et al. [4] showed a quantum distinguishing
attack on the 6-round Feistel-F construction with O(24n/5) time and quantum
queries, by utilizing the subset finding quantum algorithm developed by Childs
and Eisenberg [6]. For Feistel-KF, Hosoyamada and Sasaki [11] proposed a 3-
round quantum distinguisher and recovered the nr/2-bit key withO(n22(r−3)n/4)
quantum queries and O(n32(r−3)n/4) time. As to Feistel-FK, Ito et al. [12] found
a 5-round quantum distinguisher, based on which they put forward a key re-
covery attack on r-round (r > 5) block ciphers with time O(n32(r−5)n/4) and
O(n2(r−5)n/4) quantum queries.

As to the Q1 model, Hosoyamada and Sasaki [11] presented a quantum al-
gorithm based on the parallelized Grover search [8] to solve a variant of claw
finding problem, which reduced the the number of classical queries for attacking
6-round Feistel-KF constructions from O(23n/4) (in classical attacks) to O(2n/2).
In 2023, Xu et al. [36] further generated new key-recovery attacks on r-round
(r ≥ 7) Feistel-KF constructions, requiring O(22n/3+(r−7)n/4) time and O(22n/3)
classical queries. Liu et al. [22] proposed a quantum algorithm to solve the claw
problem of finding multiple equations (a variant of claw finding problem) based
on quantum walk [45], reducing the time complexity and the classical memory
complexity required for attacking 6-round Feistel-FK constructions from O(2n/2)
of the classical attack [37] to O(2n/3). In 2024, Yu et al. [39] demonstrated that
Dong et al.’s Q2 attack [7] on Feistel-F constructions can be transformed into
the Q1 attack by increasing the amount of classical memory.

Contributions. In this paper, we generalize the key search problem in [18] as
a formally defined conditional constant function problem and give a quantum
algorithm for solving a special case of it. The algorithm is based on the par-
allel Grover’s algorithm [8] but with fewer queries, enabling us to improve the
key recovery attack on Feistel-KF and Feistel-FK block ciphers in the quantum
chosen-plaintext (CPA) setting under the Q1 model. We show the complexities
of our attacks along with those of previous results in Table 1. For Feistel-KF,
we give a 3-round distinguisher requiring O(1) classical queries instead of O(n)
quantum ones. Combining the distinguisher with our new algorithm, we propose
a new Q1 attack on r-round (r > 3) Feistel-KF. In comparison with previous
results, our method reduces the number of queries from exponential to constan-
t. Note that such a reduction is applicable for both Q1 and Q2 models. 5 For
Feistel-FK, we give a 4-round distinguisher with O(1) classical queries. Based on

5 As any Q1 attack can be readily transformed to a Q2 attack by regarding quantum
oracles as classical oracles, we are able to construct an attack in the Q2 model that
has the same complexity as our Q1 attack.
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such a distinguisher, we present key recovery attacks on r-round (r > 4) Feistel-
FK. As can be seen from Table 1, our attacks on both Feistel-KF and Feistel-FK
have significant lower memory complexities and require fewer queries.

Table 1. Summary of key recovery attacks on Feistel block ciphers in the CPA setting.
D: number of queries; T: time complexity; Q: number of qubits; M: amount of classical
memory. r: number of rounds.

Structures Setting Rounds D T Q M DTQM

Feistel-F
Q2[7] > 3 2(r−3)n/4 2(r−3)n/4 n2 1 n22(r−3)n/2

Q1[39] > 3 2n/2 2(r−3)n/4 n2 2n/2 n22(r+1)n/4

Feistel-KF

Classical[11] 6 23n/4 23n/4 / 2n/2 ≥ 22n

Q2[11] > 3 2(r−3)n/4 2(r−3)n/4 n2 1 n22(r−3)n/2

Q1[11] 6 2n/2 2n/Q Q ≤ 2n/2 2n/2 22n

Q1[36] > 6 22n/3 22n/3+(r−7)n/4 25n/6 25n/6 2(5+r)n/4

Q1(Sect. 4) > 3 1 2(r−3)n/4/
√
QQ ≤ 2(r−3)n/2 1 2(r−3)n/4√Q

Q1(Sect. 4) 6 1 23n/4/
√
Q Q ≤ 23n/2 1 23n/4√Q

Feistel-FK

Classical[37] 6 1 2n/2 / 2n/2 ≥ 2n

Q2[12] > 5 2(r−5)n/4 2(r−5)n/4 n2 1 n22(r−5)n/2

Q1[22] 6 1 2n/3 2n/3 2n/3 2n

Q1(Sect. 5) > 4 1 2(r−4)n/4/
√
QQ ≤ 2(r−4)n/2 1 2(r−4)n/4√Q

Q1(Sect. 5) 6 1 2n/2/
√
Q Q ≤ 2n 1 2n/2√Q

2 Preliminaries

2.1 Notation

For a positive integer n, let {0, 1}n denote the set of all n-bit strings. Let
Perm(n) denote the set of all permutations on {0, 1}n, and let Func(n) de-
note the set of all functions from {0, 1}n to {0, 1}n. For bit strings a and b, a‖b
indicates their concatenation. For given vectors a and b with same dimension,
their inner product is denoted a · b. Let “⊕ ” denote the XOR.

2.2 Pseudo-random Permutation

This paper considers that the attacker makes chosen-plaintext attacks. That is,
the attacker queries with plaintexts and then gets corresponding ciphertexts.
The attacker analyzes these plaintext-ciphertext pairs to recover the correct
key. PRP-CPA and qPRP-CPA denote the pseudo-random permutation (PRP)
security and the quantum pseudo-random permutation (PRP) security under
chosen-plaintext attacks. The formal definition is given as follows.

