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Abstract. CHVote is one of the two main electronic voting systems
developed in the context of political elections in Switzerland, where the
regulation requires a specific setting and specific trust assumptions.
We show that actually, CHVote fails to achieve vote secrecy and individ-
ual verifiability (here, recorded-as-intended), as soon as one of the online
components is dishonest, contradicting the security claims of CHVote.
In total, we found 9 attacks or variants against CHVote, 2 of them be-
ing based on a bug in the reference implementation. We confirmed our
findings through a proof-of-concept implementation of our attacks.

1 Introduction

Several countries use Internet voting for politically binding elections, at least in
trials. This often comes with the discovery of flaws, such as in Australia [21],
Estonia [24], Switzerland [14], United States [28], or France [15]. One of the most
demanding countries in terms of regulation is Switzerland. The requirements are
provided in an ordinance of the Swiss Federal Chancellery [26] and include:

– vote secrecy: no one should know how a voter voted;
– individual verifiability: when a voter successfully completes their voting ses-

sion, they must be guaranteed that their vote will be counted, as intended;
– universal verifiability: the result corresponds to the recorded ballots.

The ordinance comes with a demanding trust model: trust must be split between
different components; some of them being online, others offline. Security goals
must be met even if all but one online component are compromised. Moreover,
for individual verifiability, the ordinance requires to leverage verification codes to
protect against corrupted voting devices. Voters (securely) receive a voting sheet,
with a verification code for each candidate. They confirm their ballot only if their
voting device is able to display the right verification code, which guarantees that
it has encrypted the right vote. This property is called cast-as-intended.

This work benefited from funding managed by the French National Research Agency
under the France 2030 programme with the reference ANR-22-PECY-0006.



To improve confidence in the system, the Chancellery also asks for a public
specification and a public code. Public scrutiny is encouraged through a bug
bounty program and regular intrusion tests. A symbolic and a cryptographic
proofs of the protocol are needed before its deployment.

CHVote. Since the last major flaw found in 2019 [14] against a protocol
proposed by Scytl, the only system used in practice is the one developed by
SwissPost, that is an evolution of the Scytl system. However, in the Swiss land-
scape, there is a second major proposed protocol, CHVote, the main competitor
to the SwissPost protocol. The Canton of Geneva has been developing a voting
system since 2003, and it has been used by 125 000 voters in 4 cantons [1]. A
second generation of their system, much more secure, has been developed since
2016 [19]. This is the system we refer to when we talk about CHVote. While the
funding from the Canton of Geneva has been discontinued in 2018 [2], CHVote
is still under continuous development both in terms of specification (20 versions
from 2017 to 2024) and reference code (last release of OpenCHVote is 2.3.1 on
December 2024), with new funding from the Federal Chancellery in 2024 [20].

The CHVote protocol relies on Oblivious Transfer (OT) [17] in order to
achieve cast-as-intended. The idea is natural: the online system as a whole must
return the verification code corresponding to the candidate A when receiving
an encryption of A, without learning A, which is exactly the principle of OT.
CHVote then builds upon this idea and extends it in order to distribute the trust
among the online components (only one is trusted) and to allow for k-out-of-n
OT, in order to cover elections where voters may select up to k candidates among
n. CHVote is claimed to fully satisfy the Chancellery requirements.

Our contributions. We conduct a systematic review of the CHVote protocol
and we discovered that it satisfies neither vote secrecy nor individual verifiabil-
ity, as soon as one online component is dishonest. On the first side, our attack
on vote secrecy relies on an issue on the OT primitive used in CHVote. Indeed,
it does not protect against selective failure attack [10]. Hence a dishonest com-
ponent may selectively modify one of their (shared) verification codes and see
whether the voter can still proceed. If yes, the voter did not vote for the can-
didate corresponding to the modified code. We show that this attack can be
made completely silent (when the voter did not vote for the modified option)
in the subsequent phases of the protocol, and undetected by the other (honest)
components of the system, including the external auditor.

On the other side, our verifiability attack relies on the fact that CHVote
misses an agreement procedure between the online components: they each answer
independently, even if they do not share the same view. This can be exploited by
a malicious component, collaborating with a dishonest voting device, to register
a ballot for B while the voter has selected A and received the corresponding
verification code for A. The dishonest component will be able to pretend that it
has only seen a ballot for B, and the honest components will silently accept a
confirmation phase made of mixed contributions (from ballots for A and B). The
inconsistency between the views of the honest and dishonest components will be
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caught only after the tally, by the external auditor, with no way of distinguishing
between the honest and dishonest behaviors.

Moreover, we discovered that the reference implementation of CHVote [3]
fails to perform some of the checks mentioned in the specification of the com-
ponents of the system. We exploit this implementation bug to show that the
(first) online component of the system can fully manipulate the received ballots,
replacing them by any vote of its choice, without being detected by the other
online components of the system. This attack will, again, be detected after the
tally, by the external auditor. However, the Chancellery does not assume any
honest auditor for the individual verifiability property.

We also considered the case where all online components are dishonest for
vote secrecy, as prescribed by the Chancellery when all the online components are
operated by the same private company (which is the case in practice). CHVote
does not claim any security in this case and, actually, vote secrecy completely col-
lapses in this case since we show that honest but curious online components fully
learn who voted what, although they do not have the entirety of the decryption
key. Since they do not need to behave maliciously, the attack is undetectable. It
simply relies on the fact that the last decryption step, performed by an external
offline authority, is missing a round of shuffling, probably due to organizational
constraints.

