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Abstract

This self-contained and detailed tutorial covers RSA-based integer commitments and related
protocols. It also presents a new, highly efficient setup protocol for sampling commitment
parameters.
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1 Introduction

(RSA-based) Integer commitments, introduced by Fujisaki and Okamoto [FO97a] and Damg̊ard and
Fujisaki [DF02], are Pedersen-like additively homomorphic commitments that are binding over the
integers (as opposed to Pedersen commitments, which are only binding over the underlying finite
ring or field). Integer commitments also have a highly efficient range proof protocol—a protocol for
proving the knowledge of an opening of the commitment for a value within a specified range. Having
an efficient range proof is what makes integer commitments so useful. Specifically, they are used
for implementing efficient range proofs for other types of additively homomorphic commitments:
Pedersen and ElGamal commitments over known-order groups, and the commitment induced by
the Paillier public-key encryption scheme.

A downside of using integer commitments is that they are parameterized by values that have
to be sampled properly. Specifically, integer commitments are parametrized by a tuple (n, g, h),
where n denotes a suitable RSA modulus and g, h are carefully chosen elements generating the same
subgroup in Z∗n. To commit to an integer integer m ∈ Z, one computes c = gmhr mod n where
r is a random value chosen from a suitable domain. To decommit, it suffices to reveal m and r.
For the binding property to hold, the parameters must not be chosen by the committer,1 while for
the hiding property, the parameters must be well-formed so that g lies in the multiplicative group
generated by h. Unfortunately, no highly efficient protocol is known for proving well-formedness.
As a result, when using integer commitments, one must either rely on a trusted setup phase or
use a rather inefficient protocol (where communication and computation scales linearly with the
computational security parameter).

In this work, we give an overview with detailed, self-contained proofs of the basic facts about
integer commitments and of a range proof protocol. We then highlight the usefulness of integer
commitments—and in particular, of having an efficient range proof protocol—by discussing some
standard applications. In addition, we introduce what we believe is the first highly efficient param-
eter well-formedness protocol. The resulting protocol guarantees that the quotient group ⟨g, h⟩/⟨h⟩
is small.2 Although it does not guarantee perfect hiding, the resulting hiding property is sufficient
for many applications.

What this paper does not cover. This paper does not aim to cover every known aspect of
integer commitments or their related protocols and extensions. Rather, this paper is intended as
a detailed and self-contained tutorial for using RSA-based integer commitments and to showcase a
novel parameter well-formdness proof. In particular, we do not discuss commitments based on non-
RSA assumptions (e.g., class groups [CKLR21]) or formally present the four-square decomposition
technique [Lip03] for tight range proofs. The reader is referred to [CBCMRW24] for a more detailed
survey on range proofs. We will conclude with further discussion on these and related range-proof
protocols.

Related work

As we shall see in the subsequent technical sections, the range proofs [FO97a; Bou00; DF02]
presented herein exhibit some slackness. In detail, when proving that a committed value m lies in

1If the committer knows the factorization of n or a discrete-log relation between g and h, the binding property
can be easilly broken.

2The key takeaway is that g can be written as σh′, where h′ ∈ ⟨h⟩ and σ has small order.
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some range [−a, a], it is possible for a cheating prover to make the verifier accept witnesses from
a slightly larger set [−a · 2ε, a · 2ε] where ε is some value known to all. This slackness does not
affect many applications of interest, e.g., threshold ECDSA [Lin17; LN18; GG18; CGGMP20] (and
removing it incurs substantial overhead, as discussed below), so we treat it as a quirk of the proofs.

The four-square decomposition technique. Starting with Lipmaa [Lip03] (and later refined
by Groth [Gro05] and Couteau, Peters, and Pointcheval [CPP17]), the four-square decomposition
technique for proving m ∈ [a, b] involves showing that both m − a and −m + b are nonnegative.
Specifically, by Lagrange’s theorem, any nonnegative integer can be written as a sum of four
squares, and there are known efficient algorithms for finding this decomposition. The last step
involves proving, for example, that m− a = a20 + a21 + a22 + a23 by committing to each ai separately
and using Schnorr-style protocols. However, the overhead of finding the square decomposition and
making these additional commitments can be quite costly.

The bit-decomposition technique. Alternatively, one can avoid integer commitments entirely
by committing to the bit (or u-ary) decomposition of m, i.e., m =

∑
j mj2

j , and using a bit (or
u-ary) commitment scheme [BCDv88; CCs08; Gro11]. General zero-knowledge techniques—such
as bulletproofs [BBBPWM18]—are then used to show that the committed integer lies within the
desired range. However, this approach inherently results in super-constant proof sizes (which scale
linearly with the witness size) or incurs the overhead of using general-purpose SNARKs like Groth
[Gro16].

On [CKLR21] and SHARP [CGKR22]. In conclusion, we mention the work of Couteau,
Klooß, Lin, and Reichle [CKLR21] and its follow-up [CGKR22], which introduce so-called bounded
integer commitments that behave like integer commitments but operate on rationals rather than
integers. They can be instantiated in various groups (including known-order groups) in combination
with the square-decomposition technique to obtain tight range proofs. In [CGKR22], the authors
show that these proofs achieve performance comparable to the bulletproofs approach.

Paper Organization

A rather detailed preliminaries section is provided in Section 2. The integer commitment scheme
is described and analyzed in Section 3, and the strong-RSA-based range proof is described and
analyzed in Section 4. In Section 5, we use the range proof protocol for constructing equality-proof
protocols for many additively homomorphic commitment schemes of interest. We also present some
applications of these proofs. Our new lightweight setup protocol and its security guarantees are
given in Section 6.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for integers
and functions. All logarithms considered here are base 2. Let N denote the set of natural numbers.
For n ∈ N, let [n] := {1, . . . , n} and (n) := {0, . . . , n}. For n ∈ N, let Zn = Z/nZ denote the ring
of integers modulo n.
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All distributions considered are finite. For a set X , let ∼ X denote the uniform distribution
over X , and let x

R←X stand for x
R← ∼ X , i.e., the process of sampling x uniformly over X . The

support of a distribution X over a discrete set X , is defined by Supp(X) := {x ∈ X : X(x) > 0}.
For two distributions/random variables A,B, let SD(A,B) denote their statistical distance. We let
neg(κ) denote an arbitrary function in κc.

Security parameters. Throughout, we use two security parameters: κs used for quantities
(functions of the security parameter) that are robust to the adversary running time, e.g., statistical
distance, and κc used for quantities that are sensitive to the adversary running time, e.g., compu-
tational distance. In practice, this distinction allows the protocols to use much smaller value for κs
(e.g., 64) than for κc, e.g., 128, leading to more efficient protocols.

To avoid notational clutter, when defining languages and promise problems, defined further
below, we consider a single global security parameter κ. (Of course, all these definitions can be
parameterized by different values of the security parameter.)

2.2 Sigma Protocols

The zero-knowledge protocols presented in this paper are variants of Sigma protocols.3 We start
with the basic definition due to Damgard [Dam10].

Definition 2.1 (Sigma protocols). A Sigma protocol (P,V) for an NP relation R, is a three-
message, public-coin, perfectly correct, honest-verifier statistical zero-knowledge protocol with special
soundness for R. (The statistical zero-knowledge error is a function of the security parameter.)

Correctness: For any κ ∈ N : (P,V) is a perfectly correct protocol for R.

Zero knowldege: There exist a an efficient Sim such that for any κ ∈ N: (P,V) is honest-verifier
statistical zero-knowledge protocol for R, and it is realized by Sim.