Definition 1. (PRP-CPA/qPRP-CPA [24]) Let Ek : K × X → X be a family
of permutations indexed by the elements in K, and g : X → X be a permutation
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in Perm(X). Let A be an attacker. The PRP-CPA/qPRP-CPA advantage of A
is defined as:

Adv
PRP−CPA/qPRP−CPA
E (A) = |Prk∈K(AEk(∗) ⇒ 1)−Prg∈PermX(Ag(∗) ⇒ 1)|,

(1)
where ∗ is replaced by · (classical) or � (quantum).

Af(·) ⇒ 1 (resp. Af(�) ⇒ 1) represents an algorithm that makes classical queries
(resp. quantum queries) to oracle Ek and outputs 1. When 1 − Adv(A) is a
sufficiently small value, the Definition 1 ensures that Ek can be distinguished
from a random permutation.

2.3 Basics of Quantum Computation

We suppose that the reader knows some basics of quantum computation, such
as the definitions of qubit, quantum gates (including Hadamard gate H, Toffoli
gate, CNOT gate, multi-control CNOT gate, and so on), quantum states and
the ket notation |·〉. For a more extensive presentation, please refer to [26].

All quantum computations are unitary operators of the Hilbert space and
are reversible. Generally, any classical computation can be implemented as a
quantum circuit as long as one employs a sufficient number of ancilla qubits.
A quantum circuit represents that a sequence of universal quantum gates (e.g.,
CNOT gate, NOT gate and Toffoli gate) are applied to a set of qubits. The
invertibility of quantum gates guarantees that the quantum circuit is reversible.
The initial state of ancilla qubits is |0〉 and they are recovered to |0〉 after per-
forming quantum computations. Certain quantum computations are performed
on the input state |x〉. Thereafter, an uncomputation process is implemented by
executing the same operations in reverse to restore the initial state of the ancilla
qubits. The uncomputation of a unitary operation U corresponds to using its
adjoint (i.e., conjugate transpose) operator U†.

In cryptanalysis, effective access to an oracle is essential. A single value will
be obtained if a classical oracle (for example, a cipher with an unknown key) are
queried once. A quantum oracle for a function f can be represented as a unitary
operator Of |x〉|y〉 = |x〉|y ⊕ f(x)〉, which can be queried in superposition. That
is, Of

∑
x |x〉|y〉 =

∑
x |x〉|y ⊕ f(x)〉.

2.4 Grover’s Algorithm

Grover’s algorithm [9], or the Grover search, can find a marked element from an
unstructured data set with a quadratic speedup, compared with the classical al-
gorithm, as stated in Algorithm 1. In particular, it solves the following Grover’s
problem.

Problem 1. (Grover’s problem) Let f : {0, 1}n → {0, 1} is a Boolean function
such that there exist x0 ∈ {0, 1}n such that f(x0) = 1 (|{x0 ∈ {0, 1}n|f(x0) =
1}| = M). Find a x0.
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Algorithm 1: Grover’s algorithm [9]

Input: Oracle Of : |x〉|y〉 → |x〉|y ⊕ f(x)〉, where f : {0, 1}n → {0, 1} is a
Boolean function and y ∈ {0, 1}

Output: x0
1 Initialize a quantum state: |0〉⊗n|1〉.
2 Apply n+ 1-fold Hadamard gate H⊗n+1 to attain

H⊗n+1|0〉⊗n|1〉 =
1√
2n

∑
x∈{0,1}n

|x〉|−〉 = |ϕ〉|−〉.

3 Perform Grover iteration operation R ≈ π
4

√
2n/M times to give the goal state:

[((2|ϕ〉〈ϕ| − I)⊗ I2)Of ]R|ϕ〉|−〉.

4 Measure to return a x0 with a high probability.

In Algorithm 1, |−〉 = (|0〉 − |1〉)/
√

2 and Of is applied to mark the solution
indices due to Of |x〉|−〉 = (−1)f(x)|x〉|−〉, where x ∈ {0, 1}n. Assume the time
required to evaluate f once is O(1). then Grover’s algorithm can solve Problem 1
in time O(2n/2/

√
M), using O(n) qubits.

When O(n2p) qubits are available, the Grover’s algorithm can be parallelized.
Kim et al. [15] summarized two methods to parallelize Grover’s algorithm as in-
ner and outer parallelization. Zalka [42] concluded that these two parallelization
versions require O(2(n−p)/2/

√
M) time and O(n2p) qubits. Jaques et al [13]

pointed out that inner parallelization is more applicable to the scenario of key
search in terms of success probability and input size. In particular, inner par-
allelization divides the entire search space into 2p disjoint subsets, and assigns
each subset to a parallel machine. Since the size of search space per machine
is 2n−p, the time solving Problem 1 can be reduced to O(2(n−p)/2/

√
M). This

paper chooses inner parallelization as well.

Moreover, Grover’s algorithm has been generalized into the quantum ampli-
tude amplification (QAA) technique [3], as described in Theorem 1.

Theorem 1. (QAA [3]) Suppose A is any quantum algorithm on q qubits that
does not perform measurement. Let B : {0, 1}q → {0, 1} be a function that
categorizes the outcomes of A as either good state or bad state. Let p > 0 be the
initial success probability that the measurement of A|0〉 is good. Set t = d π4θ e,
where θ is defined using sin2θ = p and 0 < θ < π

2 . Besides, define the unitary
operator Q = AS0A−1SB, where the unitary operator SB changes the sign of
the good state, i.e., SB|x〉 = (−1)B|x〉, while S0 = 2|0〉〈0| − I changes the sign
of the amplitude exclusively when it isn’t the zero state |0〉. Eventually, after
carrying out the computation of QtA|0〉, the measurement yields a good state
with probability at least max{1− p, p}.
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2.5 The Feistel Structure and Its Variants