We implemented our main attacks against the reference implementation and
confirmed our findings. In the last part of this paper, we discuss possible direc-
tions on how to fix the CHVote protocol.

Related work. An attack against individual verifiability was found in 2017 [9],
due to the fact that the oblivious transfer primitive did not achieve sender pri-
vacy. Hence a dishonest voting device could actually obtain the verification code
corresponding to candidate A while encrypting a vote for B. This flaw was fixed
in a later version of the specification, at the cost of a higher complexity (O(nk)
where n is the number of candidates and k is the number of selected candidates).
Up to our knowledge, no other attack was found against CHVote since then. A
symbolic and a cryptographic security proofs have been proposed [8], for verifia-
bility only (no proof for vote secrecy). These proofs fail to catch our verifiability
attacks due to the fact that they considered that the counted ballots are the
ones registered by the honest online component. This issue however is that it is
impossible to identify which component is honest.

2 Overview of CHVote and trust model

2.1 Presentation of the protocol

In the work, we refer to the latest version of the specification at the time of
writing, namely the 20-th revision of [20], corresponding to version 4.3. The full
protocol supports a wide variety of possibilities, including multiple questions,
multiple answers, several counting circles, and even write-ins. To illustrate our
attacks, we concentrate on a minimalistic situation, where there is only one ques-
tion, and the voter must select exactly one voting option among n possibilities.
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Cryptography and notations. We loosely follow the notation system of the spec-
ification. Let G be a cyclic group generated by g of prime order q. The protocol
relies on ElGamal encryptions in G. If m is a group element, then the encryption
of m with public key pk and randomness r is Encrpk(m) = (pkr m, gr). A list of
group elements p1, p2, . . . , pn encode the n voting options: if the option number
s is selected by the voter, the voting client encrypts m = ps.

Various zero-knowledge proofs are used. They are classical proofs of knowl-
edge based on Sigma protocols. In this paper, we denote by πX a proof of knowl-
edge of X. We use hash as a notation for a cryptographic hash function, and we
write short hash when the output is small, due to usability considerations, and
can be brute-forced. We always use the notation X(j) for some data X related
to the j-th authority. We denote [X(j)]j or [Xj ]j a vector of data indexed by j.

Participants. The protocol relies on several authorities:

– Election administrator (Admin). It defines the general setting (electoral
roll, questions, etc), and holds a share of the decryption key.

– Election authorities (EA). They produce voting material to be sent to
voters by postal mail; during the voting phase, they collect the encrypted
ballots, and send the verification codes to the voters; each EA also holds a
share of the decryption key.

– Printing authority (Printer). During the setup, it collects the data from
the election authorities, prints them, and sends them to voters by post.

– Verifier. This group of third-parties checks that the data at the end of the
election is consistent.

Finally, in order to study the cast-as-intended property, it is important to sepa-
rate the Voter from their Voting client.

In a typical Swiss situation, the number of Election authorities is 4, but this
is not at all fixed in the protocol.

Setup. First, Admin defines the setting, including the n possible voting options,
and, together with the EAs, collectively generates a public key pk. Then, for

each voter, the j-th EA picks a set of partial verification codes [M
(j)
i ]1≤i≤n, one

for each voting option. Upon reception of these, for all i, the Printer hashes each

M
(j)
i to a short bit string V

(j)
i , and aggregate them with a xor to produce a ver-

ification code vci printed on the voter’s voting sheet. The EAs also collectively
produce the eligibility data x̂ = gX , where X =

∑
j X

(j) (called voting code in

the specification), the confirmation data ŷ = gY , where Y =
∑

j Y
(j), and the

vote validity data ẑ = gZ , where Z can be deduced from the [M
(j)
s ]j , for any

selection s (more details about Z will be given when describing the verifiability
attack). The values X and Y are computed by the Printer by aggregating con-
tributions of all the EAs, and printed on the voter’s sheet. The EAs know x̂, ŷ
and ẑ for each voter.
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Voter
vote selection s
credentials X,Y

Voting Client
EA j

partial verif. codes [M
(j)
i ]1≤i≤n

s, X
a = Encrpk(ps), x̂ = gX , πr,X

(Resp(j), δ(j)) =

GenResp([M
(j)
i ]i, a)

[Resp(j)]j

[M (j)]j = GetVC([Resp(j)]j , r, s)

vc =
⊕

j short hash(M
(j))

vc

Check vc
Y

γ = GenConf(Y, [M (j)]j)

Check γ as expected
Add a in local ballot box

[δ(j)]j
pc = GetPC([Resp(j), δ(j)]j , r)

Check pc

GenResp([M
(j)
i ]1≤i≤n, a = (a1, a2))

(* run by the j-th EA *)

Pick z
(j)
1 , z

(j)
2 , β ∈R Zq

b(j) := a
z
(j)
1

1 a
z
(j)
2

2 β; d(j) := pkz
(j)
1 gz

(j)
2

For i ∈ [1, n]:

ki := p
z
(j)
1

i β

C
(j)
i := M

(j)
i ⊕ hash(ki)

Resp(j) := (b(j), d(j), [C
(j)
i ]i∈[1,n])

Return Resp(j) and δ(j) = (z
(j)
1 , z

(j)
2 )

GenConf(Y, [M (j)]j)
(* run by Voting Client *)
ŷ := gY

For all j:
See M (j) as point (x(j), y(j))

Z :=
∑

j y
(j); ẑ := gZ

πY,Z := pok of Y and Z
Return γ = (ŷ, ẑ, πY,Z)

GetVC([Resp(j)]j , r, s)
(* run by Voting Client *)