Special soudness. There exist an efficient Ext such that for any κ ∈ N and any P̂:

Pr
(c,α,β0,β1,γ0,γ1)

R←P̂

[
β0 ̸=β1

∀j∈{0,1}:V(tj←(c,α,βj ,γj))=true
(c,Ext(t0,t1))/∈R

]
≤ neg(κ),

An extended Sigma protocol has a preamble stage that is independent of the parties’ input. The
special soundness extractor is given the prover’s view in this stage.

Computational variant. The special soundness property of Sigma protocols is naturally relaxed
to the computational settings, referred to as computational special soundness, in which it is only
required to hold for efficiently generated transcripts.

Definition 2.2 (Computational Sigma protocols). A computational Sigma protocol (P,V) for R
is a Sigma protocol for R but with the special soundness requirement replaced with computational
special soundness: there exists an efficient Ext such that for any efficient P̂:

Pr
(c,α,β0,β1,γ0,γ1)

R←P̂

[
β0 ̸=β1

∀j∈{0,1}:V(tj←(c,α,βj ,γj))=true
(c,Ext(t0,t1))/∈R

]
≤ neg(κ),

3We use the sometimes non-standard Sigma protocol formulations given below, since it is more informative than
just stating the security of the different protocols are proof-of-knowledge, honest-verifier statistical zero knowledge.
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all above algorithms are getting 1κ as a parameter. If (P,V) is an extended Sigma protocol, then P̂
and V interact in the preamble stage before P̂ outputs (c, α, β0, β1, γ0, γ1).

Computational special soundness immediately implies a proof of knowledge extractor: after the
first message is sent, use rewinding to generate two accepting transcripts and apply the computa-
tional special soundness extractor.

Distributional variant. In some cases we do not know how to construct a (information theoretic
or computational) Sigma protocol that is sound for any instance. Rather, we relax the special
soundness property to hold only for “typical” instances. For concreteness, we only focus on the
computational variant.

Definition 2.3 (Computational Sigma protocols with respect to distributions). A three-message,
public-coin protocol (P,V) is a computational Sigma protocol with respect to a family of relations
{Rp}p and distribution ensemble {Pκ}κ, if the following hold:

Correctness: For any κ ∈ N and p ∈ Supp(Pκ): (Pp,Vp), i.e., p is given as an additional param-
eter to the parties, is perfectly correct protocol for Rp.

Zero knowldege: There exist a an efficient Sim such that for any κ ∈ N and p ∈ Supp(Pκ):
(Pp,Vp) is honest-verifier statistical zero-knowledge protocol for Rp, and it is realized by Simp.

Computational special soudness. There exist a an efficient Ext such that for any κ ∈ N, with
save but negligible probability over p

R←Pκ: (Pp,Vp) has computational special soundness, and
it is realized by Extp.

Promise problems. We consider Sigma protocols for promise problems. A promise problem is
a union of two distinct sets, the “Yes instances” and the “No instances”. Throughout, we define
a promise problem Π = ΠYes ∪ ΠNo by defining ΠYes and a “Slack subset” ΠSlack ⊇ ΠYes. The
No instances ΠNo are then implicitly defined by ¬ΠSlack. For instance, the Yes instance can be
ΠYes = {(A, a) : A = a ·G : a ∈ [100]}, where G is an (additive) group generator, and the Slack
instances can be ΠSlack = {(A, a) : A = a ·G : a ∈ [1000]}.

Sigma protocols are naturally generalized to promise problems as follows.

Definition 2.4 (Sigma protocols for promise problems). A Sigma protocol for a promise problem
Π = ΠYes ∪ΠNo is a three-message, public-coin, where

1. Completeness and honest-verifier zero knowledge only guaranteed to hold for x ∈ ΠYes.

2. The knowledge extractor is guaranteed to output w with (c, w) /∈ ΠNo.

Computational Sigma protocols for promise problems, also with respect to distributions, are
naturally defined.

For instance, given a Sigma protocol for the promise problem Π we considered above, we are
guaranteed that the extractor outputs a “not too large” discrete log of A. While this is a weaker
security grantees, this slackness sometimes allows simpler/more efficient protocols. A second ad-
vantage of using promise problems is a not handling of bad “parameters”, e.g., weak public keys.
See Sections 4 and 5.3.
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2.3 Quadratic Residuosity for Primes and Biprimes

2.3.1 Basic Notation

Let P be the set of all primes. A prime number p ∈ P is safe if p = 2p′ + 1 for some prime p′ > 2.
(Note that if p is a safe prime then p = 3 mod 4, since if p = 1 mod 4 then p = 4k + 1 and so
p′ = 2k which is impossible). A biprime is safe, or a strong RSA modulus, if it is the product of
two distinct safe primes.

Let (x)p := x mod p. Note that (x · y)p = (x)p · (y)p mod p. For a biprime n = pq, we use
the “CRT function” crt : Zn 7→ Zp × Zq defined by crt(x) = ((x)p, (x)q). It is well known that crt
is a bijection from Z∗n to Z∗p × Z∗q (and also from Zn to Zp × Zq). A value x ∈ N is a quadratic
residue modulo p if there exists a y ∈ N such that x = y2 mod p . We denote the set of quadratic
residues modulo p by QRp. That is, QRn :=

{
y ∈ Z∗n : ∃x ∈ Z∗n s.t. x2 = y mod n

}
. We denote

−QRn = {−x : x ∈ QRn} and ±QRn = QRn ∪ −QRn.

2.3.2 Jacobi Symbol

The Jacobi symbol for primes and biprimes is defined as follows.

Definition 2.5 (Jacobi symbol). The Jacobi symbol of x modulo p ∈ P is defined by

Jp(x) :=

{
+1 if x is a quadratic residue modulo p

−1 if x is not a quadratic residue modulo p.

The Jaccobi symbol modulo a biprime n = p · q, is defined by Jn(x) = Jp(x) · Jq(x).

It is well-known that for any prime p: Jp(x) = 1 iff x ∈ QR+ p. But modulo a composite, the
Jacobi symbol is not an indication of quadratic residuosity: it is true that every quadratic residue
has Jacobi symbol 1, but there are also an equal number of non-quadratic residues with Jacobi
symbol 1. Yet, the following facts hold:

Proposition 2.6 (Properties of the Jacobi symbol for biprimes). For any biprime n = p · q with
p, q > 2:

1. Jn(x · y) = Jn(x) · Jn(y).

2. Pr
x

R←Z∗p
[Jp(x) = 1] = 1/2.

3. If p = q = 3 mod 4, then for any x ∈ N:

(a) Jp(x) = −Jp(−x) and Jq(x) = −Jq(−x).
(b) Jn(x) = Jn(−x).

4. If p = q = 3 mod 4, then for u, v ∈ Z∗n with u2 = v2 mod n and Jn(u) ̸= Jn(v), it holds that
gcd((u+ v) · (u− v), n) > 1.

Proof.

1. Since Jp(x) = x
p−1
2 it follows that Jp(x · y) = Jp(x) · Jp(y). By definition, Jn(x · y) = Jp(x ·

y) ·Jq(x ·y). Thus, Jn(x ·y) = Jp(x) ·Jp(y) ·Jq(x) ·Jq(y) = (Jp(x) · Jq(x)) · (Jp(y) · Jq(y)) =
Jn(x) · Jn(y).
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2. This holds if half of the elements of Z∗p are quadratic residues. Since Z∗p is a cyclic group, it
has a generator g. Thus, 1, g2, g4, . . . , gp−1 are all quadratic residues, implying that there are

at least p−1
2 quadratic residues. Define the polynomial f(x) = x

p−1
2 − 1 mod p. Each root

of the polynomial f is a quadratic residue (since a root x is such that x
p−1
2 = 1 mod p and

by Proposition 2.7 this implies that it is a quadratic residue). Now, a degree p−1
2 polynomial

has at most p−1
2 roots. We conclude that there are exactly p−1

2 quadratic residues, implying
that exactly half the elements of Z∗p are quadratic residues.