For a r-round Feistel block cipher, we let n be its block size and denote x ∈
{0, 1}n as its internal state: such an internal state can be divided into two n/2-bit
halves as x = (xL, xR). The input of the Feistel block cipher consists of the n-bit
initial value of the internal state, denoted as x0, and r n/2-bit independent round
keys k1, . . . , kr ∈ {0, 1}n/2. Starting from x0, the Feistel block cipher computes
the new state xi from xi−1 (i = 1, . . . , r) as follows:{

xiR = xi−1L

xiL = Fi(x
i−1
L , ki)⊕ xi−1R

(2)

where Fi is the function mapping elements in {0, 1}n/2 × {0, 1}n/2 to {0, 1}n/2.
The round function in Eq. (2) is referred as the Feistel-F construction [12] and
is illustrated as Fig. 1.(a). The Fi in Eq. (2) can be further simplified from a
key dependent function to a public permutation over {0, 1}n/2 while the round
keys are injected through the simplest XOR operations. Such a simplicity results
in two Feistel variants known as Feistel-KF and Feistel-FK whose round func-
tions are defined as Eq. (3) and Eq. (4), illustrated in Fig. 1.(b) and Fig. 1.(c)
respectively. {

xiR = xi−1L

xiL = Fi(x
i−1
L ⊕ ki)⊕ xi−1R

(3)

{
xiR = xi−1L

xiL = Fi(x
i−1
L )⊕ ki ⊕ xi−1R

(4)

Both Feistel-KF and Feistel-FK are applied in the design of standard block
ciphers. Typical Feistel-KF block ciphers are DES [33] and Camellia [1] while
lightweight primitives such as Piccolo [29] and Simeck [38] adopt Feistel-FK.

𝐹𝑖

𝑘𝑖
𝑥𝐿
𝑖−1 𝑥𝑅
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(a) Feistel-F (b) Feistel-KF (c) Feistel-FK 

Fig. 1. Three Feistel constructions.



8 Zhenqiang Li et al.

3 The Conditional Constant Function Problem and Its
Quantum Solutions

We give the formal definition of the conditional constant function problem as
Problem 2, which is referred to as CCFP hereafter for short.

Problem 2. (Conditional constant function problem, CCFP) Let F : {0, 1}k×
{0, 1}n → {0, 1}n be a function satisfying that there is a unique secret value
i0 ∈ {0, 1}k such that F (i0, x) ≡ C holds for all x ∈ {0, 1}n, where C ∈ {0, 1}n
is an unknown constant. Find i0.

3.1 Previous Algorithm

Leander and May [18] considered the special case of CCFP where F (i, x) is
defined as Eq. (5)

F (i, x) = f(i, x)⊕ g(x), (5)

where f(i, x) is predefined as f : {0, 1}k×{0, 1}n → {0, 1}n (f(i, x) is a random
permutation in Perm(n) for any given i ∈ {0, 1}k) and g(x) = f(i0, x) ⊕ C.
They solved such a Eq. (5) defined CCFP with the Grover search. We briefly
review their method here as the context of our new quantum algorithm.

First, a test is defined to check whether f(i, x)⊕g(x) is constant for deciding
if i = i0. Specifically, make oracle queries to g(x) with `+ 1 random xj ∈ {0, 1}n
and acquire the corresponding yj = g(xj)’s (j = 1, . . . `+ 1). Then the classical
test function B : {0, 1}k → {0, 1} is defined as

B(i) =

{
1 all ` identities yj ⊕ f(i, xj) = yj+1 ⊕ f(i, xj+1) (j = 1, . . . , `) hold,

0 otherwise.

(6)
If i = i0, yj ⊕ f(i, xj) is equal to the unknown constant C, and B(i) = 1 in
Eq. (6) holds true with a probability of 1. Otherwise, if i 6= i0, based on the
randomness of f(i, x), any of the ` identities is fulfilled with probability 2−n and
B(i) = 1 can only happen with a probability of 2−n`. Therefore, the probability
for an incorrect i to pass the B(i) = 1 test is at most (2k − 1)2−n`. Obviously,
` = d 2kn e is enough to ensure (2k − 1)2−n` < 2−k. Altogether, the test B defines
a unitary operator SB : |i〉 → (−1)B|i〉, which makes O(k) queries to g(x) and
f(i, x) (due to k > `).

Then A from Theorem 1 is defined as the k-fold Hadamard gate H⊗k. And
the uniform superposition of all i ∈ {0, 1}k can be obtained by performing
A to |0〉⊗k. After repeatedly performing O(2k/2) times the unitary operations
Q = A(2|0〉〈0|−I)A−1SB to the stateA|0〉⊗k, i0 can be returned with probability
at least 1−2−k. As a result, when F (i, x) = g(x)⊕f(i, x), i0 is determined with
O(2k/2 · k) queries to f(i, x) and g(x).
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3.2 Our New Algorithm for Solving the Conditional Constant
Function Problem

We consider another special case of CCFP. For predefined keyed permutation
f : {0, 1}k×{0, 1}n → {0, 1}n (for arbitrary i ∈ {0, 1}k, f(i, x) is a permutation
over {0, 1}n so there is f−1 s..t f−1(i, f(i, x)) ≡ x holds for all x ∈ {0, 1}n) and
function g : {0, 1}n → {0, 1}n, F (i, x) is defined as

F (i, x) = f(i, g(x)) (7)

We also give a quantum algorithm for solving the Eq. (7) defined CCFP by
finding the unique i0 ∈ {0, 1}k s.t. F (i0, x) = f(i0, g(x)) ≡ C. We have two key
observations about the solving process in Sect. 3.1, summarized as follows:

Observation 1 In Sect. 3.1, when performing the Grover search over i ∈ {0, 1}k,
a new function f(i, x) is required whenever a new i is tested. However, g(x) is
always the same. Because of remaining unchanged, we would like to reduce the
number of queries to g(x). This can bring some benefits when making query to
g(x) is more expensive than those to f(i, x).

Observation 2 For each i ∈ {0, 1}k, once we have a quantum state |ψg〉 =⊗`+1
j=1 |xj〉|g(xj)〉, we can obtain the quantum state |ψF 〉 =

⊗`+1
j=1 |xj〉|f(i, g(xj))〉

by making quantum oracle access to f(i, x). By applying some Toffoli gates, we
can judge if F (i, x) is a constant function (see Remark 1). After that, by per-
forming uncomputations on |ψF 〉, |ψg〉 can be recovered and reused in subsequent
iterations.

