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Abstract. The CKKS scheme is traditionally recognized for approximate homomorphic
encryption of real numbers, but BLEACH (Drucker et al., JoC 2024) extends its
capabilities to handle exact computations on binary or small integer numbers.
Despite this advancement, BLEACH’s approach of simulating XOR gates via (a − b)2

incurs one multiplication per gate, which is computationally expensive in homomor-
phic encryption. To this end, we introduce XBOOT, a new framework built upon
BLEACH’s blueprint but allows for almost free evaluation of XOR gates. The core
concept of XBOOT involves lazy reduction, where XOR operations are simulated with
the less costly addition operation, a+b, leaving the management of potential overflows
to later stages. We carefully handle the modulus chain and scale factors to ensure
that the overflows would be conveniently rounded during the CKKS bootstrapping
phase without extra cost. We use AES-CKKS transciphering as a benchmark to
test the capability of XBOOT, and achieve a throughput exceeding one kilobyte per
second, which represents a 2.5× improvement over the state-of-the-art (Aharoni et
al., HES 2023). Moreover, XBOOT enables the practical execution of tasks with
extensive XOR operations that were previously challenging for CKKS. For example,
we can do Rasta-CKKS transciphering at over two kilobytes per second, more than
10× faster than the baseline without XBOOT.
Keywords: homomorphic encryption · bootstrapping · advanced encryption standard
· hybrid homomorphic encryption · transciphering

1 Introduction
Fully Homomorphic Encryption (FHE) [Gen09] represents a groundbreaking paradigm
in cryptography, allowing computations to be performed directly on encrypted data
without decryption. Initially regarded as purely theoretical and impractical, FHE has seen
significant advancements in recent years, leading to the proposal of numerous modern
FHE schemes [BV11, FV12, GSW13, CCK+13, BGV14, BV14, DM15, CKKS17, CGGI17,
CGGI20] with markedly improved efficiency. Among the various FHE schemes, the Cheon-
Kim-Kim-Song (CKKS) scheme [CKKS17] stands out as one of the most efficient, and has
been extensively utilized in works such as privacy-preserving machine learning [LLL+22,
LLKN23, JPK+24].

However, CKKS is inherently an approximate homomorphic encryption scheme; it
introduces noise in the computation, which accumulates with each operation, potentially
leading to loss of precision over multiple computational layers. As a result, it was
believed that CKKS could only be used for applications where exact precision is not
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always necessary, and should not be used in applications that are sensitive to even slight
variations. To mitigate the limitations posed by CKKS’s approximation, the BLEACH
methodology [DMPS24] was introduced. BLEACH provides an efficient CKKS framework
for bit operations by representing Boolean values with real numbers around 0 or 1 (e.g.,
0.002 or 0.997), and simulate an AND gate by multiplication a ∗ b, and an XOR gate
by the operation (a− b)2. It employs a “cleanup” function h1(x) = 3x2 − 2x3 to reduce
errors accumulated, enabling CKKS to maintain a high accuracy for discrete computations,
particularly for Boolean circuits. This innovation extends the usage of CKKS into areas
previously dominated by exact FHE schemes like BFV/BGV or TFHE.

One significant application in these areas is transciphering. In this methodology,
clients can utilize inexpensive symmetric encryption (such as AES) instead of FHE,
transmitting the symmetric ciphertext to the server, who then converts this ciphertext
into an FHE ciphertext to enable subsequent computations. Transciphering significantly
lowers both the computational and communication demands on the client, thereby of-
fering considerable advantages for resource-limited devices like embedded systems. The
core principle of transciphering involves the homomorphic evaluation of the symmet-
ric decryption function, which is generally treated as a Boolean circuit. Due to the
exceptional efficiency of the CKKS scheme, the throughput of AES-CKKS transcipher-
ing [ADE+23] using BLEACH is often higher compared to AES transciphering to other
FHE schemes [GHS12, SMK22, TCBS23, WLW+24, BPR24, SAP24].

Despite the advancements, a significant drawback in BLEACH is the cost associated with
the XOR operation. Specifically, since CKKS only supports addition and multiplication,
BLEACH has to simulate the XOR gate using the formula (a− b)2, which requires one
multiplication operation per XOR gate. Given that ciphertext-ciphertext multiplications
in FHE are expensive, the number of XOR gates can lead to performance bottlenecks.

What’s worse, cryptography researchers tend to focus on optimizing algorithms by
reducing the number of non-XOR gates, and pay less attention to XOR gates since they
are cheap in secure multi-party computation (MPC) or exact FHE schemes like BGV.
For example, the optimized AES circuit described in [KSS12] comprises 9,100 non-XOR
gates and 21,628 XOR gates. The complexity of LowMC [ARS+15] and Rasta [DEG+18]
ciphers is estimated solely based on AND gates without consideration of XOR gates. This
discrepancy presents an ongoing challenge when handling Boolean circuits with CKKS,
and we pose the following question:

Can we homomorphically evaluate Boolean circuits in a way that leverages the high
efficiency of CKKS while reducing the cost of XOR gates?

1.1 Our Contributions

In this work, we propose XBOOT, a new CKKS framework for computation on binary
values. XBOOT successfully solved the above issues by enabling almost “free” XOR gates.
Our contributions are as follows:

Free-XOR framework for CKKS Building upon the work of BLEACH, we introduce a
lazy reduction technique where XOR gates are substituted with simple additions. This
method allows intermediate results to temporarily exceed their intended range. Each such
result can be conceptualized as consisting of two segments: the Least Significant Bit (LSB)
part, which retains the actual result, and a redundant part. Then we carefully design the
CKKS modulus chain and scale factors so that the redundant part would be effectively
removed at the SlotsToCoeffs step of CKKS bootstrapping process. Thereby the LSB is
automatically extracted, achieving the XOR functionality almost “for free”.
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Highly efficient transciphering. We use transciphering as a representative application to
demonstrate the efficiency of XBOOT. The state-of-the-art on AES-CKKS transcipher-
ing [ADE+23] consumes 9 multiplication depths per round, while with XBOOT it will only
require 3 multiplication depths per round. With the reduced multiplication depth, and
combining the optimizations from CKKS bootstrapping for bits [BCKS24], the bit length
of CKKS ciphertext modulus can be efficiently reduced to 830 bits from 1555 bits, and the
cyclotomic ring degree N can be reduced to 215 from 216 while still maintaining 128-bit
security. Experiments show that we are able to do AES transciphering at the speed of
256KB per 236 seconds, achieving a 5× improvement in latency and 2.5× in throughput
compared to [ADE+23].

Furthermore, we highlight that numerous applications involve an extensive number of
XOR gates, rendering them impractical for evaluation under traditional CKKS frameworks.
XBOOT could address this limitation, thereby unlocking new possibilities for such tasks.
For instance, the Rasta cipher [DEG+18], which incorporates nearly a million XOR gates,
serves as a compelling example. By applying XBOOT to Rasta-CKKS transciphering, we
achieve a remarkable throughput of over two kilobytes per second. This would outperform
the other Rasta transciphering methods by more than one order of magnitude.

1.2 Related Work
CKKS bootstrapping. Bootstrapping for CKKS was first introduced in [CHK+18]. Since
then, continuous advancements have been made. Notable progress includes optimiza-
tions in homomorphic modular reduction [CHK+18, LLL+21, JM22, LLK+22], as well as
complexity reductions for linear transformations, with FFT-like decomposition applied
in [CCS19, HK20, BMTH21].