3.

(a) Since p = 3 mod 4, there exists a value k ∈ N such that p = 4k + 3. Thus (−1)
p−1
2 =

(−1)2k+1 = −1. By Proposition 2.7, Jp(−x) = (−x)
p−1
2 = (−1)

p−1
2 · x

p−1
2 = −

(
x

p−1
2

)
=

−Jp(x).
(b) Compute Jn(x) = Jp(x) · Jq(x) = Jp(−x) · Jq(−x) = Jn(−x).

4. u2 − v2 = (u + v) · (u − v) = 0 mod n. By Item 3, u ̸= −v (since if u = −v mod n then it
would follow that Jn(u) = Jn(v)). Now, N | (u + v) · (u − v) and thus p | (u + v) · (u − v).
Since p is prime, p | (u+ v) or p | (u− v); assume p | (u+ v); the proof for the other case is
similar. If q | (u+ v) as well, then N | (u+ v), but this implies that u+ v = 0 mod n and so
u = −v mod n. Thus, p | (u+ v) and q ��| (u+ v) implying that gcd(N, u+ v) = p > 1.

□

The Jacobi symbol can be easily computed.

Proposition 2.7 (Computing the Jacobi symbol). Let p > 2 be a prime. Then, Jp(x) = x
p−1
2 mod

p.

Proof. Since p is a prime, it follows that Z∗p is a cyclic group; let g be a generator of the group. If
x is a quadratic residue, then x = gi for some even i = 2j. Using the fact that zp−1 mod p = 1 for
every z, we have

x
p−1
2 =

(
g2j

) p−1
2 = g(p−1)·j = 1j = 1 mod p.

If x is not a quadratic residue, then x = gi for some odd i = 2j + 1. Thus,

x
p−1
2 =

(
g2j+1

) p−1
2 =

(
g2j

) p−1
2 · g

p−1
2 = g

p−1
2 mod p.

Since
(
g

p−1
2

)2
= gp−1 = 1 mod p we have that g

p−1
2 is a square root of 1. The only square roots of 1

are 1,−1. Now, since g is a generator, it follows that g
p−1
2 ̸= 1 mod p and thus x

p−1
2 = g

p−1
2 = −1.

□

2.3.3 The Group QRn

It is easy to verify that QRn is a multiplicative group, since the product of two quadratic residues
is a quadratic residue. We make use of the following observation that an element x of Z∗n is a
quadratic residue relative to n if and only if x is a quadratic residue relative to both p and q.
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Proposition 2.8 (Structure of QRn). For any biprime n = p · q and x ∈ Z∗n: x ∈ QRn iff
crt(x) ∈ QRp ×QRq.

Proof. Let xp = x mod p and xq = x mod q.
Assume that x ∈ QRn. Let y ∈ Z∗n be such that x = y2 mod n. Since n | x − y2 it holds that

both p | x− y2 and q | x− y2 and x = y2 mod p and x = y2 mod q, implying that xp = yp
2 mod p

and xq = yq
2 mod p.

Assume xp ∈ QRp and xq ∈ QRq. Let yp and yq be such that x = yp
2 mod p and x = yq

2 mod q.
By the CRT, there exists a unique y ∈ Zn such that y = yp mod p and y = yq mod q. Since
y2 = x mod p and, y2 = x mod q and since p, q are prime (and so relatively prime), it follows that
y2 = x mod n, as required. □

Proposition 2.9. For every x ∈ QRn there are four square roots, two of which have Jacobi
symbol 1 and two of which have Jacobi symbol -1.

Proof. By Proposition 2.8, it holds that if x ∈ QRn then xp ∈ QRp and xq ∈ QRq, where xp =
x mod p and xq = x mod q. Let a,−a be the square roots of x in Z∗p, and let b,−b be the square roots
of x in Z∗p. By the Chinese remainder theorem, the combinations (a, b), (−a,−b), (a,−b), (−a, b)
map to 4 different elements in Zn; denote them y1, y2, y3, y4. Furthermore, by Proposition 2.8, each
element is a square root and it holds that (a, b) = crt(y1), (−a,−b) = crt(y2), (a,−b) = crt(y3),
and (−a, b) = crt(y4). Clearly, y2 = −y1 mod n and y4 = −y3 mod n since if a = y1 mod p then
−a = −y1 mod p, and likewise for all other values. By Proposition 2.6(3), Jp(a) = −Jp(−a)
and Jq(b) = −Jq(−b), and by definition Jn(c) = Jp(c) · Jq(c). We therefore conclude that if
Jp(a) = Jq(b) = 1, then Jn(y1) = Jn(y2) = 1 and Jn(y3) = Jn(y4) = −1; likewise, for all
combinations of values of Jp(a) and Jq(b). □

Proposition 2.10. −1 /∈ QRn for any biprime n = p · q with p = q = 3 mod 4.

Proof. Since p = 3 mod 4, Jp(−1) = −1 mod p and therefore −1 /∈ QRp. Thus, the proof follows
by Proposition 2.8. □

Proposition 2.11. For every y ∈ Z∗n, Jn(y) = 1 if and only if y ∈ QRn or −y ∈ QRn.

Proof. If y ∈ QRn then Jn(y) = 1 (by Proposition 2.8). Furthermore, by Proposition 2.6(3),
we have that Jn(y) = Jn(−y). Thus, it also holds that if −y ∈ QRn then Jn(y) = 1. For
the other direction, if Jn(y) = 1 then either Jp(y) = Jq(y) = 1 or Jp(y) = Jq(y) = −1 (since
Jn(y) = Jp(y) · Jq(y)). In the former case, this implies that y ∈ QRn (by Proposition 2.8). In the
latter case, observe that Jp(−y) = Jq(−y) = 1 (since Jp(−1) = Jq(−1) = −1) and so −y ∈ QRn.

□

2.3.4 Structure of Z∗n
Proposition 2.12 (Structure of Z∗n). For any safe biprime n = p·q with p = 2p′+1 and q = 2q′+1,
it holds that Z∗n is isomorphic to Z2 × ±QRn. Specifically, for any α ∈ Z∗n \ ±QRn, it holds that
ϕ(b, r) = αb · r mod n is an isomorphism from Z2 ×±QRn to Z∗n.