In the following, we propose a quantum algorithm to solve Eq. (7) defined
CCFP as is formally described in Algorithm 2. This is a generalization and im-
provement of the previous algorithm proposed by Leander and May [18]. Our idea
is to separate the query to g(x) and f(i, x), and iteratively reuses |ψg〉. In partic-
ular, the first phase is to prepare the quantum state |ψg〉 by making `+1 queries
to g(x). The second phase is to perform the Grover search over i ∈ {0, 1}k. For
each fixed i, we check if f(i, g(x)) is a constant function by utilizing the quantum
state |ψg〉 and making queries to f(i, x). After that, uncomputations are per-
formed to recover the quantum state |ψg〉. Detailed explanations of Algorithm 2
are given in Sect. 3.3.

3.3 Detailed Analysis of Algorithm 2

In Algorithm 2, since the quantum state |ψg〉 is non-superposition, it can be
prepared by making ` + 1 classical queries to g(x). To be specific, for each
xj , we make queries to g(xj) in a classical manner, and then implement the
map of (|xj〉|0〉, g(xj)) 7→ |xj〉|g(xj)〉. Subsequently, |ψg〉 can be acquired by
simultaneously performing `+ 1 such mappings.
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Algorithm 2: Quantum algorithm solving Eq. (7) defined CCFP

Input: Oracle Of : |i〉|x〉 → |i〉|f(i, x)〉 and classical query access to g(x)
Output: i0

1 Start in the all-zero state.
2 For l+ 1 random xj ∈ {0, 1}n, make `+ 1 queries to g(x) to obtain the quantum

state

|ψg〉 =

`+1⊗
j=1

|xj〉|g(xj)〉.

3 Apply H⊗k to attain an uniform superposition over i ∈ {0, 1}k

1√
2k

∑
i∈{0,1}k

|i〉 ⊗ |ψg〉.

Prepare the quantum state |b〉 = |−〉 by performing Hadamard gate H to |1〉.
4 Apply `+ 1 times oracle Of to build the quantum state

1√
2k

∑
i∈{0,1}k

|i〉
`+1⊗
j=1

|xj〉|f(i, g(xj))〉|b〉 =
1√
2k

∑
i∈{0,1}k

|i〉|ψF 〉|b〉.

5 In order to run the B(i) test, we add a new register |r〉: set r := 1 when
f(i, g(xj)) = f(i, g(xj+1)) holds for all j = 1, · · · , `; otherwise, set r = 0.
(Remark 1 shows the quantum implementation of B(i) = r)

6 Add r to b, then uncompute r to obtain

1√
2k

∑
i∈{0,1}k

|i〉|ψF 〉|b⊕ r〉.

7 Apply `+ 1 times oracle O−1
f (the inverse of Of ) to revert the quantum state

1√
2k

∑
i∈{0,1}k

|i〉 ⊗ |ψg〉|b⊕ r〉.

8 Perform O(2k/2) Grover iteration, then measure to return i0 with a high
probability.
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The test function B : {0, 1}k × {0, 1}(`+1)n × {0, 1}(`+1)n → {0, 1} is defined
in the similar way as Eq. (6) as , which maps (i, x1, · · · , x`+1, g(x1), · · · , g(x`+1))
to 1 iff

B(i) =

{
1 all ` identities f(i, g(xj)) = f(i, g(xj+1)) (j = 1, . . . , `) hold,

0 otherwise.
(8)

In Remark 1, we show a way to determine whether all equations in Eq. (8) are
satisfied. Similar to the analysis in Eq. (6), the probability that there exists an
incorrect i passing the B(i) = 1 test is at most (2k − 1)2−n`. ` = d 2kn e is enough
to ensure (2k − 1)2−n` < 2−k. Altogether, the test function B defines a unitary
operator SB : |i〉|ψg〉|−〉 → (−1)B|i〉|ψg〉|−〉 corresponding to step 4-7. SB is
accomplished without any new query to g(x). Instead, only 4(` + 1) quantum
queries to f(i, x) (including f−1) are made (assume that making one query to
f requires the same complexity as that of f−1). Thus, SB requires O(`) = O(k)
queries to f(i, x) (due to k > `).

Remark 1. In step 5, we determine if all identities f(i, g(xj)) = f(i, g(xj+1))
(j = 1, · · · , `) are satisfied by solely using some (` + 1)-control CNOT gates.
Taking the example of checking whether (a0, b0) = (a1, b1) and (a1, b1) = (a2, b2)
((a0, b0), (a1, b1) and (a2, b2) ∈ {0, 1}2) are satisfied. If a0 = a1 = a2, then the
identity a0·a1·a2⊕(1⊕a0)·(1⊕a1)·(1⊕a2) = 1 holds true; otherwise, this identity
does not hold. The check for b0, b1 and b2 is similar. We depict its quantum
implementation in Fig. 2, which requires eight 3-control CNOT gates, one Toffoli
gate (i.e., 2-control CNOT gate) and three auxiliary qubits. Recursively, in step
5, the checking of whether all ` identities (each f(i, g(xj)) ∈ {0, 1}n) are satisfied
requires 4n ` + 1-control CNOT gates, one n-control CNOT gate and n + 1
auxiliary qubits. What’s more, since an `-control CNOT gate can be constructed
by employing 8`− 24 Toffoli gates without additional qubits [2], step 5 requires
approximately 4n(8`−16)+8n−24 Toffoli gates and n+1 auxiliary qubits 6. As
a consequence, we claim that the time complexity of realizing step 5 is O(nk).