Several novel CKKS bootstrapping techniques have been proposed, including methods
for achieving unlimited precision [BCC+22], bootstrapping BFV/BGV schemes using CKKS
to remove restrictions on plaintext modulus [KDE+24], and approaches for DM/CGGI
functional bootstrapping with LUTs that incorporate CKKS within the bootstrapping
procedure [AKP24].

More recently, new techniques have been developed [BCKS24, BKSS24] that enhance
functionality by implementing polynomial approximations for various trigonometric func-
tions. Additionally, an iterative most significant bit (MSB) bootstrapping method [KN24]
has been proposed for bootstrapping integers within the large range of [0, 220), further
enhancing the capabilities of the CKKS scheme.

Transciphering. Since Gentry et al. introduced the first homomorphic computation for
AES, transciphering for AES serves as a benchmark for evaluating the efficiency of FHE.
The specific evaluation strategies depend on the unique characteristics of each FHE scheme.

Besides CKKS, the TFHE scheme, especially with functional bootstrapping [CGGI20],
has been extensively studied for its application in transciphering. Stracovsky et al.
[SMK22] evaluated an AES block in 4 minutes using 16 threads. More recently, Trama
et al. [TCBS23] proposed a faster AES evaluation using functional and multi-value
bootstrapping techniques. Recent optimization works, such as [WWL+23, WWL+24],
have reported even better results based on the rich bootstrapping features of the TFHE
scheme.

Note that several works have leveraged the plaintext encoding space to enable free
XOR in TFHE by automatically applying modulo two in the plaintext domain [WWL+23,
CLW+24, SAP24]. However, since ciphertext-ciphertext multiplications are inefficient in
TFHE, a drawback is that they require additional efforts to handle AND gates over modulo
two. In contrast, our free XOR framework does not introduce any negative side effects for
AND gates.
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Generally speaking, compared to CKKS transciphering, TFHE transciphering typically
offers less throughput due to the absence of SIMD properties. And efficient handling of
XOR gates is also a hot research topic in TFHE.

2 Preliminaries
In this section, we outline the essential background knowledge of FHE and transciphering
and establish the notations used throughout the paper. For a power-of-two integer N ,
we define the N -degree polynomial ring as RN = Z[X]/(XN + 1) and the residual ring
RQ,N = RN /QRN , which is formed by taking RN modulo an integer Q.

2.1 Approximate Homomorphic Encryption (CKKS)
We revisit the CKKS scheme, which is defined within this polynomial space.

Notations. We denote individual elements—such as numbers or polynomials—in italics,
e.g. a and b, and their vectors in bold, e.g., a and b. The notation ⟨a, b⟩ represents the
inner product between the two vectors. We denote ∥a∥∞ as the infinity norm of the vector
(or polynomial) a in the power basis and hw(a) as the Hamming weight of the vector (or
polynomial) a. We denote x mod Q as the remainder of x modulo Q, ⌊x⌋, ⌈x⌉, and ⌊x⌉
as the rounding of x to the nearest previous, next and closest integer, respectively. If x is
a polynomial, these operations are performed on each coefficient.

Given an integer a, its modulo q is denoted as [a]q. If C = {q0, q1, . . . , qL} is a
set of pairwise co-prime positive integers (modulus chain), and a ∈ ZQL

where QL =∏L
i=0 qi, is the top modulus. The modulus at the level ℓ ∈ {0, 1, ..., L} is denoted as

Qℓ =
∏ℓ

i=0 qi. Then the RNS representation of a with respect to C is denoted by
[a]C = ([a]q0 , [a]q1 , . . . , [a]qL

) ∈ Zq0 × · · · × ZqL
. The base of the logarithm in this paper is

two.
Let DFT : R[X]/XN + 1→ CN/2 be a variant of the discrete Fourier transform defined

as evaluation of N/2 points:

∀p ∈ RN : DFT(p) = (p(ζ5i

))0≤i<N/2,

where ζ is a primitive complex (2N)-th root of unity. The inverse of this process is denoted
as iDFT: CN/2 → R[X]/XN + 1.

Basic operations. We first recall some necessary operations defined in the CKKS
scheme [CKKS17, CHK+18].

• Ecd(m,∆,N ) ( coefficient→slots ) Given a message m ∈ CN/2, the canonical
embedding CN/2 → R[X]/XN + 1→ RN is defined as:

∀m ∈ CN/2 : Ecd(m) = ⌊∆ · iDFT(m)⌉

where ∆ represents the scaling factor that controls the encoding precision. After
this process, the data m ∈ CN/2 to be operated on is stored in the slots, with
the plaintext polynomial rounded to Ecd(m). Ultimately, the multiplication of
polynomial is mapped as component-wise multiplication of scaled m.

• Dcd(p,∆,N ) (slots→coefficient) Given polynomial p ∈ RN , apply the inverse process
of Ecd, defined as:

∀p ∈ RN : Dcd(p) = 1
∆ · DFT(p).
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Recall that the ciphertext ct = (b, a) ∈ R2
Q,N decrypts to the plaintext polynomial under

a secret key sk = (1, s) as ⟨ct, sk⟩ = b + as = m, where m ∈ RN .
Key switching (KS) is required after homomorphic multiplication and automorphism.

It is defined as KS(ct, swk), where swk is generated from the previous secret key sk to
facilitate multiplication, conjunction, and rotations. We briefly recall the homomorphic
operations as follows.

• Add(ct1,ct2): For ct1, ct2 ∈ R2
Qℓ

, output ctadd = ct1 + ct2 (mod Qℓ).

• Mult(ct1,ct2): Given ct1, ct2 ∈ R2
Qℓ

, output a level-downed ciphertext ctmult ∈ R2
Qℓ−1

.
This operation applies tensor product of ctnew = ct1 ⊗ ct2 ∈ R3

Qℓ
, relinearization

ctrel = KS(ctnew, swkrel) ∈ R2
Qℓ

and rescale ctmult = RS(ctrel) ∈ R2
Qℓ−1

.

• cMult(ct, a): For a ∈ Z, output ctcmult = a · ct without applying Ecd(·) , relineariza-
tion and rescale RS(ct) after Mult.

• RS(ct): For ct ∈ R2
Qℓ

, output ctRS =
⌊
q−1

ℓ · ct
⌋

(mod Qℓ−1). The rescaling process
serves two purposes: it reduces the error size and maintains the scaling factor for
each slot. Rescale is alongside the reduction of the modulus chain.

Bootstrapping. The bootstrapping procedure of the CKKS scheme [CHK+18] seeks to
elevate the ciphertext to a higher modulus, enabling further homomorphic evaluation. The
CKKS bootstrapping produces a ciphertext that increases the modulus back to certain
point, with Qrem ≫ q0, where Qrem is the modulus after bootstrapping. The procedure
consists of four steps: SlotsToCoeffs, ModRaise, CoeffsToSlots and EvalMod. We borrow
the notations in [BCKS24] and briefly explain these steps for clarity.

z StC−−→ z(x) ModRaise−−−−−→ z(x) + q0I(x) CtS−−→ z + q0I EvalMod−−−−−→ z

• SlotsToCoeffs: The inverse of the canonical embedding evaluates DFT matrix
multiplication homomorphically on the encrypted ciphertext that can decrypt to the
vector z. This operation converts it into the polynomial form z(x).