Expand Resp(j) as (b(j), d(j), [C
(j)
i ]i)

For all j:
k(j) := b(j)(d(j))−r

M (j) := C
(j)
s ⊕ hash(k(j))

Return [M (j)]j

GetPC([Resp(j), δ(j)]j , r)
(* run by Voting Client *)

Expand Resp(j) as (b(j), d(j), [C
(j)
i ]i)

For all j:

Check d(j) = pkz
(j)
1 gz

(j)
2

β(j) := b(j)(d(j))−rp
−z

(j)
1

s

For i ∈ [1, n]:

k
(j)
i := p

z
(j)
1

i β(j)

M
(j)
i := C

(j)
i ⊕ hash(k

(j)
i )

P (j) := short hash(M
(j)
1 , . . . ,M

(j)
n )

Return pc =
⊕

j P
(j)

Fig. 1. Overview of the voting phase of the CHVote protocol. This is a simplified
version of Protocols 7.6 and 7.7 in [20]. The four algorithms are simplified versions of
Algorithms 8.27 to 8.38.
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Voting phase. This is a 2-round protocol between the Voter and the EAs, via
the Voting client, summarized in Figure 1. During this phase, the EAs do not
communicate with each other. First, the voter gives their eligibility data X and
their selected voting option to their Voting client, which encrypts it with pk and
sends it to all the EAs, together with x̂ = gX and a ZKP. The j-th EA does

its “sender” part of the OT protocol, and produces n values [C
(j)
i ]1≤i≤n. The

tricky part is that the ElGamal ciphertext sent by the Voting client is seen as

the “query” part of the OT. From the [C
(j)
i ]i and other opening data, the Voting

client can compute [M
(j)
s ]j , and then follow the same procedure as the printer

to produce the verification code vc, shown to the Voter.
The Voter checks that the code corresponds to the one printed on paper,

and if this is the case, it initiates the second round by giving its confirmation
code Y to the Voting client, which can deduce ŷ and ẑ from it and previously
received information. Together with a ZKP, this form γ that is sent to the EAs.
Each authority checks that γ corresponds to the values committed during the
setup phase. If this is the case, they record the ballot in their (local) ballot box,
and then send additional data, so that the Voting client can compute all the
partial verification codes, and not only the one corresponding to s. From these,
the Voting client deduces a participation code pc, that the Voter can compare
to what is printed on their sheet.

Tally phase. The EAs perform one round of verifiable mixnets, and then one
round of partial decryption. Finally, Admin completes its partial decryption,
and publishes the result. The Verifier checks that all the data is consistent.

2.2 Trust model and security claims

Security properties. Like most e-voting protocols, CHVote aims at preserving
vote secrecy and verifiability. Verifiability can be defined as three properties:

– recorded-as-intended: if a voter has successfully performed all their checks,
then they are guaranteed that their ballot is correctly recorded, for the vote
they intended.

– universal verifiability: the result of the election corresponds to the recorded
ballots.

– eligibility: recorded ballots only come from voters who have effectively voted.

Recorded-as-intended combines cast-as-intended (the cast ballot corresponds to
the voter’s intent) and recorded-as-cast (the recorded ballot is the cast one). It
is often called individual verifiability in the literature. However, in the Chan-
cellery terminology [26], individual verifiability stands for the combination of
recorded-as-intended and eligibility, hence we avoid here the terminology “indi-
vidual verifiability” to avoid confusion.

Trust model. In the trust model considered by the Swiss Chancellery, the adver-
sary controls all communications over the Internet. Moreover it controls several
authorities depending on the security property.
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– One-out-of-4 EAs is assumed to be honest for all properties (privacy and
verifiability), except if all EAs are operated by a private company. In the
second case, none are trusted for privacy but one-out-of-4 remains trusted
for verifiability.

– The Voting client is trusted for vote privacy (since the vote is entered in
clear) but untrusted for verifiability.

– The Election administrator is trusted (their share of the decryption key
remains secret).

– The Verifier is always trusted as a whole, except for recorded-as-intended.
It means that the Swiss Chancellery almost always assumes that at least
one third-party will behave honestly and do the expected checks (others
can be dishonest; it is of interest in particular for vote privacy). Regard-
ing recorded-as-intended, the Swiss Chancellery considers that the property
must hold relying on the voter’s checks and the behaviour of the honest
trusted authority only.

Discussion on the trust model. CHVote is claimed to be secure for the trust
model of the Swiss Chancellery. However, this claim comes with the strong as-
sumption that at least one EA is honest. While this made sense in the original
version of the Ordinance, this no longer matches the current state of the Ordi-
nance nor the recent deployments of e-voting in Switzerland, in which a single
company (SwissPost) is operating the elections (with distinct servers adminis-
tered by distinct teams for each EA). In this context, the Chancellery requires
that none of the EAs is trusted for vote secrecy.

For verifiability, it is assumed that at least one EA is honest. There is no
other choice for recorded-as-intended. Indeed, when all EAs are corrupted, they
can collaborate with the Voting client to compute the verification code of any
candidate and hence, they can register a ballot for a candidate B while the
voter will be convinced to have voted for A. Similarly for universal verifiability,
since there is no public bulletin board, colluding malicious EAs can easily drop
any ballot they wish. The trust assumption is more questionable for eligibility.
Indeed, the voter could have some private data generated during the Setup,
used to “sign” a ballot, which would prevent ballot stuffing even if all EAs are
dishonest. For example, the protocol developed by SwissPost [27] guarantees
eligibility even when the 4 online authorities are compromised. We therefore
consider additionally the scenario where all EAs are dishonest for eligibility.