Remark 2. For each given i, f(i, x) is a permutation over {0, 1}n, and its inverse
can be computed. Hence, the oracle Of : |i〉|x〉 → |i〉|f(i, x)〉 can be implemented
in two steps utilizing an additional register:

|i〉|x〉|0〉 7→ |i〉|x〉|f(i, x)〉 7→ |i〉|x⊕ f−1(f(i, x))〉|f(i, x)〉 = |i〉|0〉|f(i, x)〉. (9)

The Grover iteration is performed O(2k/2) times in step 8 of Algorithm 2.
As a result, we obtain the following Theorem 2.

6 Toffoli gate realizes the function of |a〉|b〉|c〉 → |a〉|b〉|c⊕a ·b〉. CNOT gate, NOT gate
and Toffoli gate are universal, i.e., any quantum computation can be implemented
by using these gates. But the CNOT and NOT gates are significantly less expensive
than the Toffoli gate. Thus, in general, we can say that the number of Toffoli gates
or Toffoli depth determines the running time of an algorithm.
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|a0〉 • • • • |a0〉

|a1〉 • • • • |a1〉

|a2〉 • • • • |a2〉

|0〉 • |0〉

|b0〉 • • • • |b0〉

|b1〉 • • • • |b1〉

|b2〉 • • • • |b2〉

|0〉 • |0〉

|0〉 |c〉

Fig. 2. The quantum implementation for checking whether two identities (a0, b0) =
(a1, b1) and (a1, b1) = (a2, b2) are satisfied. If c = 1 holds, they are satisfied; Otherwise,
they are not. The 3-control CNOT gate in the dashed box realizes the function of
|a〉|b〉|c〉|d〉 → |a〉|b〉|c〉|d⊕ a · b · c〉. And “⊕ ” realizes the function of |a〉 → |a⊕ 1〉.

Theorem 2. Algorithm 2 can solve Eq. (7) defined Problem 2 with probability
at least 1 − 1

2k
by performing O(k) classical queries to g(x) and O(2k/2 · k)

quantum queries to f(i, x). The offline computation (the procedures excluding
those for preparing the state |ψg〉) is done in time O((Tfk+ nk)2k/2), where Tf
is the time required to evaluate f(i, x) once. Meanwhile, O(kn) qubits and O(k)
classical memory are required.

Corollary 1. Actually, Algorithm 2 is a variant of Grover’s algorithm. When
O(kn2p) qubits are available, Algorithm 2 can be parallelized, and then i0 can
be determined with O((Tfk + nk)2(k−p)/2) time. They are balanced at p = k/3.
That is, by applying the parallelized Algorithm 2, we can solve Eq. (7) defined
Problem 2 in time O((Tfk + nk)2k/3) using O(kn2k/3) qubits.

3.4 Summary

To solve Eq. (7) defined CCFP, we separate the query to g(x) from that to f(i, x),
and reuse the quantum state |ψg〉. Algorithm 2 will be utilized to achieve an
improvement from certain attacks on symmetric schemes by reducing the query
complexity from exponential to constant. Indeed, in the context where Grover’s
algorithm is used, it may be possible to perform the queries to the cryptographic
oracle only once to decrease the number of queries to O(1). Besides, Algorithm 2
can be parallelized to decrease the time required for finding i0.

4 Quantum Attacks on Feistel-KF Constructions

This section introduces a quantum distinguishing attack against Feistel-KF con-
structions. Based on this distinguisher, we present quantum key recovery attacks
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by combining Algorithm 2. For the sake of simplicity, we presume that a single
evaluation of each primitive, for example a block cipher, can be accomplished in
time O(1).

4.1 Quantum Distinguishing Attacks

We propose a quantum distinguisher on the 3-round Feistel-KF cipher in the
chosen-plaintext attack (CPA) setting. Fig. 3 illustrates the 3-round Feistel-KF
construction. F1, F2, F3 ∈ Perm(n/2) are public round functions, while k1, k2, k3
are independently chosen subkeys. Let (x0L, x

0
R) ∈ {0, 1}n be a plaintext of the

3-round Feistel-KF cipher, the corresponding ciphertext (x3L, x
3
R) should be com-

puted as

x3L = x0R ⊕ F1(k1 ⊕ x0L)⊕ F3(k3 ⊕ x0L ⊕ F2(k2 ⊕ x0R ⊕ F1(k1 ⊕ x0L))),

x3R = x0L ⊕ F2(k2 ⊕ x0R ⊕ F1(k1 ⊕ x0L)).
(10)

𝑥𝐿
0

𝑥𝑅
0

𝐹1 𝐹2 𝐹3

𝑥𝑅
3

𝑥𝐿
3

𝑘1 𝑘2 𝑘3

Fig. 3. The 3-round Feistel-KF construction.

We consider the following Problem 3 originated in [16].

Problem 3. ([16]) Let O : {0, 1}n 7→ {0, 1}n be either the 3-round Feistel-KF
construction or a random permutation. The goal is to make a distinction between
the two cases by making queries to O while queries to the inverse mapping O−1
of O are not allowed.

Let β ∈ {0, 1}n/2 be an arbitrary constant. For β and x ∈ {0, 1}n/2, we take
(β, x) as the plaintext. When O is the 3-round Feistel-KF construction, the right
branch of the ciphertext is described as x3R = β⊕F2(k2⊕x⊕F1(k1⊕β)). Then
we can see that F−12 (x3R ⊕ β)⊕ x = k2 ⊕F1(k1 ⊕ β) holds. Even if x is changed,
k2 ⊕ F1(k1 ⊕ β) remains unchanged. Thus, we can define a function fO as

fO : {0, 1}n/2 → {0, 1}n/2

x 7→ F−12 (d⊕ β)⊕ x,
(11)
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where O(β, x) = (c, d). If O is the 3-round Feistel-KF construction, the output
pair (c, d) from O represents the ciphertext (x3L, x

3
R). Then fO is described as

fO(x) = F−12 (β ⊕ F2(k2 ⊕ x⊕ F1(k1 ⊕ β))⊕ β)⊕ x
= k2 ⊕ x⊕ F1(k1 ⊕ β)⊕ x
= k2 ⊕ F1(k1 ⊕ β).