• ModRaise: The ciphertext at modulus q0 is expressed in the larger modulus Q≫ q0.
This results in a ciphertext that decrypts to [⟨ct, sk⟩]Q = z(x) + q0I(x), where q0I(x)
is an integer polynomial with coefficients that are small multiples of the base modulus
q0.

The remaining steps of the bootstrapping remove this redundant q0I(x) polynomial by
homomorphically evaluating a modular reduction by q0 on z(x).

• CoeffsToSlots: The canonical embedding evaluates the iDFT matrix multiplication
homomorphically on z(x) + q0I(x). To enable parallel (slot-wise) evaluation, the
polynomial must be encoded in the slot domain, converting it to a ciphertext that
decrypts to z + q0I.

• EvalMod: A polynomial approximation of the modular reduction by q0 is homo-
morphically evaluated, thus removing the redundant q0I and obtaining the result
ciphertext decrypted to z.

2.2 Symmetric-Cipher-to-CKKS Transciphering Methods
Advanced transciphering methods for CKKS often function like a stream cipher [CCF+16],
where the plaintext is masked with a keystream (e.g., XORed). The server pre-generates
an encrypted keystream homomorphically using the FHE-encrypted secret key, enabling it



6 XBOOT: Free-XOR Gates for CKKS with Applications to Transciphering

to decrypt incoming symmetric ciphertext by attaching the keystream to cancel the mask
and recover the plaintext under FHE encryption.

The Real-to-Finite-field (RtF) framework [CHK+21] proposed the method of tran-
sciphering to BFV and then bootstrapping the BFV ciphertext into CKKS ciphertext.
This approach is used with the specially designed symmetric cipher HERA and Rubato,
where the ciphertext domain is modular p, matching the plaintext domain of BFV. This
alignment is particularly suitable for applications involving numerical computing tasks.
However, it is not compatible with standard symmetric ciphers like AES, which may raise
additional security concerns on the client side. For example, the 192-bit security version
of HERA was broken in [LKSM24], and the non-prime Fp parameter Rubato was broken
by [GAH+23]. In this paper, we focus on the case of Boolean circuit, and thus do not
compare with this line of works.

BLEACH methods. We recall the strategy introduced in [DMPS24], which allows Boolean
operations using CKKS. In this approach, true and false are represented by 1 and 0,
respectively. Utilizing addition, subtraction, and multiplication over real (or complex)
numbers, any Boolean gate can be emulated, e.g., XOR, AND, OR, and NOT gates are
defined as follows:

x⊕ y = (x− y)2, x ∧ y = x · y, x ∨ y = x + y − x · y, ¬x = 1− x.

Except for the free NOT gate, other gates would consume one multiplication depth. Besides,
due to the approximate inputs x + ϵ1 and y + ϵ2, where |ϵ1|, |ϵ2| < 1/4, the output error is
upper bounded by 5 max(|ϵ1|, |ϵ2|) according to [DMPS24, Le. 2]. After multiple sequential
operations, this emulated error can grow and must be reduced by the cleanup functions,
which move values closer to 0 or 1. Specifically, they use the function h1(x) = 3x2 − 2x3

from [CKK20] for this cleanup functionality, i.e., h1(0± ϵ) ≃ 0 and h1(1± ϵ) ≃ 1.

BLEACH for AES-CKKS transciphering. In [ADE+23], the BLEACH method was uti-
lized to manipulate Boolean bits emulated by real numbers, enhancing the throughput of
AES-CKKS transciphering. Since the core of transciphering is establishing the homomor-
phic circuits for AES, we briefly recall the AES encryption for better understanding. To
begin with encryption, the plaintext block is XORed with the 128-bit key in the whitening
step. Then, the AES round function is applied to update the resulting 128-bit state. Each
round of AES consists of the following operations:

AddRoundKey
1

◦MixColumns
3

◦ ShiftRows
0

◦ SubBytes
3

(·).

This round function is repeated 9, 11, or 13 times for AES-128, AES-192, and AES-256,
respectively. The MixColumn operation is excluded in the final round. After operating
the remaining update function, the resulting state is output as the ciphertext.

AES-CKKS transciphering is ideally suited for the counter (AES-CTR) mode, where
multiple AES blocks—each employing a 32-bit nonce and a 96-bit counter as input—are
allocated to distinct slots in the CKKS plaintext, thereby enabling Single Instruction
Multiple Data (SIMD) operations. This strategy allows each AES block to be processed
independently, eliminating the need for costly cross-slot operations. The homomorphic
look-up table (LUT) is employed for the AES 8-bit SubBytes operation, requiring 255
multiplications with a depth of three in their implementation, although the theoretical lower
bound is n−log n−1 = 247. It is important to note that in the BLEACH method, the XOR
operation, defined as (x− y)2, is not free. The MixColumn and AddRoundKey operations,
which involve XOR, consume multiplication depths of 3 and 1, respectively. Additionally,
following several Boolean gate operations, the clean function h1(x) = 3x2 − 2x3, which
has a depth of two, is executed in every AES round. Overall, each AES round requires a
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multiplication depth of 3 + 3 + 1 + 2 = 9. Consequently, ten layers of bootstrapping are
necessary.

2.3 Revisiting AES-CKKS Transciphering with Details
SubBytes is a key step in AES, but the authors of [ADE+23] just mentioned an indicator-
based SubBytes homomorphic LUT method, and neither the algorithm nor the source
code was available. To fill this gap, we introduced a homomorphic LUT algorithm that
achieved the theoretical lower bound of 247 multiplications.

Let x0, x1, . . . , x⌈log n⌉−1 represent the input bits of a LUT with n entries. The index
of a single entry in this table can be expressed as x =

∑⌈log n⌉−1
i=0 xi · 2i. Each bit xi is an

encrypted {0, 1} value, with its inverse given by xi = 1 − xi. We have the LUT result
written as:

f(x) = (xlog n−1 · · ·x1x0) · f(0) + (xlog n−1 · · ·x1x0) · f(1)
+ (xlog n−1 · · ·x2x1x0) · f(2) + (xlog n−1 · · ·x2x1x0) · f(3)
+ · · ·+ (xlog n−1 · · ·x1x0) · f(n− 1),

where f(x) denotes the result of this bijective look-up table. It can be observed that iff the
binary representation matches the input index x (denoted as x⇔ (x0, x1, . . . , x⌈log n⌉−1)),
the cumulative product within the parentheses equals one. The LUT result can be obtained
without revealing the indices by summing all these values.

Given the definition xi = 1−xi, we can observe that each output bit of the homomorphic
LUT for the S-boxes is the sum of multiple monomials of the input bits. Therefore, once
all the monomials are computed, the output bit can be obtained through homomorphic
additions. The monomials corresponding to the input bits are as follows:

x0, x1, . . . , xlog n−1, x0x1, x0x2, . . . ,

log n−1∏
i=0

xi.

We present a recursive algorithm in Algorithm 1 to achieve this lower bound for an
8-bit input with 247 multiplications and a depth of three. This algorithm is later adapted
to operate on real FHE ciphertexts. To clarify, we illustrate a toy example of 4 input
variables in Fig. 1.

Figure 1: Toy example of Four input variables for EvalRecurse algorithm.