Security claims and attacks We summarize on Figure 2 the security claims of the
CHVote protocol, namely, both vote secrecy and all three verifiability properties
should be satisfied as soon as one EA is honest.

In the remaining of the paper, we show that, actually, both vote secrecy and
recorded-as-intended are broken as soon as one EA is dishonest. We provide
several variants of our attack against vote secrecy and we propose a fix to make
all our vote secrecy attacks detectable. However, our fix no longer works if all
EAs are dishonest, which is the trust model considered in actual deployments.
Moreover, we show that CHVote is subject to ballot stuffing when all EAs are
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CHVote claims Our findings
VD EAs VD EAs

Vote secrecy

• base case H ≥ 1 H ✔ H < 4 H

1. weak Oblivious Transfer
✘ attack by complaint (Section 3.1)
✘ undetectable attack (Section 3.2)
✘ variant using OT malleability (Section 3.3)

H EA1 D
2. missing check for EA1

✘I secrecy breach by drop (Section 3.5)

• single priv. comp. H all D – H all D
1. + 2.
+ ✘ full vote disclosure, undetectable (Section 3.6)

Recorded-as-intended D ≥1 H ✔
D
H

< 4 H
EA1 D

✘ missing consensus algorithm (Section 4.1)
✘I missing check by honest EAs (Section 4.2)

Universal verifiability D ≥1 H ✔ – – –

Eligibility
• base case H ≥1 H ✔ – – –

• single priv. comp. H all D – H all D
✘ ballot stuffing (Section 4.3)
✘ ballot stuffing, online only (Section 4.3)

Fig. 2. Trust model of the Chancellery and attacks on CHVote.
In gray : outside the trust model of the Chancellery.
D stands for dishonest, H for honest. ≥ 1 means that 1 out 4 authorities is honest and
< 4 means that there is at least one dishonest authority.
✘I : attack on the implementation only, not the specification.

compromised. While outside the trust model considered by CHVote and the
Chancellery, we believe that this is flaw since it could be avoided.

3 Vote secrecy attacks

3.1 Attack by complaint

The idea of the attack against vote secrecy is very simple. We assume that one
EA is dishonest (say EA1 w.l.o.g.) and wishes to learn how Alice voted. During

setup, EA1 has generated partial verification codes [M
(1)
i ]1≤i≤n, for Alice, one

for each voting option. EA1 simply modifies one partial verification code, e.g.,

M
(1)
1 , and observes the behaviour of the voter under attack:

– if Alice did not vote for candidate 1, her voting device will compute the
expected verification code and she will be able to proceed, entering her con-
firmation code.

– if Alice did vote for candidate 1, then her voting device won’t produce a valid
verification code and Alice will stop voting and will report the incident.

Hence, EA1 can deduce if Alice voted for candidate 1. EA1 can also choose to

modify all partial verification codes but M
(1)
1 if it prefers that Alice does not

complain when her vote is guessed correctly. More generally, EA1 can modify any
number of its partial verification codes depending on the information it wants
to learn.
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A protection against this kind of attack is discussed in an early version of
CHVote [19]. The goal is to make this attack detectable not only to voters (they
complain) but also to the (honest) EAs. This idea relies on a centralized bulletin
board and the fact that each EA reveals z1, z2 to the bulletin board when sending
their contribution to the participation code. However, this approach has not been
fully explored in CHVote, that has no central bulletin board.

3.2 Privacy attack without detection

A drawback of the attack explained in the previous section is that, even when
the voter receives a correct verification code, they won’t be able to complete the
voting phase. Indeed, the participation code pc computed by their voting device

is a function of the list of the partial verification codes [M
(1)
i ]1≤i≤n received

during the first phase. Hence, if a malicious EA tampered with their partial
verification codes, pc will be modified. We show that if a malicious EA (say
EA1) correctly guessed Alice’s vote so that she did not complain while EA1

modified some of the [M
(1)
i ] then it is possible to improve the attack so that

Alice successfully completes her voting session, while she has lost vote secrecy.

Pre-image. The attack relies on the fact that the contribution of each EA
is hashed to a short element before being xor-ed together. Indeed, the par-
ticipation code pc equals

⊕
j P

(j) where each P (j) is a contribution of EAj :

P (j) := short hash(M
(j)
1 , . . . ,M

(j)
n ). Since short hash outputs a string with an

entropy up to 24 bits according to the specification, it is very easy to perform a

brute-force search and find a second pre-image with another value of M
(1)
1 giving

the same code.
Hence a malicious EA1 can modify M

(1)
1 into M ′

1, to conduct the attack
explained in the previous section, in such a way that

short hash(M
(1)
1 ,M

(1)
2 , . . . ,M (1)

n ) = short hash(M ′
1,M

(1)
2 , . . . ,M (1)

n ) (1)

This lets pc unchanged, hence neither Alice nor her voting device can detect the
manipulation. None of the honest EAs will detect the manipulation either, which
leads to a secrecy loss, without any detection. A more detailed explanation of
the attack can be found in Appendix (Figure 4).

Collision. One advantage of the previous attack is that it is sufficient to corrupt
the dishonest authority during the voting phase, hence when it is an online server,
offering a large attack surface. However, if the dishonest authority is corrupted
from the setup phase, then it is possible to speed-up the search for collisions

using the Birthday paradox: EA1 will search for two values M
(1)
1 and M ′

1, such
that Equation (1) holds. This way, a collision will be found in an (asymptotic)
expected number of trials

√
πℓ/2 instead of ℓ, where ℓ is the number of possible

participation codes. This can be useful to attack many voters, and also shows that
mitigations based on enlarging the length of the code are probably unrealistic.
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3.3 Attack variants

We provide a variant of our attack that exploits the malleability of the OT
primitive. This variant does not provide a more powerful attack but shows that
the OT primitive would require an in-depth modification to prevent our attack.