(12)

For m + 1 random xi ∈ {0, 1}n/2, we compute their function values. Based
on Eq. (12), if O is the 3-round Feistel-KF construction, then all identities

fO(xi) = fO(xi+1) for all 1 ≤ i ≤ m (13)

are fulfilled with probability 1. If O is a random permutation, any identity is ful-
filled with probability 2−n/2, and then all m identities are simultaneously fulfilled
with probability at most 2−nm/2. Obviously, a constant of m ≥ 2 guarantees that
2−nm/2 ≤ 2−n. Thus, the following lemma holds.

Lemma 1. If O is the 3-round Feistel-KF construction, the function fO satis-
fies fO(x) = k2 ⊕ F1(k1 ⊕ β) for any x ∈ {0, 1}n/2. That is, fO is a constant
function. In contrary, if all m identities in Eq. (13) are simultaneously fulfilled,
fO is the 3-round Feistel-KF construction with a high probability.

Note that since we use the inverse F−12 of round function F2, it is necessary
to assume that F2 is bijection. Although it is widely known that this is not
a requirement for Feistel-KF constructions, we nonetheless hold the view that
our attack is meaningful. Based on these, we show a distinguisher against the
3-round Feistel-KF construction with O(1) classical queries.

First, we choose x1, x2, x3 ∈ {0, 1}n/2 randomly and just prepare their direct
product state |x1〉|x2〉|x3〉. And then we only make 3 classical queries to O to
get their function values defined in Eq. (11), i.e.,

|x1〉|c1〉|fO(x1)〉|x2〉|c2〉|fO(x1)〉|x3〉|c3〉|fO(x1)〉, (14)

where O(β, xj) = (cj , dj), j = 1, 2, 3 and β ∈ {0, 1}n/2 be an arbitrary constants.
At last, we check whether fO(x1) = fO(x2) and fO(x2) = fO(x3) holds by using
the method mentioned in Remark 1. If the result returns 1, then output “O is
the 3-round Feistel-KF construction.” If the result returns 0, then output “O is
a random permutation.”

Let A be designated as an attacker, and denote the 3-round Feistel-KF con-
struction as 3FKF. According to Definition 1, the qPRP-CPA advantage of A
is AdvqPRP−CPA3FKF (A) = 1 − 2−n, which guarantees that we can distinguish the
3-round Feistel-KF construction from a random permutation.

Corollary 2. The 3-round Feistel-KF construction and a random permutation
can be correctly distinguished in O(1) classical queries and O(n) time. Compared
with the previous distinguishing attack [11] which requires O(n) quantum queries
and O(n3) time, our attack demands fewer queries and less time.
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Remark 3. The round function F2 is a public permutation and is assumed to be
invertible. Therefore, the circuit mapping |y〉 → |F−12 (y)〉 can be implemented
in two steps utilizing an additional register:

|y〉|0〉 7→ |y〉|F−12 (y)〉 7→ |y ⊕ F2(F−12 (y))〉|F−12 (y)〉 = |0〉|F−12 (y)〉. (15)

Remark 4. Similar to the previous work [16], we also use the right branch of
the output of O. However, instead of using quantum superposition states, we
just employ a quantum direct product state, and perform some Toffoli gates to
judge whether fO is a constant function, which doesn’t destroy the entanglement
between the left and right branch of the output. Thus, we don’t need to truncate
the output of O for building the function fO(x).

4.2 Quantum Key Recovery Attacks

Below we demonstrate that Algorithm 2 can be extended to recover the keys of
the 6-round Feistel-KF construction by making use of O(1) classical queries in
the quantum CPA setting.

Given the encryption oracle of the 6-round Feistel-KF construction Enc6 :
{0, 1}n 7→ {0, 1}n, we consider to guess subkeys of the last 3-round, i.e., k4, k5, k6.
As depicted in Fig. 4, if the guess is right, then a quantum circuit that imple-
ments the first three rounds will be obtained. Otherwise, a quantum circuit
that evaluates an almost random function will be gained. Hence, we can check
whether the guess is correct by utilizing our 3-round quantum distinguisher. In
particular, k4, k5, k6 are guessed by using the Grover search, while a conditional
constant function is constructed to judge the correctness of the guess.

𝑥𝐿
0

𝑥𝑅
0

𝐹1 𝐹2 𝐹3

𝑘1 𝑘2 𝑘3

𝐹4 𝐹5 𝐹6

𝑘4 𝑘5 𝑘6

𝑥𝑅
6

𝑥𝐿
6

3-round distinguisher 3 subkeys to guess

Fig. 4. Key recovery attack on 6-round Feistel-KF constructions.

Next, we provide detailed explanations of our attacks. Let β ∈ {0, 1}n/2 be an
arbitrary constant and Enc6(β, x) = (x6L, x

6
R), we define the following function:

G : {0, 1}3n/2 × {0, 1}n/2 → {0, 1}n/2

(k4, k5, k6, x) 7→ F−12 (F4(F5(x6L ⊕ F6(x6R ⊕ k6)

⊕ k5)⊕ x6R ⊕ k4)⊕ x6L ⊕ F6(x6R ⊕ k6)

⊕ β)⊕ x.

(16)
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Under the accurate guess of the key (k4, k5, k6), G(k4, k5, k6, x) = F−12 (xR3 ⊕β)⊕
x = F1(β ⊕ k1) ⊕ k2 is a constant function. Thus, we can applied Algorithm 2
to recover the correct (k4, k5, k6).