As depicted in Fig. 1, the input variables are divided into 2 sets, each containing two
variables. This division corresponds to the deepest layer of the EvalRecurse algorithm.
After multiplying each element in the set, the degree-two monomials are merged with the
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Algorithm 1: EvalRecurse
Input: Monomial set Min{x0, x1, . . . , xlog n−1}
Output: Monomial set Mout{x1, . . . , xlog n, x1x2, x1x3, . . . ,

∏log n−1
i=0 xi}

1 if |Min| = 2 then
2 return {Min[0],Min[1], Mult(Min[0],Min[1])}
3 idx← |Min|

2
4 ML ← EvalRecurse(Min[: idx])
5 MR ← EvalRecurse(Min[idx :])
6 Mout ← {}
7 for moni ∈ML do
8 for monj ∈MR do
9 monnew ← Mult(moni, monj)

10 Mout ←Mout ∪monnew

11 Mout ←Mout ∪ML ∪MR

12 return Mout

original variables and sent to the next recursion. Finally, each element in the set obtained
at level one is multiplied, merging with the set obtained in the last recursion. The total
multiplications consumed are n− log n− 1 = 11 with depth 2.

To combine all the monomials into the AES S-box output bit, we define the Boolean
function in Definition 1 as follows and explain the detailed AES SubBytes operation in
Sect. 4.

Definition 1. Boolean Function: Let f : Fn
2 → F2 be a Boolean function with

intermediate coefficients in Z:

f(x) = f(x0, x1, . . . , xn−1) =
∑

u∈Fn
2

cu

n−1∏
i=0

xui
i ,

where cu ∈ Z, and

xu =
n−1∏
i=0

xui
i with xui

i =
{

xi, if ui = 1,

1, if ui = 0.

denotes the monomials that comprise the polynomial of the output bit.

3 The Free-XOR Technique
At a high level, our idea is based on two key observations: (i) The XOR of multiple
binary elements can be translated into the least significant bit (LSB) extraction, which is
equivalent to performing a modular reduction by 2 on their aggregated sum. (ii) Since
CKKS operations are defined over the ciphertext modulus q, any overflows beyond q are
automatically eliminated.

In this section, we introduce our strategy that automatically handles the overflows and
achieves Free-XOR.

3.1 Automated Overflow in CKKS
We recall the bootstrapping procedure defined in Sect. 2.1. In this process, the ciphertext,
which decrypts to a scaled message z + q0I, is processed during the EvalMod step. A key
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aspect of bootstrapping is the homomorphic removal of the redundant term q0I, which
involves the computationally intensive task of performing homomorphic modular reduction
by q0.

By observing overflow behavior when the encrypted message exceeds the modulus q,
we propose a framework that initially accumulates Boolean values into an integer and then
applies modular reduction by retaining only the LSB through the overflow. This approach
integrates seamlessly into the bootstrapping procedure, occurring naturally during the
SlotsToCoeffs operations. The overflow mechanism leverages the inherent modular q
operation, adding no significant complexity to the original bootstrapping process and thus
providing a free functional enhancement.

Modulus and scale management of SlotsToCoeffs for automated overflow. Consider a
scenario where τ consecutive XOR operations are performed, resulting in a large integer
within the range [0, τ ]. To handle values that exceed the modulus capacity, we shift the
least significant bit (LSB) to the most significant bit (MSB). This operation involves
multiplying ciphertexts by constant plaintext values, which is most efficiently achieved by
merging these values and pre-multiplying the resulting constants with the DFT matrices,
as suggested by [BMTH21].

Specifically, we employ the SlotsToCoeffs-first bootstrapping approach, which requires
starting the process with a modulus larger than q0. Assume the transformation matrix for
DFT is factorized into deg matrices and the difference in the scaling factor between the
shifted ciphertexts and the current one is given by δdiff = q0/2∆StC, where the ciphertext
at the StC level has a scale of ∆StC. Consequently, each factorized matrix is scaled by
µStC = (δdiff)

1
deg . Then, we integrate the automated overflow into SlotsToCoeffs as follows.

Starting with the input ciphertext at the StC level, which decrypts to

z = ∆StCm mod QStC, where QStC = q0 · · · qdeg,

we scale each factorized matrix by the factor µStC, such that M ′
i ← µStC×Mi. The encoded

DFT submatrices M̃1, . . . , M̃deg, with M̃i = Ecd(M ′
i , qi+1, N), are then applied as follows:

ctdeg−1 ← RS∆deg (M̃deg · ctdeg) with ctdeg−1 = Encsk (∆deg−1(µStC ·m′)) ,

...
ct0 ← RS∆1(M̃1 · ct1) with ct0 = Encsk (∆0 ·m(x)) .

This scale management enables homomorphic decoding without sacrificing the precision
of SlotsToCoeffs, as summarized by the following formula:

z = ∆StCm mod QStC
SlotsToCoeffs−−−−−−−−→ ∆0b(x) = ∆0m(x) mod q0.

After this operation, the message is transformed into its coefficient form, and the
modulus is reduced to the lowest level. Each coefficient is observed to decompose into two
parts: the binary part and the even-number part, as defined by

∆0m(x) mod q0 = ∆0(b(x) + 2I ′(x)) mod q0,

where I ′(x) is a polynomial with integer coefficients bounded by ⌈ τ−1
2 ⌉, and b(x) is a

polynomial with coefficients in {0, 1}N . Since the LSB has been shifted to the MSB (i.e.,
∆0 = q0/2), we obtain

q0

2 · b(x) mod q0 ←
q0

2 · b(x) + q0

2 · 2I ′(x) mod q0.
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This reduction occurs automatically because the redundant polynomial I ′(x) has
coefficients that are multiples of the base modulus q0. In other words, this overflow
happens during the SlotsToCoeffs operation by utilizing the scale management technique.
Subsequently, the bootstrapping procedures are applied in a manner similar to Boolean
bootstrapping [BCKS24], as follows:

q0

2 b(x) ModRaise−−−−−→ q0

2 b(x) + q0I(x) CoeffsToSlots−−−−−−−−→ q0

(
1
2b + I

)
.

After applying the approximated trigonometric function 1
2 (1− cos(2πx)) with the clean

functionality, we can remove the redundant term I. The base prime q0 serves as the scale
factor during the EvalMod phase and is often adjusted to match the modulus at this level.

Other methods on modular reduction in CKKS. A very recent work by Kim et al. [KN24]
explores the general case of modular reduction in CKKS. Since their work focuses on
computation over integers, they suggest to multiply an encrypted value of scale q0/tl by
tl−1 after SlotsToCoeffs to extract its LSB. However, this approach increases the noise
by tl−1 times and might not be suitable for Boolean circuits. Take transciphering as an
example, if an AES-encrypted bit serves as the Most Significant Bit (MSB) of an input of
the subsequent privacy-preserving application, even minor noise on that bit could result in
large errors in the function’s output.