Harmless malleability. We first notice that a malicious authority EAj can apply
a different algorithm for GenResp, without any change in the protocol behavior.
In particular, it can chose z1 = z2 and, for any matt, replace a1 by a′1 = a1m

−1
att

and a2 by a′2 = a2matt without any noticeable change. Indeed, in the second line
of GenResp, the normal computation is b(j) := az11 az22 β. If instead, the dishonest
EA computes b(j) as b(j) := a′z11 a′z22 β = az11 az22 β(matt)

z2−z1 = az11 az22 β if z1 = z2.
This does not lead to any attack but it highlights the fact that a security

proof would require to characterize complex harmless adversarial behaviors.

Harmful malleability. This malleability can be turned into an effective attack
against secrecy. A dishonest EA may use the following algorithm to generate its
response, where we highlight the changes in violet:

GenResp′([M
(j)
i ]1≤i≤n, a = (a1, a2))

Pick z1, z2, β ∈R Zq

b(j) := (a1p
−1
att )

z1(a2patt)
z2β; d(j) := pkz1gz2 (* patt chosen by EA *)

For i ∈ [1, n]:
ki := pz2i β (* instead of ki := pz1i β *)

C
(j)
i := M

(j)
i ⊕ hash(ki)

Resp(j) := (b(j), d(j), [C
(j)
i ]i∈[1,n])

Return Resp(j) and δ(j) = (z1, z2)

Then, when the voting client computes the verification code corresponding
to the sent ballot (a1, a2) = (pkrps, g

r), it computes in particular:

k(j) := b(j)(d(j))−r = (a1p
−1
att )

z1(a2patt)
z2βpk−rz1g−rz2

= pk−rz1pz1s grz2pz2−z1
att βpk−rz1g−rz2

= pz1s pz2−z1
att β.

– Either the voter voted for the candidate att guessed by the attacker, in which
case k(j) = pz2attβ, as computed by the dishonest EA;

– or the voter voted for another candidate and k(j) computed by the voter
won’t correspond to the one used by EA and the vc will be an arbitrary
random value.

We hence retrieve the same kind of attack than the one in Section 3.1.

3.4 Mitigation

An obvious mitigation is to compute the short hash only at the end, that is,

pc = short hash(
⊕

j Q
(j)) where Q(j) := hash(M

(j)
1 , . . . ,M

(j)
n ). This does not fix
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the vote secrecy attack explained in Section 3.1, but at least, all voters under
attack will detect an issue during the confirmation phase.

We note however that this mitigation is insufficient when all EAs are dis-
honest since they could again find collisions that let pc unchanged. The only
counter-measure to keep this mitigation is to increase the size of pc to 256 bits
(to avoid the square root attacks relying on the Birthday paradox). This would
however cause usability issues.

3.5 Attack by drop

In the reference implementation [3], we noticed an implementation bug that offers
another type of vote secrecy attack, namely, the proof of shuffle performed by
EA1 (specifically) is never verified by the other EAs. The specification somehow
assumes that an EA receives the shuffle information from the others in the
correct order, but the implementation has to take care of the fact that they
can be re-ordered. Therefore the code uses the following greedy strategy: when
receiving a shuffle from EA number j, then it checks whether data number j−1 is
available and if so, checks the ZKP, and it does the same with data number j+1.
This typically leads to off-by-one issues that must be carefully addressed. In the
present case, when checking data number j−1, it was also checking whether the
ZKP number j − 1 was available, instead of of the ZKP number j (i.e. the one
that relates a shuffle between j − 1 and j). Concretely, in file S400.java, in the
first test get bold pi tilde().isPresent(k - 1), the value k − 1 should be
replaced by k. And actually, testing the presence of the ZKP is maybe useless.

Since the shuffle of EA1 is not verified, EA1 may actually drop some of the
ballots, reducing the anonymity set. For example, in an extreme case, it could
remove all ballots except Alice’s ballot, wait for decryption, and learn Alice’s
vote. Even when EA1 only remove some of the ballots, this forms a theoretical
attack since it would learn another information than the expected tally. This
attack would in particular break existing definitions of vote secrecy [6,16,7] and
hence forbid a security proof. Note that this attack will be detected by the
Verifier but too late, since the ballots are already decrypted when the Verifier
checks the election data.

We describe a more dramatic exploit of this bug in Section 4.2.
Discussion. When the Chancellery has introduced the requirement that the

system remains secure even when all EAs are dishonest, in case they are operated
by a single private company, they have also excluded the attack by drop we just
described (see 2.7.2 of [26]). Indeed, this attack is unavoidable when all EAs
are dishonest, since they may always drop ballot. We see however no reason to
tolerate such attacks when at least one EA is honest.

3.6 Full vote disclosure

When the EAs are operated by a single company, which corresponds to “real-
world setting within the Swiss context” according to the CHVote specification
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([27], page 59), then the Chancellery requires that vote secrecy still holds when
the EAs are all dishonest.