First, we make `+ 1 classical queries to Enc6 to prepare the quantum state
|ψg〉 =

⊗`+1
j=1 |xj〉|Enc6(β, xj)〉 =

⊗`+1
j=1 |xj〉|x6L〉|x6R〉. Then, we run the Grover

search over (k4, k5, k6) ∈ {0, 1}3n/2. For each fixed (k4, k5, k6), we can implement
in place:

`+1⊗
j=1

|xj〉|x6L〉|x6R〉 7→
`+1⊗
j=1

|xj〉|F5(x6L ⊕ F6(x6R ⊕ k6)⊕ k5)⊕ x6R〉|G(k4, k5, k6, xj)〉,

(17)
which, when (k4, k5, k6) is correct, is exactly:

`+1⊗
j=1

|xj〉|F5(x6L ⊕ F6(x6R ⊕ k6)⊕ k5)⊕ x6R〉|F1(β ⊕ k1)⊕ k2〉. (18)

From there, we can check if G(k4, k5, k6, x) is a constant function by using our
3-round quantum distinguisher. After that, by performing uncomputations, we
can recover the quantum state |ψg〉, and reuse it in subsequent iterations. Af-
ter performing O(23n/4) Grover iterations, the correct subkeys k4, k5, k6 can be
recovered.

If (k4, k5, k6) is correct, all identities G(k4, k5, k6, xj) = G(k4, k5, k6, xj+1)
(j = 1, 2, · · · , `) are fulfilled with probability 1. If (k4, k5, k6) is incorrect, any
identity G(k4, k5, k6, xj) = G(k4, k5, k6, xj+1) is fulfilled with probability 2−n/2.
Obvious, when ` = 6, an incorrect (k4, k5, k6) is returned with a probability
at most (23n/2 − 1)2−`n/2 ≤ 2−3n/2. As a result, according to Theorem 2, the
correct (k4, k5, k6) will be returned with probability at least 1− 1

23n/2 by making
O(1) classical queries to Enc6 and doing the offline quantum computation in
time O(n23n/4).

After obtaining k4, k5 and k6, we can construct a quantum circuit to calculate
the first three rounds of the Feistel-KF construction. Hence, for arbitrary β and
β′ ∈ {0, 1}n/2 such that β′ 6= β, we can easily compute F1(β ⊕ k1) ⊕ k2 and
F1(β′ ⊕ k1)⊕ k2 to obtain F1(β ⊕ k1)⊕ F1(β′ ⊕ k1). Then, k1 can be recovered
in time O(2n/4) by performing Grover’s algorithm. Once k1, k4, k5 and k6 are
known, k2 and k3 can be recovered trivially.

In summary, we have the following Corollary 3.

Corollary 3. The whole attack recovering (k1, k2, k3, k4, k5, k6) requires O(1)
classical queries, O(n23n/4) time, O(n) qubits and O(1) classical memory. Gen-
erally, the key recovery attack on r-round (r > 3) Feistel-KF constructions is a
similar mechanism to that of the 6-round attack. The time complexity becomes
O(n2(r−3)n/4).

When Q = O(n2p) qubits are available, according to Corollary 1, the key
recovery attack on r-round Feistel-KF constructions can recover nr/2-bit key
with T = O(n2(r−3)n/4−p/2) time by using the parallelized Algorithm 2. The
tradeoff is QT 2 = Õ(2(r−3)n/2), which balances at T = Q = Õ(2(r−3)n/6).
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Comparison. In the Q1 model, we reduce the number of classical queries expo-
nentially required for attacking Feistel-KF constructions. When Q < 2n/2, our
attack on the 6-round Feistel-KF construction requires a time T = Õ(23n/4/

√
Q),

which is lower than Õ(2n/Q) from the previous Q1 attack [11]. For the case r ≥ 7,
our attack reduces the time complexity from O(2rn/4−13n/12) of Xu et al’s [36]
to O(2rn/4−7n/6), under the condition that Q = Õ(25n/6). Besides, in the case
Q = poly(n), we can improve the Q2 attack of Hosoyamada and Sasaki [11]
on r-round (r > 3) Feistel-KF constructions by reducing the query complexity
from exponential to constant, while the time complexity is O(n2(r−3)n/4) instead
of O(n32(r−3)n/4). What’s more, when the attacks are compared in terms of a
product DTQM (this comparison was mentioned in [11]), which is calculated
by multiplying the query complexity D, time complexity T , number of qubits Q
and amount of classical memory M , our attack is optimal.

5 Quantum Attacks on Feistel-FK constructions

In this section, we present a quantum distinguishing attack against Feistel-FK
constructions. Based on this, we show its quantum key recovery attacks. Once
again, for the sake of simplicity, we assume that a single evaluation of each
primitive, for example a block cipher, can be performed with the time complexity
of O(1).

5.1 Quantum Distinguishing Attacks

We present a quantum CPA distinguisher against the 4-round Feistel-FK con-
struction (see Fig. 5). Since the round function Fi is a public permutation and
the output of the first round function F1 can be computed without the knowledge
of the subkeys, we extend the analysis by incorporating the first round.

𝑥𝐿
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Fig. 5. The 4-round Feistel-FK construction.

In Fig. 5, F1, F2, F3 and F4 ∈ Perm(n/2) are the public round function-
s, while k1, k2, k3 and k4 are the independently chosen subkeys. If we take
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(x0L, x
0
R) ∈ {0, 1}n as a plaintext, the corresponding ciphertext (x4L, x

4
R) can

be computed by

x4L = F4(x0R ⊕ F1(x0L)⊕ k1 ⊕ F3(x0L ⊕ F2(x0R ⊕ F1(x0L)⊕ k1)⊕ k2)⊕ k3)⊕ k4
⊕ x0L ⊕ F2(x0R ⊕ F1(x0L)⊕ k1)⊕ k2,

x4R = x0R ⊕ F1(x0L)⊕ k1 ⊕ F3(x0L ⊕ F2(x0R ⊕ F1(x0L)⊕ k1)⊕ k2)⊕ k3.
(19)

We define the function fO as

fO : {0, 1}n/2 → {0, 1}n/2

x 7→ c⊕ F4(d)⊕ x,
(20)

where O(x, β ⊕ F1(x)) = (c, d) and β ∈ {0, 1}n/2 be an arbitrary constant. If O
is the 4-round Feistel-FK construction, the output pair (c, d) from O represents
the ciphertext (x4L, x

4
R) corresponding to the plaintext (x, β ⊕ F1(x)). Then the

function fO can be described as

fO(x) = c⊕ F4(d)⊕ x = F2(β ⊕ k1)⊕ k2 ⊕ k4. (21)

That is, fO(x) becomes a constant for any x.
Thus, we can build a quantum distinguisher against the 4-round Feistel-FK

construction by utilizing the function fO in Eq. (20). Similar to the analysis in
Sect. 4.1, the distinguisher requires O(1) queries and O(n) time.