3.2 XBOOT: Automated Overflow Combined with Bootstrapping

Algorithm 2: XBOOT
Input: ct=Encsk(∆StCm + ϵ) with ∥ϵ∥∞ ≪ 1, where ct ∈ R2

QStC

Output: ctout ∈ R2
Qrem

1 Setting: δdiff = q0/2∆StC

2 ctbin ← SlotsToCoeffs(ct)// Automated overflow.
3 ct′ ← CoeffsToSlots ◦ ModRaise(ctbin)
4 ctreal ← (conj(ct′) + ct′)/2
5 ctout ← EvalModfBin(ctreal) // fBin = 1

2 (1− cos(2πx)).
6 return ctout

We describe a combination of automated overflow and binary bootstrapping in Algo-
rithm 2. It takes as input a ciphertext ct = Encsk(∆StCm + ϵ), which decrypts to a vector
of integers. After applying homomorphic decoding with automated overflow in line 2, we
obtain ctbin = Encsk

(
b(x)

2 + ϵ′(x)
)

, where the message’s LSB is automatically shifted to
the MSB of the base modulus such that

q0

2 b(x)← q0

2 b(x) + q0I ′(x) mod q0.

After line 3, we have ct′ = Encsk
(b+ϵc

2 + I
)
, where I ∈ ZN/2 is an integer vector of small

magnitude and ϵc ∈ CN/2 represents noise related to the original ϵ′ and the homomorphic
operations. In line 4, the real part of ct′ is extracted, yielding ctreal = Encsk

(b+ϵr

2 + I
)
,

where ϵr ∈ RN/2.
Finally, after the homomorphic evaluation of the polynomial approximation of fBin =

1
2 (1 − cos(2πx)), we obtain ctout = Encsk(b + ϵout) at a higher modulus Qrem. We
omit the noise analysis as it is similar to the noise estimation in the original binary
bootstrapping [BCKS24, Thm 1].
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Reduced interpolation interval. In XBOOT, a sparser secret key and a lower ring degree
are utilized, allowing us to reduce the interpolation interval without compromising the
failure probability of bootstrapping. We describe the rationale behind as follows.

Recall that each coefficient of the redundant polynomial after the ModRaise step
follows the shifted Irwin–Hall distribution [LLL+21] over the interval [−1/2, 1/2]. The
failure probability can be calculated using the adapted cumulative distribution function
(CDF) corresponding to the binomial distribution for N trials, as specified in Bossuat et
al. [BMTH21, Eq. 1].

Table 1: Adapted K of Pr[∥I(x)∥∞ > K] ≈ 2−16 with different Hamming distance h.

log N 15
log(h) 5 6 7 8 9 10 11 12 13 14

K 10 14 20 28 40 56 80 113 160 226
log(Pr[∥I(x)∥∞ > K]) -17.8 -15.6 -15.6 -14.7 -15.2 -14.5 -15.1 -15.0 -15.0 -15.0

K/
√

h 1.77 1.75 1.77 1.75 1.77 1.75 1.77 1.77 1.77 1.77

log N 14
log(h) 4 5 6 7 8 9 10 11 12 13

K 7 10 14 20 28 39 56 79 111 158
log(Pr[∥I(x)∥∞ > K]) -23.4 -18.8 -16.6 -16.6 -15.7 -14.8 -15.5 -15.4 -15.0 -15.3

K/
√

h 1.75 1.77 1.75 1.77 1.75 1.72 1.75 1.75 1.73 1.75

A lower ring degree could lead to a reduced interpolation interval due to fewer trials in
the binomial distribution. We revisit the distribution to compute the adapted K values,
as shown in Table 1.

Additionally, [BTH22] suggests adopting a sparse secret key to reduce the complexity
of the EvalMod step. This approach does not compromise security, as the sparse operates
at a smaller modulus. XBOOT can significantly benefit from this technique, especially
given its smaller base modulus. When combined with a smaller ring degree (log N ≤ 15),
it results in a reduced interpolation interval K, thereby enhancing bootstrapping efficiency.

3.3 Possible optimizations and limitations
Lazier reduction. The previous sections focused on the specific scenario where boot-
strapping is applied immediately after the XOR gates. However, it is important to note
that XBOOT is also applicable in cases where XOR and AND gates are interleaved before
bootstrapping. Consider a toy example of two values x, y, each results from k instances of
dense XOR operations on Boolean values. Then an AND operation is applied to these two
values. We can deduce the following:(

x =
k⊕

i=0
xi

)
∧

(
y =

k⊕
i=0

yi

)
≡ LSB

((
x =

k∑
i=0

xi

)
×

(
y =

k∑
i=0

yi

))
.

This equivalence holds because

x ∧ y = 1 ⇐⇒ LSB
(

k∑
i=0

xi

)
= 1 and LSB

(
k∑

i=0
yi

)
= 1,

Therefore, we do not need to insert XBOOT immediately after the XOR gates; instead,
we can be lazier and insert XBOOT after the AND gate. Similar formulas would apply
to any Boolean circuit, where we can replace all XOR gates in the circuit with additions,
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analyze the dependencies of the computation graph, and strategically adjust the placement
of XBOOT without changing the original circuit’s topology.

Limitations. The BLEACH method of cleaning noise using h1(x) = 3x2− 2x3 only works
with Boolean values and is incompatible with integer values. Consequently, we can only
rely on bootstrapping for noise cleaning. In very rare cases, such as circuits primarily
composed of AND gates with only a few XOR gates, our framework may not outperform
BLEACH. However, for most practical scenarios where the number of XOR gates is higher
or comparable to that of AND gates, our framework consistently performs better.

4 Application to AES Transciphering
XBOOT immediately increases the efficiency for CKKS computations on Boolean circuits.
Consider the well-known AES transciphering as an example: the AES round function
consists of four key steps—SubBytes, ShiftRows, MixColumns, and AddRoundKey. The
best previous work on AES-CKKS transciphering [ADE+23] requires 9 multiplication
depths plus one bootstrapping per round. We can transform the XOR operations in
MixColumns and AddRoundKey into inexpensive homomorphic additions, followed by
XBOOT. This transformation reduces the cost per round to 3 multiplication depths plus
one bootstrapping. We describe the details in the next subsections.

4.1 Details of SubBytes Operation

Algorithm 3: SubBytes (Homomorphic LUT)
Input: Encrypted bits x0, x1, ..., x7 with each bit xi ∈ {0 + ϵ, 1 + ϵ}N/2

Output: sbox as the LUT output such that {y0, y1, ..., y7} = S-box(x0, x1, ..., x7)

// Obtain the monomial table for each AES S-box output bit.
1 for i = 0 to 7 do
2 Ti ← AES S-box LUT

// Compute all required monomials homomorphically.
3 M← EvalRecurse(x0, ..., x7)// |M| = 255

// Initialize each bit with the constant term of the monomial.
4 sbox[i]← {Ecd(consti)} for i ∈ {0, 1, .., 7}
5 for i = 0 to 7 do

// Gather coefficients for each output bit
6 for j = 1 to 255 do
7 if Ti[j] ̸= 0 then
8 mon← cMult(M[j], Ti[j])// mon is of the form cu · (

∏7
i=0 xui

i )
9 sbox[i]← Add(sbox[i], mon)

10 return sbox

As described in Section 2.3, we employ a recursive method in Algorithm 1 to obtain all
the monomials required for the AES S-box LUT using 247 multiplications with a depth
of 3. To achieve the final result of the SubBytes, we utilize a strategy that combines all
the single terms of monomials into the Boolean function in Definition 1 for each S-box’s
output bit. The procedure is detailed in Algorithm 3 and described as follows.
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The input to the SubBytes operation consists of encrypted 8-bit ciphertexts. Each
ciphertext decrypts to a Boolean vector xi, where each element represents a specific bit of
the state from N/2 different blocks. These blocks are processed using SIMD operations,
resulting in the encrypted 8-bit output {y0, y1, . . . , y7}.