Proof. First we prove that ϕ is a bijection. Fix α ∈ Z∗n \ QRN , and consider the inverse mapping

ϕ−1(x) :=

{
(0, x) x ∈ ±QRn

(1, α−1 · x mod n) otherwise
.
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It is clear that ϕ(ϕ−1(x)) = x for any x ∈ Z∗n: for x ∈ ±QRn, ϕ
−1(x) = (0, x) and ϕ(0, x) = α0 ·x =

x mod n; for x /∈ ±QRn, ϕ
−1(x) = (1, α−1 · x) and ϕ(1, α−1 · x) = α1 · α−1 · x = x mod n. Thus,

ϕ−1 is a 1–1 function.
We now prove that it maps all of Z∗n onto Z2 ×±QRn. First, for any x ∈ ±QRn we have that

ϕ−1(x) = (0, x). Thus, clearly
{
ϕ−1(x) | x ∈ ±QRn

}
= {0} × ±QRn. Next, for x /∈ ±QRn we

have that ϕ−1(x) = (1, α−1 · x). Thus, it suffices to show that {α−1 · x | x ∈ ±QRn} = ±QRn,
since that implies that

{
ϕ−1(x) | x /∈ ±QRn

}
= {1} × ±QRn. Defining f(x) = α−1 · x mod n, it

remains to show that f is a bijection over ±QRn.
The fact that f is invertible is immediate. We therefore just need to show that for any α, x ∈

Z∗n \±QRn it holds that α−1 ·x ∈ ±QRn. By Proposition 2.11, Jn(α) = Jn(x) = −1 (since neither
are in ±QRn). Furthermore, Jn(α−1) = Jn(α) (since α · α−1 = 1 and Jn(1) = 1). Thus,

Jn(α−1 · x) = Jn(α−1) · Jn(x) = −1 · −1 = 1

and so α−1 · x ∈ ±QRn, as required. □

2.4 The Strong RSA Assumption

We use the following algorithm for sampling RSA moduli:

Algorithm 2.13 (StModuliGen).

Input: 1κc, s ∈ N. The default value of the parameter s, if not set, is 0.

Operation:

1. Sample uniformly two distinct max{κc, ⌊log(s)/2 + 1⌋}-bit safe-primes p, q.

2. Return n← p · q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

That is, StModuliGen returns a strong RSA modulus n with the additional property that n ≥ s.
The strong RSA assumption states that given a modulus n generated by StModuliGen and a

random element y ∈ Z∗n, it is hard to find a pair (e, x) such that xe = y mod n for e /∈ {1,−1}. The
difference between this and the standard RSA assumption is that e is not fixed and can be chosen
by the adversary.

Assumption 2.14 (Strong RSA). For any ppt algorithm A:

Pr
n←StModuliGen(1κc );y

R←Z∗n

[
(e, x)← A(1κ, n, y) : e ∈ Z∗n \ {−1, 1} ∧ xe = y mod n

]
≤ neg(κ).

2.4.1 Two Hard Games

In this section, we consider two games whose hardness follows from strong RSA (Assumption 2.14).
Recall that an integer commitment to x using randomness r and parameters n, g, h ∈ N has the
form gx · hr mod n. (See details in Section 3.)
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Generating non-trivial commitments. In this game, the player is given properly chosen pa-
rameters (n, g, h), and his goal is to find c, α, β, γ such that cγ = gα · hβ mod n, and γ divides
neither α nor β. Clearly, A can find c, α, β where c = gα · hβ mod n by just choosing α, β and
computing them (this is just computing an integer commitment). Furthermore, it can easily choose
α′, β′ and γ and can compute α← α′ · γ and β ← β′γ. Then, by setting c← gα

′ · hβ′ , it holds that
cγ = gα · hβ. In this case, however, γ divides α and β. Thus, the hard problem is finding these
values where γ does not divide α and β. The following proposition, stating the hardness of this
game, was proven in [FO97b; MR04; CMP20].4

Proposition 2.15 (Hardness of generating non-trivial commitments). Assume Assumption 2.14
holds and let s : N 7→ N be a non-decreasing function. Then for any ppt A:

Pr
n←StModuliGen(1κ),h

R←QRn

ℓ
R←[s(n)],g←hℓ mod n

[
(c,α,β,γ)←A(1κ,n,g,h) :

(c∈Z∗n)∧ (gα·hβ=cγ mod n)∧ (γ �| α∨ γ �| β)

]
≤ neg(κ).

Proof. Let A be an algorithm that succeeds in the above with probability ε(κ). We construct
an algorithm A′ of essentially the same running time that solves the strong RSA problem with
probability at least ε(κ)/10− neg(κ). Recall that algorithm A′ receives (1κ, n, y). We assume that
y ∈ QRn which happens with probability 1/4 (by Proposition 2.8 together with the fact that each
of QRp and QRq are half the size of Z∗p and Z∗q as shown in Proposition 2.6(2)). Note that in this

case y is uniform in QRn. Now, A
′ sets h = y, samples g ← hℓ for ℓ

R← [s] and invokes A(1κ, n, g, h)
to obtain its output (c, α, β, γ). If c /∈ Z∗n or cγ ̸= gα · hβ mod n or (γ | α and γ | β), then A′ halts.
Else, A has “succeeded” in its task and A′ proceeds.

Since g = hℓ mod n and cγ = gα · hβ mod n, it holds that cγ = hℓ·α+β mod n. Let t = ℓ · α+ β
(note that A′ can compute t). Let ℓ∗ be the smallest value in [n] such that hℓ

∗
= g mod n.

Note that given (h, g), the value ℓ chosen by A′ when generating g is uniformly distributed in
L ← {ℓ∗, ℓ∗ + |⟨h⟩|, ℓ∗ + 2|⟨h⟩|, . . . , }. By Proposition 2.12, the set QRn is 1/4 of the size of Z∗n,
and h ∈ QRn. Thus, |⟨h⟩| ≤ n

4 . Since gℓ
∗
= gℓ

∗+|⟨h⟩| mod n and ℓ is uniform in [s] ≥ [n], we
conclude that |L| ≥ 4.

If γ ��| α, if γ | (ℓ
′ · α + β) for some ℓ′, then γ ��| ((ℓ

′ + |⟨h⟩|) · α + β). Otherwise, γ divides both
ℓ′ · α + β and (ℓ′ + |⟨h⟩|) · α + β, and thus it divides |⟨h⟩| · α. We claim that gcd(γ, |⟨h⟩|) = 1

since h ∈ QRn and |QRn| = |Z∗n|
4 = ϕ(n)

4 = p′ · q′ and so |⟨h⟩| divides p′ · q′ implying that it equals
either 1, p′, q′ or p′ · q′. Now, if gcd(γ, |⟨h⟩|) ̸= 1 then gcd(γ, |⟨h⟩|) ∈ {p′, q′, p′ · q′} and thus given
γ it is possible to factor n, as follows. This is not immediate since we do not know |⟨h⟩|) and so
cannot compute gcd(γ, |⟨h⟩|). However, we do know that if n | a · b then n

gcd(n,a) | b. Therefore,
γ

gcd(α,γ) | |⟨h⟩|. Since γ
gcd(α,γ) > 1 (because γ ��| α), we have that γ

gcd(α,γ) ∈ {p
′, q′, p′ · q′} and so

it is possible to factor, in contradiction with the strong RSA assumption (given p′ or q′ factoring
is immediate, and given p′ · q′ one can compute ϕ(n) = 4 · p′ · q′ which enables factoring n). Let

T ← {ℓ′ · α+ β}ℓ′∈L. From the above, |T | ≥ 4 and γ can divide at most
⌈
|T |
2

⌉
of the elements

in the set, and therefore does not divide at least 2|T |
5 of the elements of T (2|T |/5 happens for

example if there are five elements and γ divides the first, third and fifth). Thus, if γ ��| α, then γ ��| t
with probability at least 2

5 .

4[FO97b; MR04; CMP20] require s(n) ≥ n · 2κ, whereas below we only require s(n) ≥ n.
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If γ | α but γ ��| β (recall that all we know is that γ ��| α ∨ γ ��| β), then we have that γ | ℓ ·α and
γ ��| β, implying that γ ��| t = ℓ · α+ β. Thus, from here on we assume that γ ��| t.