5.2 Quantum Key Recovery Attacks

As with the key recovery attacks against the Feistel-KF construction described in
Sect. 4.2, the distinguisher mentioned above can be combined with Algorithm 2
to formulate key-recovery attacks. In the quantum CPA setting, the keys of the
r-round (r > 4) Feistel-KF construction can be recovered with O(1) classical
queries.

Our attack idea follows the attack against the Feistel-KF construction. Recall
that the attack in Sect. 4.2 guesses the last (r−3)-round subkeys since a 3-round
distinguisher is available. On the other hand, for the Feistel-FK construction,
we can use the 4-round distinguisher instead of the 3-round distinguisher (see
Fig. 6). Hence, it is sufficient to guess only the last (r−4)-round subkeys (instead
of the last r − 3-round subkeys) in attacking the Feistel-FK construction. As a
result, Algorithm 2 can be applied to find the last (r − 4)-round subkeys (i.e.,
(r − 4)n/2 bits) in time O(n2(r−4)n/4), requiring O(1) classical queries, O(n)
qubits and O(1) classical memory.

After recovering the last (r− 4)-round subkeys, we can construct a quantum
circuit that calculates the first four rounds. Hence, if we take arbitrary β, β′ ∈
{0, 1}n/2 such that β′ 6= β, we can easily compute F2(β ⊕ k1) ⊕ k2 ⊕ k4 and
F2(β′⊕k1)⊕k2⊕k4 to obtain F2(β⊕k1)⊕F2(β′⊕k1). Then k1 can be recovered
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Fig. 6. Key recovery attacks on r-round Feistel-FK constructions.

in time O(2n/4) by employing Grover’s algorithm. Besides, when the plaintext
is (x, β ⊕ F1(x)), according to Eq. (19), x4R can be written as

x4R = β ⊕ k1 ⊕ F3(x⊕ F2(β ⊕ k1)⊕ k2)⊕ k3. (22)

Taking x as α and α′ respectively, we can easily compute β ⊕ k1 ⊕ F3(α ⊕
F2(β ⊕ k1) ⊕ k2) ⊕ k3 and β ⊕ k1 ⊕ F3(α′ ⊕ F2(β ⊕ k1) ⊕ k2) ⊕ k3 to obtain
F3(α ⊕ F2(β ⊕ k1)⊕ k2)⊕ F3(α′ ⊕ F2(β ⊕ k1)⊕ k2). Since k1 is known, k2 can
be recovered in time O(2n/4) by utilizing the Grover search. k3 and k4 can be
recovered trivially.

In summary, we obtain the following Corollary 4.

Corollary 4. Our key recovery attack on r-round (r > 4) Feistel-FK construc-
tions can recover nr/2-bit key with O(1) classical queries, O(n2(r−4)n/4) time,
O(n) qubits and O(1) classical memory.

When Q = O(n2p) qubits are available, according to Corollary 1, the key can
be recovered in time T = O(n2(r−4)n/4−p/2) by using the parallelized Algorithm
2. The tradeoff is QT 2 = Õ(2(r−4)n/2), which balances at T = Q = Õ(2(r−4)n/6).

Comparison. In the Q1 model, when Q = Õ(2n/3) qubits are available, our attack
on the 6-round Feistel-FK construction requires the same query complexity and
time complexity as that of the previous one [22]. But we only use O(1) classical
memory instead of O(2n/3). Besides, for the case r ≥ 6, our key recovery attack
reduces the quantum query complexity from exponential in [12] to constant,
under the condition that Q = poly(n). Although our time complexity is slightly
higher than that in [12], our attack belongs to the Q1 model, which is more
realistic.

6 Conclusion

In this paper, we utilized constant functions, instead of periodic functions, to
improve the quantum chosen-plaintext key recovery attack on Feistel-KF con-
structions and Feistel-FK constructions in the Q1 model for the first time. Before
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that, we introduced the conditional constant function problem, and proposed a
quantum algorithm to solve one of its special variants based on the parallelized
Grover search. We constructed constant functions to distinguish the 3-round
Feistel-KF construction and the 4-round Feistel-FK construction from random
permutations, which requires O(1) classical queries instead of O(n) quantum
queries. After obtaining quantum distinguishers, we combined them with our
quantum algorithm to devise the key recovery attack on the Feistel-KF and
Feistel-FK constructions. Compared with previous attacks (including Q1 attack
and Q2 attack) on the Feistel-KF construction, our attack not only reduces the
number of classical queries exponentially, but also requires less time. For the
6-round Feistel-FK construction, our attack outperforms the previous Q1 attack
in terms of the classical memory complexity. Compared with the previous Q2
attack, we also reduce the query complexity significantly.

The acceleration of our attacks on Feistel-KF and Feistel-FK comes from two
aspects. One is our quantum algorithm solving the conditional constant function
problem, which reduces the number of queries to constant. The other is the par-
allelized Grover search, which generates the tradeoffs between time complexity
and number of qubits. In the future, there remain several interesting research
directions worthy of exploration. First, further improving the time complexity
or extending the number of rounds in attacks against Feistel ciphers presents
an interesting challenge. Second, it would be valuable to explore the extension
of our attack to other symmetric-key schemes, such as the generalized Feistel
construction [46], MISTY construction [25], FX construction [14], Lai-Massey
construction [34] and others.
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