• Preprocess phase: As shown in lines 1–2, we precompute the coefficients of the
Boolean function for each output bit of the AES S-box and store them in the plaintext
table Ti. This procedure involves applying the AES S-box LUT to the input variable
and storing the result in the coefficient table.

• Monomial making: This procedure is the computational bottleneck, requiring
247 multiplications with a depth consumption of 3. After applying the EvalRecurse
function homomorphically, we obtain all monomials in the set M.

• Boolean function: We consider each monomial in the obtained set xu ∈ M as
defined in Definition 1. This procedure involves combining these monomials with
corresponding coefficients and summing them together. Specifically, we apply a
scalar multiplication cMult to each monomial M[j] using the constants from the
pre-computed coefficient table Ti, corresponding to the AES S-box. By summing
all these coefficient-adjusted monomials mon, we derive the Boolean function for a
specific output bit.

Note that the Boolean function phase of our SubBytes operation is almost computa-
tionally free, as cMult with integer inputs is processed similarly as multiple additions of
the ciphertext itself. This implementation is more efficient and software-friendly because
the coefficients in the table Ti can include large numbers in Z, eliminating the need for
numerous homomorphic addition operations that would otherwise be required.

4.2 Free XOR AES Evaluation
We compare our free XOR procedure with the original procedure in Fig. 2 and provide a
detailed implementation in Algorithm 4, which is described below.

As shown in Fig. 2, the newly proposed free XOR AES evaluation uses the same
input as the original one. Specifically, each 128-bit AES block takes a 32-bit nonce and a
96-bit counter as input. The vector of these blocks is denoted as S, where each element
S[i] = B = {B0, B1, . . . , B N

2
} for 0 ≤ i < 128. This notation can also be expressed by

gathering N
2 nonces and counters as S = {n∥c}N/2. During the encryption process, the

currently processed cipher block is also called the cipher’s state.
After applying Ecd(·) to the batched state bits one by one, we obtain 128 plaintext

polynomials in RN , storing all N/2 blocks of AES-CTR input values, with each slot
containing a noised Boolean value. First, we perform the AddWhiteKey operation by using
the XOR operation on the obtained plaintext polynomial S with the duplicated encrypted
symmetric key K0 provided by the client. This symmetric key, encrypted under sk, is
denoted as K0 = {k0, k0, . . . , k0︸ ︷︷ ︸

N/2 times

}, which represents N/2 repetitions of the symmetric key.

Afterwards, we apply the 9-round AES free XOR function to update the state.

• SubBytes: As shown in Algorithm 3, the input consists of encrypted bits, and the
output is the encrypted 8-bit AES S-box look-up table (LUT) result.

• ShiftRows: Each bit of the state is encrypted in a different FHE ciphertext, which
only involves changing the indices of the ciphertext.
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SubBytes (depth 3)

ShiftRows (depth 0)

MixColumns (depth3)

AddRoundKey (depth 1)

Bootstrap
Clean (depth 2)

SubBytes (depth 3)

ShiftRows (depth 0)

AddRoundKey (depth 1)

Bootstrap
Clean (depth 2)

Repeat 9
Rounds

Last Round

SubBytes (depth 3)

FMixColumns

FAddRoundKey

ShiftRows 

SubBytes (depth 3)

FAddRoundKey

ShiftRows

Repeat 9
Rounds

Last Round

Figure 2: Original AES evaluation procedure (left) and our free XOR AES evaluation
procedure (right).

• FMixColumns: Let each column of the state as [b0, b1, b2, b3]⊤. According to [FRL19],
we have the updated column as:

b′
0 = x · (b0 + b1) + b1 + b2 + b3

b′
1 = x · (b1 + b2) + b2 + b3 + b0

b′
2 = x · (b2 + b3) + b3 + b0 + b1

b′
3 = x · (b3 + b0) + b0 + b1 + b2.

Let (a7, a6, ..., a0) denote the 8 bits of the byte. Multiply by x in GF(28) is

(a7, a6, a5, a4, a3, a2, a1, a0) = (a6, a5, a4, a3 + a7, a2 + a7, a0 + a7, a7).

In FMixColumns, the + operation is translated into homomorphic addition, resulting
in a small integer in each slot of the FHE ciphertext.

• FAddRoundKey: 128 paralleled homomorphic additions are applied to the state.
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Algorithm 4: Homomorphic AES Evaluation
Input: S = {n||c}N/2, where each block takes a 32-bit nonce and a 96-bit counter.
Input: Ki, where 0 ≤ i ≤ 10 are the round keys duplicated for N/2 times.
Output: ctout = Encsk(keystream + ϵtr), FHE encrypted keystreams.

1 S← Ecd(n||c)
2 state← AddWhiteKey(S, K0)// Apply whitening key with XOR
3 for i = 1 to 9 do
4 for j = 0 to 15 do
5 state[8 ∗ j : 8 ∗ (j + 1)]← SubBytes(state[8 ∗ j : 8 ∗ (j + 1)])
6 state← ShiftRows(state)
7 for j = 0 to 3 do

// Apply homomorphic addition instead of XOR
8 col← FMixColumns(state[32 ∗ j : 32 ∗ (j + 1)])
9 state[32 ∗ j : 32 ∗ (j + 1)]← col

10 state← FAddRoundKey(state, Ki)
11 state← XBOOT(state)

// Last Round
12 for i = 0 to 15 do
13 state[8 ∗ i : 8 ∗ (i + 1)]← SubBytes(state[8 ∗ i : 8 ∗ (i + 1)])
14 state← ShiftRows(state)
15 state← FAddRoundKey(state, K10)
16 ctout ← XBOOT(state)

17 return ctout

• XBOOT: During StC, the bounded small integer in each slot is transformed into a
Boolean value through automated overflow. This operation includes bootstrapping,
ensuring clean functionality.

By repeating the round function described above for 9 rounds and then applying a
final round that performs the same operations except for FMixColumns, one can obtain
N/2 blocks of the keystream, denoted as ctout in Algorithm 4. It is important to note that
this procedure is independent of the messages and is considered part of the offline phase.
After homomorphically XORing with the encoded N/2 blocks of the symmetric ciphertext
Ecd(c), the FHE-encrypted messages can be obtained.

4.3 Further Optimization

In each AES round function, 128 FHE ciphertexts are updated with each operation defined
above, resulting in 128 parallel XBOOT calls, which can be effectively multi-threaded.