Let δ ← gcd(γ, t), δt ← t/δ, δγ ← γ/δ, and let vt, vγ be such that vt · δt + vγ · δγ = 1 (vt, vδ
can be found efficiently using the extended Euclid algorithm since δt, δγ are relatively prime). It
follows that

(cvt · hvγ )δγ = cvt·γ/δ · hvγ ·δγ = hvt·δt · hvγ ·δγ = hvt·δt+vγ ·δγ = h mod n,

where the second equality holds because cvt·γ/δ = (cγ)vt/δ =
(
hℓ·α+β

)vt/δ =
(
ht
)vt/δ = hvt·t/δ =

hvt·δt . Thus, A′ outputs y = cvt · hvγ and e = δγ as the solution to the strong RSA game (since
ye = h mod n). If δγ = ±1 then γ = ±δ and so γ | t, in contradiction with our assumption. Thus,

A′

succeeds in the strong RSA game with probability ε(κ)/10− neg(κ).5 By the strong RSA assump-
tion, this implies that ε(κ) is a negligible function, as required. □

Range proof game. The following game captures the security of the range proof protocol pre-
sented in Section 3. The proof of the following proposition is implicit in [CMP20, Sec 6.1].

Proposition 2.16 (Hardness of range proof game). Let s ≥ n. If Assumption 2.14 holds, then for
any ppt algorithm A there exists a negligible function neg such that for every κ ∈ N,

Pr
n←StModuliGen(1κ),h

R←QRn

ℓ
R←[s],g←hℓ mod n

[
(c, α, β, γ)← A(1κ, n, g, h) : fn,g,h(c, α, β, γ)

]
≤ neg(κ)

where fn,g,h(c, α, β, γ) is true if and only if

1. c ∈ Z∗n, and

2. γ < 2κ−1, and

3. gα · hβ = cγ mod n, and

4. γ ��| α or γ ��| β or gα/γ · hβ/γ ̸= ±c mod n

Proof. Let (c, α, β, γ) be the output by A when given input (1κ, n, g, h) such that fn,g,h(c, α, β, γ) =
1. By Proposition 2.15, the probability that conditions (1) and (3) hold and (γ ��| α or γ ��| β) is
at most negligible. Thus, assume that γ | α and γ | β, and let α′ ← α/γ and β′ ← β/γ. Since
by assumption fn,g,h(c, α, β, γ) = 1 it follows that gcd(γ, ϕ(n)) ̸= 1, since otherwise it holds that
γ−1 mod ϕ(n) is well defined, and so

gα
′ · hβ′ = gα·γ

−1 · gβ·γ−1
= cγ·γ

−1
= c mod n, (1)

5This probability comes from the fact that if A succeeds and y ∈ QRn (with probability 1
4
) and γ ��| t (with

probability 2
5
) and A doesn’t factor n (negligible probability), then

A′

solves the strong RSA assumption.
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contradicting condition (4).
Next, recall that n = p · q = (2p′ + 1) · (2p′ + 1) for some κ-bit primes p′, q′, and so ϕ(n) =

4 · p′ · q′. Since p′, q′ are both primes greater than 2κ−1 and since γ < 2κ−1 by condition (2), we
deduce that gcd(γ, p′ · q′) = 1. Therefore, γ−1 mod p′ · q′ exists and γ is even (this holds because
gcd(γ, ϕ(n)) ̸= 1 and so it must be that γ has a common factor with 2). By Proposition 2.12, we
can write c = rb · c′ mod n for any r ∈ Z∗n \ ±QRn, with b ∈ {0, 1} and c′ ∈ ±QRn. In particular,
we can take r ∈ Z∗n \±QRn to be a square root of 1 in Z∗n (there are four square roots of 1; two of
them in ±QRn and two not in ±QRn; see Proposition 2.9). Recall that γ is even, and therefore
rγ = 1 mod n. Thus,

gα · hβ = cγ = (rb)γ · c′γ = (rγ)b · c′γ = 1 · c′γ = c′
γ
mod n

and so similarly to Equation (1), it holds that

gα
′ · hβ′ = c′ mod n.

This implies that c′ ̸= ±c mod n, since otherwise fn,g,h(c, α, β, γ) = 0. Let r = c′ · c−1 mod n and
note that gα

′ · hβ′ = r · c mod n where rγ = 1. This means that the order of r divides γ. Since
γ < 2κ−1, by considering the possible divisors of ϕ(n), it follows that the order of r is in {1, 2, 4}.
Since there are no elements of order 4 in Z∗n, and, by assumption, r ̸= ±1, it means that r is a
non-trivial root of 1 which allows factoring.

□

3 The Integer Commitment Scheme

In this section, we define the integer commitment scheme and prove its basic properties. In the
following let IntComn,g,h(x, ρ) := gx · hρ mod n.

Definition 3.1 (Integer commitment). The integer commitment scheme IntComSc =
(Gen,Commit,Verify) is defined as follows:

Gen: On input 1κs , 1κc , s:

1. Sample h
R←QRn and α

R← [n · 2κs ].

2. Let g ← hα mod n.

3. Output pp← (κ← (κs, κc), n, g, h).

The default value of the parameter s, if not set, is 0. Let ExtdGen be the variant of Gen that
also outputs α.

Commit: On input pp = (κ, n, g, h) and m ∈ Z:

1. ρ
R← [n · 2κs ].

2. Output IntComn,g,h(m; ρ).

Verify: On input pp = (κ, n, g, h), c ∈ Zn and m, ρ ∈ Z: Output true iff IntComn,g,h(m; ρ) = ±c
mod n.
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When clear from the context, we typically omit κ from pp.

Remark 3.2 (Negative commitments). Rather than defining the Verify procedure to (also)
accept “negative commitments”, i.e., IntCompp(x; ρ) = −c mod n, we could have defined
IntComn,g,h(x, ρ, b) := gx · hρ · (−1)b mod n, where b ∈ {0, 1} is uniformly sampled by the com-
mitter, and change Verify so that IntCompp(x; ρ, b) = c mod n. It is easy to see that all claims below
hold with respect to the modified definition. This would make working with integer commitments
less confusing (e.g., does the homomorphism work with negative commitments?), but at the price
of deviating from the standard notation.

3.1 Security

In this section, we prove the basic facts about the above scheme.

Claim 3.3 (Homomorphism). For any pp = (n, g, h) with n, g, h ∈ N and x, x′, ρ, ρ′ ∈ Z:
IntCompp(x; ρ) · IntCompp(x

′; ρ′) = IntCompp(x+ x′; ρ+ ρ) mod n.

Proof. Immediate. □

Claim 3.4 (Correctness). The scheme IntComSc is perfectly correct.

Proof. Immediate. □

The hiding property of IntComSc holds even if the parameters were not chosen as in Gen (only
requires g ∈ ⟨h⟩).

Claim 3.5 (Statistically hiding). For any pp = ((κs, ·), n, g, h) with n ∈ N, h ∈ Zn and g ∈ ⟨h⟩, it
holds that Commitpp is 2−κs hiding.

Proof. Let α be such that g = hα mod n. For any x, x′, ρ ∈ Z:

IntCompp(x; ρ) = gx · hρ = hρ+αx = hρ+α(x−x′)+αx′ = gx
′ · hρ+α(x−x′) = IntCompp(x

′; ρ′) mod n

for ρ′ = ρ+α ·(x−x′) mod |⟨h⟩|. Since the randomness for the commitment is uniform in 2κs ·n and
|⟨h⟩| < n, we have that both ρ and ρ′ are 2−κs close to uniform in [|⟨h⟩|]. Thus, the distributions
over commitments to x and to x′ are 2−κs close. □

The binding property of IntComSc holds assuming factoring is hard (over the distribution of
biprimes induced by Gen).