Unfortunately, vote secrecy completely collapses in CHVote in this threat
model. Indeed, each EA holds a share of the decryption key, while the last share
is owned by the Administrator, operated by another entity (typically, a Canton).
However, the Administrator decrypts the ballots without shuffling them. Hence,
the EAs learn exactly who voted what, for all voters, in a honest but curious
setting. They simply need to remember how they shuffled the ballots. Since they
do not even need to conduct any active attack, the loss of vote secrecy (for the
entire set of voters) is undetectable.

4 Verifiability attacks

4.1 Breaking recorded-as-intended

One dishonest EA collaborating with a dishonest voting client is actually suf-
ficient to break recorded-as-intended. More precisely, a voter can successfully
complete their voting procedure for a candidate s while their vote will not be
counted. This contradicts the security claim that “the voter is given proofs [. . . ]
to confirm that no attacker has altered any partial vote before the vote has been
registered as cast in conformity with the system” [26].

The attack relies on the fact that there is no consensus between the EAs:
they respond independently, even if they do not receive the same encrypted vote.
Moreover, we realized that the confirmation phase is completely independent of
the vote of the voter.

The idea of the attack is simple and is depicted in Figure 3. When the voter
selects candidate s, the (dishonest) voting client actually prepares two ballots:

a = Encrpk(ps) and a′ = Encr
′

pk(ps′) where s′ is the candidate chosen by the
attacker. The honest EAs are given a, while the dishonest EA gets both a and
a′. The honest EAs respond normally. The dishonest EA provides 2 responses:
one computed from a, such that the voting client can compute the expected
verification code vc. But it also computes the response from a′. This way, the
dishonest authority will behave “honestly” (e.g., regarding its logs), as if it had
only received the ballot a′. We then notice that γ computed by the voting client
and the δj sent by the EAs do not depend on the ballot a, as explained in
Appendix B. Hence, the rest of the confirmation procedure continues normally
and the voter successfully receives their participation code.

At the end of the voting phase, the EAs have inconsistent views: the honest
EAs have seen a while the dishonest EA will claim to have seen a′. But their
transcript are made of purely honestly computed data so it is impossible to detect
who misbehaved. Since CHVote does not provide any agreement procedure, the
system simply crashes in this case, so our attack is detectable. Yet, it breaches
the security claim since it results in a “manipulation [of the vote] that goes
undetected by the voter but not by the system” (explanation of the rewarded
attacks in the bug bounty program [4] organized for the Swiss Post protocol).
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Voting Client
EAj j ̸= 4

[M
(j)
i ]1≤i≤n

EA4
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i ]1≤i≤n

s, X

a = Encrpk(ps), x̂ = gX , πr,X

(Resp(j)a , δ
(j)
a ) =

GenResp([M
(j)
i ], a)

[Resp(j)a ]j

a′ = Encr
′

pk(ps′), π
′
r,X

a, x̂ = gX

(Resp
(4)

a′ , δ
(4)

a′ ) =

GenResp([M
(4)
i ], a′)

(Resp(4)a , δ
(4)
a ) =

GenResp([M
(4)
i ], a)

Resp
(4)

a′ ,Resp
(4)
a

[M
(j)
a ]j = GetVC([Resp(j)a ]j))

vc =
⊕

j short hash(M
(j))

M
(4)

a′ = GetVC(Resp
(4)

a′ )

vc

Check vc
Y

γ = GenConf(Y, [M
(1)
a ,M

(2)
a ,M

(3)
a ,M

(4)

a′ ])

Check γ as expected
Add a in local ballot box

Check γ as expected
Add a′ in local ballot box

[δ
(j)
a ]j

δ
(4)

a′

pc = GetPC([δ(j)]j)

Check pc

Fig. 3. Attack against individual verifiability (recorded-as-intended). We arbitrarily
assign the dishonest authority to EA4. Dishonest steps are written in violet.

4.2 Full vote manipulation, due to a missing check

There is actually a simpler attack, due to the implementation bug explained in
Section 3.5. Indeed, since the shuffle performed by the first EA is never verified,
EA1 does not even need to collaborate with corrupted voting devices to change
the votes. The attack works as follows:

– during the voting phase, EA1 behaves normally,

– during the tally, instead of shuffling, EA1 produces a novel list of ElGamal
ciphertexts, for candidates of their choice, with an empty proof of shuffling,

– this manipulation is undetected by the other three (honest) EAs.
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This attack will be detected, after the publication of the result, by the Verifier.
However, the Chancellery does not assume an honest Verifier for the recorded-
as-intended property. This attack is very easy to fix, by forcing the EAs to check
all the proofs of shuffle.

4.3 Ballot stuffing

Each voter needs two secret credentials X and Y to cast a vote. The EAs have
collectively computed these secret credentials and stored the corresponding pub-
lic credentials x̂ = gX and ŷ = gY . Obviously, if they are all compromised, they
can cast a vote on behalf of a voter using X and Y . Such an attack is outside
the security model in Switzerland because eligibility is part of a larger set of
properties (called universal verifiability) and hence they assume that at least
one EA is honest. We believe that this assumption is too strong for eligibility
and can be avoided, as it is done in the SwissPost protocol [27].

In the rest of this section, we show that actually, the online components can
break eligibility, that is, can add ballots, even if the (offline) setup phase is run
honestly and the secret shares of X and Y are erased. This leads to a more
powerful attack since online components are more vulnerable to attacks. Even
if outside the official security model, we believe that such a weakness should
be avoided. Moreover, our attacks reveal some missing checks in the verification
algorithm, that could be easily added.