We pack two ciphertexts that encrypt real numbers into a single complex number
ciphertext to reduce the XBOOT calls. After CoeffsToSlots, both the real and imaginary
parts of the ciphertext are extracted. We then apply EvalMod to both parts, obtaining
two ciphertexts from a single BatchXBOOT operation in Algorithm 5. As a result, we
can decrease the 128 XBOOT operations required in one AES round to 64 BatchXBOOT
operations.
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Algorithm 5: BatchXBOOT
Input: ct0, ct1 ∈ R2

QStC
that decrypts to (m0 + ϵ0), (m1 + ϵ1) with ϵ0, ϵ1 ∈ RN/2

Output: ctout
0 , ctout

1 ∈ R2
Qrem

1 Setting: δdiff = q0/2∆StC

2 ct = ct0 + cMult(ct1, 1i) // ct = Encsk ((m0 + im1) + ϵ′)
3 ctbin ← SlotsToCoeffs(ct)
4 ct′ ← CoeffsToSlots ◦ ModRaise (ctbin)

5 ctreal
0 ← (conj(ct′) + ct′)/2

6 ct′′ = cMult(ct′,−1i) // ct′′ = Encsk ((b1 − ib0 + ϵ′′)/2 + I)
7 ctreal

1 ← (conj(ct′′)+ ct′′)/2

8 ctout
0 ← EvalModfBin(ctreal

0 )
9 ctout

1 ← EvalModfBin(ctreal
1 )

10 return ctout
0 , ctout

1

5 Unlocking New Potentials: Application to Rasta
XBOOT also unlocks new possibilities for CKKS, particularly in scenarios where the
number of XOR gates is prohibitively large. For example, several symmetric ciphers have
been defined over Z2 including LowMC [DEM15], Rasta [DEG+18], Dasta [HL20], and
Fasta [CIR22]. What these ciphers have in common is their extensive use of XOR gates,
which presents significant challenges for their evaluation under CKKS. The designers of
these ciphers did not regard this as an issue, as they were primarily designed with BGV
or MPC transciphering in mind, where XOR gates are relatively inexpensive. After all,
BLEACH’s idea of CKKS computation on Boolean circuits had not been proposed at that
time.

Since BLEACH’s idea is quite new, applications (beyond transciphering) for utilizing
CKKS on Boolean circuits are relatively scarce. In this section, we still focus on tran-
sciphering and use Rasta as an example to demonstrate how XBOOT could make the
difference.

The incompatibility between Rasta and BLEACH. Rasta incorporate randomly gener-
ated linear matrices within its linear layers to resist statistical attacks. This approach is
motivated by the observation that statistical attacks require numerous queries to the same
encryption function to gather sufficient data for formulating a statistical model.

Let A ∈ RN/2
n×n represent N

2 randomly generated n×n square matrices. When evaluating
matrix multiplication, we consider one column of the matrix [a0, a1, . . . , an]⊤. The updated
column is then given by:

y0 =
n−1⊕
i=0

(a0 ∧ x0), y1 =
n−1⊕
i=0

(a1 ∧ x1), · · · , yn−1 =
n−1⊕
i=0

(an−1 ∧ xn−1),

where yi and xi denote the updated element and input element of a column, respectively.
As shown, each update incurs a substantial number of AND and XOR operations. The

AND operations are applied to ciphertexts x and plaintexts a, thus are inexpensive. In
contrast, the XOR operations involve ciphertext-ciphertext interactions. In BLEACH, the
XOR function is represented as (x− y)2, which consumes one multiplication. A 351-bit
state in Rasta would require 351× (351− 1) = 122, 850 homomorphic multiplications for
updating a single element of the column if we use BLEACH.
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Application of XBOOT to Rasta. We briefly revisit Rasta’s keystream generation in
Fig. 3. Note that other FHE-friendly Z2 ciphers that include matrices operations also
benefit from XBOOT.

XOF

Figure 3: Rasta keystream generate function. S, Ar,nc,i denote the nonlinear function and
the randomized matrix, respectively.

Rasta employs the randomly generated permutation Pnc,i on the symmetric key K and
XOR the same K with the output of the permutation to output keystream Knc,i = K⊕Pnc,i.
The permutation is defined as:

Pnc,i = Ar,nc,i ◦ S ◦Ar−1,nc,i ◦ · · · ◦ S ◦A1,nc,i ◦ S ◦A0,nc,i(K),

where r denotes the number of rounds based on the cipher version. Each matrix in Ar,nc,i

is generated by an extendable-output function (XOF) [PF15], depending on the public
nonce nc and the block counter i. The affine layer is defined as Ar,nc,i = Mr,nc,i · x + cr,nc,i,
which involves a binary multiplication of the random matrix Mr,nc,i followed by the
addition of a round constant cr,nc,i. The non-linear χ function layer S is defined as
yi = xi + xi+2 + (xi+1 ∧ xi+2), where 0 ≤ i < n, with indices i taken modulo n. We
refer [DEG+18] for details.

In our implementation, we also consider the same data packing method as we did in
AES-CKKS transciphering, with each bit of the Rasta state encoded in different FHE
ciphertexts. This enables the simultaneous evaluation of N

2 cipher blocks. Each bit of
the state is updated with S layers, involving one multiplication with a depth of one
and producing a small integer bounded by three. This efficiency gain benefits from the
interleaved XOR and AND operations in free XOR.

When evaluating the affine layer Ar,nc,i = Mr,nc,i · x + cr,nc,i, all N
2 random matrices

are encoded into (n× n) FHE plaintexts, while the round constants are encoded into n
plaintexts. One column of the matrices is updated as

y0 =
n−1∑
i=0

(a0 ∧ x0), y1 =
n−1∑
i=0

(a1 ∧ x1), · · · , yn−1 =
n−1∑
i=0

(an−1 ∧ xn−1),

where [a0, a1, . . . , an−1]⊤ represents one column of the batched random matrices, with
each element ai = Ecd(ai

0, ai
1, . . . , ai

N/2) for 0 ≤ i < n. After the RS operation, with a
level consumption of one, the batched round constant is added to the state. By applying
XBOOT to each FHE ciphertext, the round function can be iterated until the keystream is
output.

With XBOOT, XOR operations are transformed into homomorphic additions, resulting
in a noised integer in each slot of the FHE ciphertext, bounded by τ = (n + 1)× 3 (where
the result of each S layer is bounded by three). After applying XBOOT, these integers
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are converted into Boolean values, allowing other operations within the round function to
proceed efficiently. This approach significantly improves performance by leveraging the
SIMD capabilities of the CKKS scheme, with a bootstrapping layer consumption of r + 1.
Each bootstrapping layer contains ⌈n

2 ⌉ calls to BatchXBOOT.

6 Experimental Results
We implemented XBOOT using the open-source homomorphic encryption library Lattigo
V6 [lat24] and conducted experiments based on this framework. All experiments were
performed on a server equipped with an Intel Xeon Platinum 8369B 64-Core 2.50 GHz
machine with 128 GB RAM.

In the experiments, N denotes the ring degree of the bootstrapping parameter. The
symbols h and h̃ represent the Hamming weights of the dense and sparse secret keys,
respectively, as described in the sparse secret encapsulation from [BTH22]. log(QP )
denotes the maximum modulus used in the key-switching process, dnum indicates the
gadget rank of the gadget decomposition, and depth represents the multiplication levels
available after bootstrapping. All parameters used in the experiments ensure 128-bit
security, as referenced in [APS15].

6.1 FHE Parameters
Similar to [BCKS24], our XBOOT benefits from modulus savings due to the reduced gap
between the base modulus q0 and the scale ∆0. Moreover, the novel proposal of its free
XOR functionality further reduces the multiplication depths. As a result, we can decrease
the ring degree N to 215 with a total modulus log(QP ) ≤ 830-bit, ensuring 128-bit security.
And we switch between different Hamming weights for bootstrapping as suggested in
[BTH22]. The detail patameters are listed in the following table.

Table 2: Concrete parameters for transciphering are as follows: The log(q) columns
represent the consumption of primes, with Base, StC, Mult, EvalMod, and CtS indicating
the prime size and the number of primes consumed in each step. The log(p) column
denotes the bit-size and the number of temporary moduli used for key switching.