Claim 3.6 (Computational binding). If factoring is hard with respect to the distribution of biprimes
induced by Gen, then IntComSc is computationally binding.

The following proof shows that an adversary who can output a commitment and two different
openings, can factor n.

Proof. Let (n, g, h) ← Gen(κc, κs) and let n = (2p′ + 1) · (2q′ + 1). Assume there exists a ppt
algorithm A that on input pp = (n, g, h) outputs two valid openings (x0, ρ0) and (x1, ρ1) with
x0 ̸= x1 of the same commitment c with probability ε(κc). We construct an algorithm A′ for

factoring. A′ receives a safe biprime n, chooses h
R← QRn by choosing a random w ∈R Zn and

computing h = w2 mod n. Then, A′ chooses α
R← [n · 2κs ] and computes g ← hα mod n, as in Gen.
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Next, A′ invokes A upon (n, g, h). Let (x0, ρ0, x1, ρ1) be A’s output. If IntComScn,g,h(x0; ρ0) ̸=
±IntComScn,g,h(x1; ρ1) mod n or x0 = x1, then A′ halts.

Else, it holds that gx0 · hρ0 = ±gx1 · hρ1 mod n and therefore gx0−x1 = ±hρ1−ρ0 mod n. Since
g, h ∈ QRn and, by Proposition 2.10, −1 /∈ QRn, it holds that gx0−x1 = hρ1−ρ0 mod n. Let
x = x0−x1 and ρ = ρ0−ρ1 (over the integers) and so gx = hρ mod n. Recalling that g = hα mod n,
we conclude that hρ−αx = 1 mod n. Hence, for m = ρ− αx and ord = |⟨h⟩|, it holds that

m = 0 mod ord (2)

Since α ∈ [n · 2κs ] was chosen uniformly, it follows that for any given (n, g, h) there are at
least 2κs possible values of α such that g = hα mod n. Thus, the probability that ρ = α · x with
equality over the integers (for the specific α chosen by A) is at most 2−κs (observe that A′’s view is
identical for all α′ = α mod |⟨h⟩|). (This holds unless x = ρ = 0 but that implies that x0 = x1, in
contradiction with the assumption.) Thus, it follows that m ̸= 0 (over the integers), except with
probability 2−κs . Assume gcd(h − 1, n) = 1 (otherwise, we found a root), then m is a multiple of
ϕ(n)/4 which allows factoring.6

□

3.2 Parameters Generation

The above hiding and binding properties hold under certain guarantees regarding the commitment
parameters. These guarantees clearly hold if the parameters are honestly generated in a trusted
setup (using Gen). In practice, however, such a strong trust assumption may be considered un-
reasonable. Instead, it suffices for the receiver to generate the parameters (n, g, h) and provide a
zero-knowledge proof that g ∈ ⟨h⟩. To understand why this is sufficient, consider the two corruption
cases:

Committer is corrupt. In this case, the receiver is assumed to be honest (or else, there is no
security required). As a result, the parameters are honestly generated and the proof of binding
holds as proven.

Receiver is corrupt. In this case, the security property required is that of hiding (binding is
needed for a corrupted committer, but here the committer is honest). Observe that the proof
of hiding holds for all integers n, and only requires that h ∈ Z∗n and g ∈ ⟨h⟩. As such, if the
receiver provides a zero-knowledge proof that g ∈ ⟨h⟩ then as long as the committer verifies
that h ∈ Z∗n and the ZK proof that g ∈ ⟨h⟩ then hiding is guaranteed.

Unfortunately, there is no highly efficient ZK proof for the verifier to use for proving that g ∈ ⟨h⟩.
In Section 6, we address this issue by presenting a highly efficient protocol for proving that g is
“not far” from ⟨h⟩. While the resulting protocol does not guarantee full hiding, its hiding property
suffices for many applications.

6This is a standard fact. It is straightforward that am′
mod n is a non trivial root of 1 for m′ being the largest

odd factor of m and arbitrary a of Jacobi symbol −1.
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4 Range Proof based on Strong RSA

The main reason for using integer commitments is that they have highly efficient range proof
protocols. In a range proof protocol, the prover convinces the verifier it knows an opening (a, ρ)
of a commitment Â with a ∈ [d]. Ideally, we would like to have a sigma protocol for the relation,
quantified by a range parameter dv ∈ N and public key pp = (n, g, h) ∈ N3:

RRng
pp := {(c, (a, ρ) : IntCompp(a; ρ) = c ∧ a ∈ [dv]}

For the sake of this survey, we focus on a sigma protocol for a relaxation of the above relation
formulated as the following promise problem.

Definition 4.1 (ΠRng). For s, dv, dr ∈ N and pp = (n, g, h) ∈ N3, let

ΠRng
s,dv ,dr,pp

:=

{
Yes : {(c, (a, ρ) : IntCompp(a; ρ) = c ∧ a ∈ [dv], ρ ∈ [dr]}
Slack : {(c, (a, ρ) : IntCompp(a; ρ) = ±c ∧ a ∈ [±s · dv])}

That is, the slack instances enable the input to be larger than the designated range [dv] of the
yes instances (in particular, x ∈ [±s · dv]). Unfortunately, we are not aware of a sigma protocol
(or any highly efficient zero-knowledge POK protocol) for the above problem. For instance, it is
not clear how to extract when auxiliary information about the parameters (e.g., factoring of n) is
known to the prover. Yet, the following Schnorr-like proof has soundness against uniformly sampled
pp.

Protocol 4.2 (Range proof for integer commitments).

Parties: P,V.

Parameters: 1κs , 1κc , dv, dr ∈ N, pp = (n, g, h) ∈ N3.

Common input: c ∈ N.
P’s private input: a, ρ ∈ N.
Operation:

1. P:

(a) Sample a′
R← [2κs+κc · dv] and ρ′

R← [2κs+κc ·max{n, dr}].
(b) Send c′ ← IntCompp(a

′; ρ′) to V.

2. V: Send e
R← [2κc ] to P.

3. P:

(a) a′′ ← e · a+ a′.

(b) ρ′′ ← e · r + ρ′.

(c) Send (a′′, ρ′′) to V.

4. V: Verify:
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(a) c, c′ ∈ Z∗n.7

(b) a′′ ∈ [2κs+κc+1 · dv].
(c) IntCompp(a

′′; ρ′′) = ce · c′ mod n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that unlike Schnorr-like proof over known-order groups, since it does not know the order
of QRn, the prover masks its witness (a, ρ) using much larger (a′, ρ′).

The security of Protocol 4.2, implicit in [CMP20], is stated in the following theorem.

Theorem 4.3 (Security of Protocol 4.2). If Assumption 2.14 holds, then Protocol 4.2 is compu-

tational Sigma protocol for
{
ΠRng

s,dv ,dr,pp

}
with respect to the distribution ensemble

{
Pκ=(κs,κc)

}
that

outputs s← 2κs+κc+2, arbitrary dv, dr ∈ N, and pp
R← Gen(1κs , 1κc).

That is, assuming strong RSA, with save but negligible probability over pp, Protocol 4.2 is a
computational Sigma protocol for ΠRng

s,dv ,dr,pp
. We prove Theorem 4.3 by proving that Protocol 4.2

is a (non-computational) Sigma protocol for the following promise problem:

Definition 4.4 (ΠRng). For κc, s, dv, dr ∈ N, let

ΠRng
κc,s,dv ,dr

:=



For z = ((n, g, h), c), (x, r, γ))

Yes : {z : IntCompp(x; r) = c ∧ x ∈ [dv], r ∈ [dr]}
Slack : {z : (IntCompp(x; r) = ±c ∧ x ∈ [±s · dv])

∨ gcd(x, n) ∈ (1, 2κc+1]

∨
(
c ∈ Z∗n, γ ≤ 2κc−1) ∧ (gx · hr = cγ mod n)∧
(γ ��| x ∨ γ ��| r ∨ (gx/γ · hr/γ ̸= ±c mod n)

)
}

.