Our attack assumes a dishonest voter and all dishonest EAs. Given the cre-
dentials X and Y of one dishonest voter, the EAs can forge several ballots
b1, . . . , bk corresponding to this voter. When providing the audit data to the
Verifier, the EA are supposed to give the list of public credentials x̂1, . . . , x̂n and
ŷ1, . . . , ŷn of the n voters. Instead, they can replace the credentials of absen-
tee voters (say x̂1, . . . , x̂k) by x̂, . . . , x̂ replicated k times and similarly for the
credentials ŷ. They can then add b1, . . . , bk as the first k ballots of the election.

This attack is not caught by the Verifier due to two shortcomings:

– The online EAs share their views of the protocol with the Verifier only once,
at the very end of the protocol (see [20, Section 7.5]). Instead, authorities
should commit to their data as soon as possible: once after the setup (with
the public credentials), once after the voting phase, and once after tally.

– The Verifier does not check that the credentials are pairwise distinct (see [20,
Algorithm 8.54]).

5 Experiments

The CHVote designers provide OpenCHVote [3], a reference implementation of
the protocol. For our experiments, we used the latest release 2.3.1. This project
also contains a simulator to easily set-up test elections and run experiments. We
leveraged this implementation to demonstrate the validity of our attacks.
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OpenCHVote. OpenCHVote is a Java project organised as a multimodule Maven
project to ease its compilation. Even if it is a large project made of dozens of
thousands of lines of code, it was easy to navigate between the different modules,
packages, files, and identify the key classes that implement the algorithms of
interest. Indeed, the code is perfectly aligned with the protocol specification [20]:
there is one module per role, one class per task (i.e. atomic step of the protocol
identified in the flow charts), and one class per algorithm or sub-algorithm.

Instrumentation. We instrumented the source code to test the validity of our
main attacks, i.e. Sections 3.1, 3.2, 4.1, 4.2. The instrumented source code is
available at [5] for reproducibility. Our changes are twofold: first, we implemented
the Byzantine behaviours of the dishonest parties in the different attack scenarios
as variants of the different algorithms and sub-algorithms. Second, we relaxed the
checks done by the different parties to prevent early aborts in attack scenarios
for which the attack is known to be detectable. Instead of aborting, we extended
the output of the simulator to precisely identify which check fails. Finally, we
provide a script that can be used to run our different attacks and observe the
behaviour of the system. We also observed that fixing the off-by-one bug made
the corresponding attacks disappear.

Results. We managed to reproduce the attacks and confirm the undetectability
of the claimed ones. The compilation and the simulations run in a few minutes
on a standard laptop (i.e. Apple M2 Pro with 32GB RAM). Computationally-
wise, the most critical parts lie in the privacy attack described in Section 3.2.
Indeed, this requires to compute a collision for the short hash(·) function. In our
experiments, the code performs about 10,000 iterations per second, where an
iteration prepares a sequence of [Mi]i and computes the short hash. The attack
based on second preimage requires about 65500 iterations, hence 6.5s, (avg. on
10,000 tests) which remains reasonable to be computed on the fly. As expected,
looking for a collision is more efficient and requires only 319 iterations, hence
0.032s, (avg. on 10,000 tests). These numbers are consistent with the theoretical
estimates based on the security parameter: this last was set to Level 1 during
our experiments meaning that the participation code pc was a 5-digits long code
(i.e. belongs to {0, . . . , 9}5). This would correspond to an entropy of 16.66 bits,
but due to byte-level rounding in the implementation, this is just 16 bits, which
is consistent with our experimental measurements.

6 Discussion

We have shown a variety of serious attacks against CHVote. According to the
bug bounty program [4] organized for the Swiss Post protocol (which, of course,
does not apply to CHVote), our two attacks against recorded-as-intended would
have been rewarded between 50 to 70 kE each, while our family of attacks against
vote secrecy would be valued beween 40 to 50kE. Some of our attacks are easily
fixable, others require more in-depth modifications that we discuss here.
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Missing agreement procedure. As shown in Section 4.1, the system may reach
a state in which the different EAs do not agree on the list of the ballots to
be included in the tally. Since the views of each EA look like honest ones, it
seems impossible to define an agreement procedure to solve this inconsistency
without changing the protocol. SwissPost encountered the exact same problem
in 2022 and updated their protocol to solve it. A similar idea could be re-used
in CHVote. Informally, the fix consists in adding a round of “commitments”
during the voting phase to ensure that the EAs agree on the ballot that will be
eventually counted during the tally for each voter. Then an EA can convince a
third-party that a ballot must be included in the tally by proving the knowledge
of a commitment from all EAs. Of course, such a change in the protocol deserves
a formal analysis of its effectiveness and impact on the security of the protocol.

Fixing oblivious transfer. We already discussed some possible mitigations to
make our attack detectable for vote privacy, although it does not suffice when
all EAs are dishonest. However, a detectable attack against vote secrecy remains
an attack: if voters complain when they receive an incorrect verification code,
their vote may be leaked to a malicious EA, which is not acceptable in the current
threat model. Note that CHVote does not provide a mechanism to (provably)
identify the misbehaving entity and this is a tricky issue since a voter may also
make mistakes or intentionally complain without any reasons.
The discovered vulnerability on CHVote is known as a selective failure attack
in OT literature [10]. Fixing the protocol would require an in-depth modifica-
tion of the protocol. The first idea is to use committed oblivious transfer [12,13]
so that an EA cannot later modify their Mj . The idea of committed oblivi-
ous transfer is that the sender (each EA in our protocol) commits their secrets
commit(M1, r1), . . . , commit(Mn, rn), the receiver (the voter) commits to their
choice i with commit(i, r) and at the end of the protocol, it obtains a com-
mitment commit(Mi, u) with the opening u, where each party proves that they
behaved as expected. The first proposals by Crépeau [12,13] were inefficient but
several more efficient protocols have been proposed later on [18,23,22]. However,
the setting in evoting is particular since the voter is not present during the setup.
For example, [22,23] assume that the receiver (i.e. voter here) has a private key,
which may be difficult to establish in the evoting context. Moreover, since the
voters may choose k-out-of-n candidates, the 1-out-of-2 oblivious transfer proto-
col needs to be turned into k-out-of-n [25], as already done in CHVote but not
for committed oblivious transfer. In addition, there is not a single sender but it
needs to be distributed over the 4 Election authorities, among which 3 are fully
dishonest (and not semi-dishonest as incorrectly assumed in CHVote [11]). To
summarize, all the needed building blocks seem to be available in the literature
but the design of an OT protocol suitable in the evoting context will require a
careful design and may affect the overall efficiency of the protocol.