N (h, h̃) log(QP ) dnum depth per round
Param-AES-13* 214 256, 16 433 13 3
Param-AES-14 215

256, 32 829 4 3
Param-Rasta-14 215 830 3 2

log(q) log(p)Base StC Mult EvalMod CtS
Param-AES-13 32 28 31× 3 32× 6 28× 2 32
Param-AES-14 38 36× 2 37× 3 38× 7 38× 4 38× 5
Param-Rasta-14 42 41× 2 41× 2 42× 7 40× 3 42× 5

* The significantly smaller log(qp) ≈ 64-bit at the lowest level permits a lower Hamming
weight of h̃ = 16 while still achieving more than 128-bit security, according to [APS15].

6.2 AES Transciphering Results
We compare our implementation with the previous best results (directly taken from their
papers) in Table 3.
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As shown, the three CKKS-based methods achieve the least time per block in an
amortized sense, which translates to the highest throughput. However, in terms of latency,
several TFHE-based methods outperform the CKKS ones. This is because TFHE-based
methods have a batch size of 1. In other words, they only have to deal with one AES
block at a time, whereas CKKS-based methods leverage the SIMD feature and deal with
multiple AES blocks at a time.

The performance of BGV-based method [GHS12] falls between that of CKKS ones and
TFHE ones: it exhibits moderate latency and time cost per block. Note that [GHS12]
would have similar throughput as [ADE+23] if we divide their time cost by 64. However,
FHE is not only computationally intensive but also incurs a significant memory footprint,
which makes full parallelization challenging. Indeed, our 64-threaded implementation can
only achieve a 20-30 times performance increase compared to our own single-threaded
implementation.

Among the three CKKS-based methods, Param-AES-13 exhibits lower latency but
a higher amortized cost compared to Param-AES-14 since its smaller parameter can
accommodate only half as many AES blocks. But Param-AES-14 achieves a 5× reduction
in latency and a 2.5× reduction in amortized time cost than [ADE+23] under smaller
parameters. This demonstrates the effectiveness of XBOOT.

Table 3: Comparison of AES transciphering efficiency. Following [ADE+23], we report
the latency (the time required to transcipher a smallest batch of symmetric cipher) and
the amortized time cost per block (calculated as latency/batch size). Each AES block
contains 128 bits.

Scheme Work Latency Time per block Batch size

BGV [GHS12] 240 s 2 s 120 blocks

TFHE

[SMK22] 252 s 252 s

1 block

[TCBS23] 270 s 270 s
[BPR24] 211 s 211 s

[WWL+23] 86 s 86 s
[WLW+24] 110 s 110 s
[WLW+24] 46 s 46 s

[SAP24] 61.9 s 61.9 s
[SAP24]* 0.95 s 0.95 s

CKKS
[ADE+23]* 1200 s 37 ms 215 blocks

Param-AES-13* 153 s 18.7 ms 213 blocks
Param-AES-14* 236 s 14.4 ms 214 blocks

* 64-threading is applied. The multi-threaded version of [SAP24] uses 16 threads while
we use 64 threads, so we improve their performance by 4× for comparison.
Works without star symbol report their results using single thread.

6.3 Rasta Transciphering Results
Transciphering for Rasta have been studied in several previous papers. We choose the
Rasta-6 cipher and compare our implementation with their results in Table 4.

As shown, the BGV and TFHE methods require tens to thousands of seconds to process
one block of Rasta cipher, significantly slower than our result of 18.5 milliseconds. Even if
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Table 4: Comparison of Rasta-6 transciphering efficiency. Each block contains 351 bits.

Scheme Work Latency Time per block Batch size

BGV [DEG+18] 815 s 815 s 1 block
[DGH+23] 207 s 207 s 1 block
[CHK+21] 11980 s 16.6 s 720 blocks

TFHE [DGH+23] 3275 s 3275 s 1 block

CKKS BLEACH* > 16124 s > 0.49 s 215 blocks
Param-Rasta-14* 303 s 18.5 ms 214 blocks

* 64-threading is applied.
Works without star symbol report their results using single thread.

we grant them the advantage of perfect parallelization and divide their time cost by 64,
the best-performing [CHK+21] is still at least 14 times slower than ours when evaluated
by amortized time cost per block.

Since Rasta-CKKS transciphering using BLEACH without free XOR is extremely
time-consuming, we chose not to implement it and instead estimated its cost to highlight
the importance of free XOR. The number 16124 ≈ 351× 350× 7× 1.2/64 is explained as
follows: Each evaluation of a batched random matrix requires 351 × 350 XOR operations.
For the seven random matrices in Rasta-6, this translates to at least 351 × 350 × 7
multiply-then-relinearlize operations when using BLEACH. We only consider the cost of
the KS (Key Switching) step in relinearization, which takes approximately 1.2 second
according to [MBTPH20, Table 5]. Then we divide the cost by 64 to simulate multi-
threading. The amortized time cost block is at least 16124/215 ≈ 0.49s. This is at least
26× slower than ours because we treat the XORs as cheap additions.

Other FHE-friendly ciphers. Dasta is not compatible with CKKS due to its randomized
bit permutation in each block. The efficiency of CKKS stems from its support for SIMD
operations, which enables the simultaneous execution of the same operations on multiple
data chunks. However, Dasta’s use of different bit permutations for each block makes it
incompatible with these SIMD operations.

LowMC employs a randomized matrix for its linear layer, which requires more rounds
and consequently additional bootstrapping. While XBOOT could be beneficial for LowMC,
it would result in higher transciphering latency compared to Rasta. In contrast, Fasta, with
its larger state size, requires significantly larger FHE ciphertexts to fully encapsulate the
state, leading to considerably more RAM consumption during homomorphic evaluation.

6.4 Comparison for Transciphering Accuracy
Although the modulus chains in the experiments are of reduced size, the transciphering
accuracy of the Free-XOR framework is significantly enhanced due to the customized
bootstrapping for a limited message domain. In [ADE+23], it is claimed that the average
noise is AVG(|pt−Decsk(ct)|) ≈ 1.16× 2−10, indicating a bias in the binary values from
the original set {0, 1}N/2.

In this work, we integrate the optimizations from [BCKS24], exploit the limited Boolean
message domain of transciphering, carefully adapting the bootstrapping process to enhance
performance while maintaining high accuracy. As evidence, Param-AES-14, which offers
the best throughput, exhibits an average noise of AVG(|pt − Decsk(ct)|) ≈ 1.1 × 2−19.
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The configuration of Param-AES-13 has an average noise of AVG(|pt − Decsk(ct)|) ≈
1.2× 2−13.

7 Conclusion
In this paper, we study the problem of homomorphic computation on Boolean circuits
using CKKS. We propose a novel method XBOOT that consumes zero multiplication
depth per XOR gate instead of one. By achieving a shallower multiplication depth, we
are able to enhance the AES transciphering efficiency to 256KB per 236 seconds, which is
a 5× latency improvement and 2.5× throughput improvement over the state-of-the-art
method. We also adopt our method to Rasta cipher to show the generalability of XBOOT.
As a result, we can better leverage the SIMD feature of CKKS homomorphic encryption
and improve the throughput of Rasta transciphering by more than one order of magnitude.
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