That is, the slack instances not only allow the input to be larger than the designated range,
but also enables the extractor to output (c, x, r, γ) that sets f to be true in Proposition 2.16. We
sometimes refer to the first condition of the slack set, i.e., IntCompp(x; r) = ±c ∧ x ∈ [±dv · s], as
the meaningful slack instances. We prove the following result.

Theorem 4.5. There exists an efficient algorithms Sim and Ext such that the following holds for
any p = (κc, s, dv, dr) ∈ N3: Protocol 4.2 is a Sigma-protocol for ΠRng

p , with simulator Simp and
POK extractor Extp.

Theorem 4.5 is proved below, but we first use it for proving Theorem 4.3.

Proof of Theorem 4.3. Completeness and zero-knowledge readily follow from Theorem 4.5, which
states that these properties hols for any any choice of pp. For the POK part, we prove that the ex-
tractor Ext guaranteed by Theorem 4.5 is a good extractor. Fix parameters p← (1κs , 1κc , dv, dr, pp)
and two transcripts {tj ← (c, c′, ej , γj)}j∈{0,1} that make V accept. Let s ← 2κs+κc+2 and

(x, ρ, γ) ← Exts,p(c, c
′, e0, e1, γ0, e1). Note that if gcd(x, n) ∈ (1, . . . , 2κc+1], then x is a non-trivial

7Assuming factoring n is hard, in a setting where the factorization of n is not known to P it suffices to check that
c, c′ mod n ̸= 0.
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factorization of n. Since we assume Assumption 2.14 holds, this happens only with negligible prob-
ability. Similarly, by Proposition 2.16, it holds that that

(
c ∈ Z∗n, γ ≤ 2κc−1) ∧ (gx ·hr = cγ mod n)

which only happens with negligible probability over the choice of pp. So with save but negligible
probability over the choice of pp, it holds that IntCompp(x; ρ) = ±c ∧ x ∈ [dv · s], concluding the
proof. □

Proof of Theorem 4.5. Fix p = (κc, s, dv, dr) ∈ N3. The proof follows by Claims 4.6, 4.8 and 4.10
stated below. □

Claim 4.6 (Correctness). Protocol 4.2 is perfectly correct.

Proof. Immediate. □

Zero knowledge. Consider the following simulator.

Algorithm 4.7 (Sim).

Paramters: p.

Input: c ∈ N.
Operation:

1. Sample

(a) a′′
R← [2κs+κc · dv].

(b) ρ′′
R← [2κs+κc · dr].

(c) e
R← [2κc−1].

2. Let c′ ← IntCompp(a
′′; ρ′′) · (ce)−1 mod n.8

3. Output (c′, e, a′′, ρ′′).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.8 (Zero knowledge). For any ((n, g, h), c), (a, r, γ)) ∈ YesRngp , the output of Simp(c) is
21−κs-close to the semi-honest execution on parameter p and common input c.

Proof. Let a′ ← a′′ − a · e and ρ′ ← ρ′′ − ρ · e. For c′ computed by by Sim it holds that

c′ = ga
′′ · hρ′′ · g−a·e · h−ρ·e = ga

′′−a·e · hρ′′−ρ·e = ga
′ · hρ′ mod n

Hence, the value of c′ in the emulated execution and in the real execution is the same function
of (c, e, a′′, ρ′′). Since, the e’s in both executions are identically distributed, it is left to bound the
statistical distance between (a′′, ρ′′) given c, e.

In the emulated execution, a′′
R← [2κs+κc · dv] and ρ′′

R← [2κs+κc · dr]. In contrast, in the real

execution, a′′ = e · a+ a′ and ρ′′ = e · ρ + ρ′, for a′
R← [2κs+κc · dv] and ρ′

R← [2κs+κc · dr]. It follows
that the statistical distance between the value of a′′’s is at most ea/2κs+κc · dv ≤ 2−κs and between
the value of ρ′′’s is at most eρ/2κs+κc · dr ≤ 2−κs . All in all, the statistical distance is at most
2 · 2−κs . □

8ce is guaranteed to have an inverse since c ∈ Z∗n for any correct c in the language, since c = ga · hρ mod n where
g, h ∈ Z∗n.
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Special soundness. Consider the following knowledge extractor.

Algorithm 4.9 (Ext).

Paramter: p.

Input: c ∈ N and two transcripts (c′, e0, a
′′
0, ρ
′′
0) and (c′, e1, a

′′
1, ρ
′′
1).

Operation:

1. Let α← a′′0 − a′′1, β ← ρ′′0 − ρ′′1 and γ ← e0 − e1.

2. If the event E := (γ | α) ∧ (γ | β) ∧ (gα/γ · hβ/γ = ±c mod n) is true, output

(α′ ← α/γ, β′ ← β/γ).

3. Else, output (α, β, γ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.10 (Special soundness). For any input c ∈ N and two transcript t0 = (c′, e0, a
′′
0, ρ
′′
0) and

t1 = (c′, e1, a
′′
1, ρ
′′
1) with e0 > e1 and Vp(c, tj) = 1 for both j ∈ {0, 1}, it holds that (c,Extp(c, t0, t1)) ∈

SlackRngp .

Proof. Since both t0 and t1 are accepting, for both j ∈ {0, 1}:

1. a′′j ∈ [2κs+κc+1 · dv].

2. ga
′′
j · hρ

′′
j = cej · c′ mod n.

By the second item, we deduce that gα ·hβ = cγ mod n. Now if E = true, then IntComScpp(α
′;β′) =

gα
′ · hβ′ = ±c mod n and α ∈ [±d · 2κs+κc+1]. So indeed (c,Extp(c, t0, t1)) ∈ SlackRngp .

Else, observe that γ < 2κc−1 (since each of e0, e1 ∈ [2κc−1]), gα · hβ = cγ mod n (by how they
are defined above), and at least one of the following holds: γ ��| α, γ ��| β or gα/γ · hβ/γ ̸= ±c mod n.
Hence, (c,Extp(c, t0, t1)) ∈ SlackRngp also in this case. □

5 Equality Proof

In this section, we consider equality proofs, which are the main application of integer commitments.
Equality proofs allow us to prove that two additively homomorphic commitments open to the
same value. The two commitments can be any combination of integer commitments, Pedersen
or ElGamal commitments, or the Paillier additively homomorphic public-key encryption scheme
(naturally viewed as a commitment).

We start by presenting an equality proof between integer commitments and the additively
homomorphic “group commitments”, naturally defined by exponentiation over prime-order groups,
i.e., ComG,G(x) := x · G.9 In Section 5.2, we give an equality proof between integer commitments
and Pedersen commitments over prime-order groups, and in Section 5.3, we do the same for Paillier
encryption. In Section 5.4, we explain, among other applications, how to use the above protocols
to obtain equality proofs between any type of commitment (group, Pedersen, or Paillier). To make
the text more readable, in the following we denote integer commitments using an overhead tilde,
e.g., Ã← IntCompp(a; ρ).

9Obviously, being deterministic, group commitments are not hiding (at least not in the usual sense), but it is
simpler to explain equality proofs using this simple example.
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5.1 Equality with Group Commitments in Rough Groups

Definition 5.1. We say that a group G is ℓ-rough, for ℓ ∈ N, if ℓ′ ��| |G|, for every ℓ′ < ℓ.