Security proof. The OT primitive used in CHVote has been modified after a first
attack against cast-as-intended [9]. Our attack against recorded-as-cast shows
that the verifiability proof published in 2018 [8] does not cover the agreement
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phase that should tell which ballots are tallied. Indeed, the proof assumes that
the honest EA is known a priori by the system. More importantly, no privacy
proof has ever been conducted on CHVote, while this protocol uses an OT prim-
itive in a crafted way (not blackbox). For example, it embeds an ElGamal en-
cryption inside the OT. Moreover, it extends the OT with subsequent exchanges
(confirmation code and participation code) that have an impact on the secu-
rity. For example, our vote secrecy attack could be detectable with longer codes.
Therefore, a proof of vote secrecy appears to be critical to assess the security of
future versions of CHVote. A challenging aspect of the proof will be to identify
if the usual security property of OT (here receiver privacy) is indeed sufficient
for vote secrecy as a whole.
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A Privacy attack

We provide a detailed description of our attack in Figure 4.

B Recorded-as-intended attack for an arbitrary number
k of selections

For the sake of clarity, we have presented CHVote in the simple case where
voters select k = 1 candidate among n possible choices. We now explain the
general case, with an arbitrary number of selections k ≤ n. The corresponding
algorithms, in a simplified version, are displayed in Figure 5. This leaves our
attack against recorded-as-intended, presented in Section 4.1, unchanged.

Setup. Each EA generates partial verification codes [M
(j)
i ]1≤i≤n as follows: for

each voter they first pick some random polynomial A(j) of degree k − 1 and

then generate n random points M
(j)
i = (xi, yi) where xi is a random value and

yi = A(j)(xi). This corresponds to Algorithm GenPoints (Algorithm 8.11 of [20]).

The EAs also collectively compute Zv =
∏

j g
A(j)(0). It is used during the

confirmation phase to check that it corresponds to the second component Z of
γ.

Confirmation phase During the confirmation phase, the voting client obtains k
partial verification codes, hence k points of each polynomial A(j). It then uses

a Lagrange interpolation to compute A(j)(0) and can deduce Z = g
∑

j A(j)(0).
The resulting GenConf algorithm is displayed in Figure 5, it corresponds to
Algorithms 8.32 and 8.33 of [20].

The interesting point for our attack is that A(j)(0) does not depend on the
exact points received during the first step of the voting phase. In particular
A(j)(0) remains identical whether it has been computed thanks to the ballot a
or a′ (using the notations of Section 4.1).
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EAj j ̸= 1
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(j)
i ]1≤i≤n
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s, X

a = Encrpk(ps), x̂ = gX , πr,X a

(Resp(j), δ(j)) =

GenResp([M
(j)
i ], a)

[Resp(j)]j

(Resp(1), δ(1)) =

GenResp([M ′
1,M

(1)
2 , . . . ,M

(1)
n ], a′)

s.t. short hash(M
(1)
1 ,M

(1)
2 , . . . ,M

(1)
n ) =

short hash(M ′
1,M

(1)
2 , . . . ,M

(1)
n ) (*)

Resp(1)

[M (j)]j = GetVC([Resp(j)]j))

vc =
⊕

j short hash(M
(j))

vc

Check vc
if s ̸= 1 then vc is correct
else vc does not correspond,
the voter stops

Y

γ = GenConf(Y, [M (j)]) γ

Check γ as expected
Add a in local ballot box

if γ is received,
the voter did not vote for 1
Add a in local ballot box[δ(j)]j

δ(1)

pc = GetPC([δ(j)]j)

pc unchanged
thanks to (∗)

Check pc

Fig. 4. Privacy attack by (non) complaint, undetectable.
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GenPoints(n, k)
(* run by the j-th EA *)
Pick A(j) ∈R Zq[X] random polynomial of degree k − 1
For i ∈ [1, n]:

xi ∈R Zq

yi := A(j)(xi)

M
(j)
i := (xi, yi)

Return [M
(j)
i ]j and y0 := A(j)(0)

GenConf(Y, [M (j)]j)
(* run by Voting Client *)
ŷ := gY

For all j:
See the k codes M

(j)
i as point (xi, yi)

z(j) :=

k∑
i=1

yi

k∏
j=1,j ̸=i

xj

xj − xi

(* ie z(j) := A(j)(0)*)
Z :=

∑
j z

(j); ẑ := gZ

πY,Z := pok of Y and Z
Return γ = (ŷ, ẑ, πY,Z)

Fig. 5. Generation of the partial verification codes and of the confirmation response
for an arbitrary number k of selections.
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