Equality proof for integer and group commitments is a protocol for the following promise prob-
lem:

ΠEqGrp
s,dv ,dr,pp,G

:=

Yes :
{
((Ã, A), (a, ρ)) : IntCompp(a; ρ) = Ã ∧ a ·G = A ∧ a ∈ [dv], ρ ∈ [dr]

}
Slack :

{
((Ã, A), (a, ρ)) : IntCompp(a; ρ) = ±Ã ∧ a ·G = A ∧ a ∈ [±s · dv]

}
Note that description of the generator G of the additive group is part of the above problem, but as
we shall see later, G can be a fixed generator of a “large enough” group. Also note that the above
promise problem not only states that a is the opening of the two commitments, but also that it is
small. Our protocol critically relies on this bound to guarantee zero-knowledge. Furthermore, this
bound is critical for our applications of equality proof. See Section 5.4.

Protocol 5.2 (Equality proof with a group commitment).

Parameters: 1κs , 1κc , dv, dr ∈ N, pp = (n, g, h) ∈ N3, G.

Common input: Ã, A.

P’s private input: a, ρ ∈ N.
Operation: The protocol follows the same lines as Protocol 4.2, with the following additions:

Step 1. P (also) sends A′ ← a′ ·G to V.

Step 4. V (also) verifies that a′′ ·G = e ·A+A′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 5.3 (Security of Protocol 5.2). If Assumption 2.14 holds, then Protocol 5.2 is compu-

tational Sigma protocol for
{
ΠEqGrp

s,dv ,dr,pp

}
with respect to the distribution ensemble

{
Pκ=(κs,κc)

}
that

outputs s← 2κs+κc+2, arbitrary dv, dr ∈ N, generator G of a 2κc-rough group, and pp
R←Gen(1κs , 1κc).

Proof.

Correctness. Clear.

Zero knowledge. Consider the simulator Sim’ that acts like Algorithm 4.7 but in Step 3, also
output A′ ← a′′ ·G− e · A. It is clear that the added A′ part in the view is perfectly emulated by
Sim’. Hence, the zero-knowledge property follows from the same lines as that of Protocol 4.2.

Special soundness. Fix two accepting transcripts
{
(Ã′, A′, ej , a

′′′
j , ρ

′′
j )
}
j∈{0,1}

with e0 > e1, and

let α ← a′′′0 − a′′′1 , β ← ρ′′0 − ρ′′1 and γ ← e0 − e1. The proof of Theorem 4.3 yields that with save
but negligible probability

(γ | α) ∧ (γ | β) ∧ (gα/γ · hβ/γ = ±c mod n) (3)
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We instruct the extractor to output (α′ ← α/γ, β′ ← β/γ). Since α′ is of the right size, it is left to
argue that α′ · G = A. Since both transcripts are accepting, it holds that x′′j · G = ej · A + A′ for
both j ∈ {0, 1}, and therefore γ · A = α ·G. Let q be the not-necessarily-prime order of the group
generated by G. Next, we will be using the following fact.

Fact 5.4. Let ℓ, q ∈ N such that ℓ′ ��| q for all ℓ′ < ℓ. Then, gcd(ℓ′, q) = 1, for all ℓ′ < ℓ.

Proof. Fix ℓ′ < ℓ and let pa11 · · · p
ak
k denote the prime factorization of ℓ′. By assumption, for all

i ∈ [k], pi ��| q, and thus gcd(pi, q) = 1, for all i ∈ [k]. Consequently, gcd(ℓ′, q) = 1. □

Since G is 2κc-rough and γ ∈ [2κc − 1], it follows by Fact 5.4 that gcd(γ, q) = 1 and therefore
A = γ−1 ·α ·G. Writing α = α′ ·γ, we deduce that γ−1 ·α = α′ mod q, and therefore A = α′ ·G. □

5.2 Equality with Pedersen Commitments in Known-Order Rough Groups

In this section, we present an equality proof protocol between integer commitments and the (ad-
ditively homomorphic) Pedersen commitments over known-order rough groups, e.g., elliptic curve
groups. The following text readily extends to ElGamal commitments over the same types of groups.

For a generator G of an additive group G, the Pedersen commitment with respect to public key
E ∈ G, input m ∈ Zq, and randomness ρ ∈ Zq, is defined by PedG,E(m; ρ) := ρ · E +m · G. That
is, the Pedersen commitment is just an integer commitment written here in additive form, where
the operations are performed in the group. Consider the following promise problem:

ΠEqPed
s,dv ,dr,pp,G,E :=

Yes :
{
((Ã, Â), (a, ρ, ρ̂)) : IntCompp(a; ρ) = Ã ∧ PedE(a; ρ̂) = Â ∧ a ∈ [dv], ρ ∈ [dr]

}
Slack :

{
((Ã, Â), (a, ρ, ρ̂)) : IntCompp(a; ρ) = ±Ã ∧ PedG,E(a; ρ̂) = Â ∧ a ∈ [±s · dv]

}
Namely, a Yes instance is a pair of Integer and Pedersen commitments to same (not too large)

value.

Protocol 5.5 (Equality proof with Pedersen Commitments ).

Parameters: 1κs , 1κc , dv, dr ∈ N, pp = (n, g, h) ∈ N3, q, G,E.

Common input: Ã, Â.

P’s private input: a, ρ, ρ̂ ∈ N.
Operation: The protocol follows the same lines as Protocol 4.2, with the following additions:

Step 1. P (also) sends Â′ ← PedE(a
′; ρ̂′) to V, for ρ̂′

R← Zq.

Step 3. P (also) sends ρ̂′′ ← e · ρ̂+ ρ̂′ mod q to V.

Step 4. V (also) verifies that PedE(a
′′; ρ̂′′) = e · Â+ Â′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Theorem 5.6 (Security of Protocol 5.5). Fix two accepting transcripts (Ã′, Â′, e0, a
′′′
0 , ρ

′′
0, ) and

(Ã′, A′, e1, a
′′′
1 , ρ

′′
1) with e0 > e1, and let α← a′′′0 − a′′′1 , β ← ρ′′0 − ρ′′1 and γ ← e0 − e1. The proof of

Theorem 4.3 yields that with save but negligible probability

(γ | α) ∧ (γ | β) ∧ (gα/γ · hβ/γ = ±c mod n) (4)

We instruct the extractor to output (α′ ← α/γ, β′ ← β/γ), and so is left to argue that α′ ·G = A.

If Assumption 2.14 holds, then Protocol 5.5 is computational Sigma protocol for
{
ΠEqPed

s,dv ,dr,pp,E

}
with respect to the distribution ensemble

{
Pκ=(κs,κc)

}
that outputs s← 2κs+κc+2, arbitrary dv, dr ∈

N, G that is a generator of an additive q-order 2κc-rough group G, E ∈ G, and pp
R← Gen(1κs , 1κc).

Proof.

Correctness. Clear.

Zero knowledge. Consider the simulator Sim’ that acts like Algorithm 4.7 but adds the following
values to the generated view:

• ρ̂′′
R← Zq.

• Â′ ← PedG,E(a
′′; ρ̂′′)− e · Â.

It is clear that the added (Â′, ρ̂′′) part in the view, is perfectly emulated by Sim’. Hence, the
zero-knowledge property follows from the same lines as that of Protocol 4.2.

Special soundness. Fix two accepting transcripts
{
(Ã′, Â′, ej , a

′′′
j , ρ

′′
j , ρ̂
′′
j )
}
j∈{0,1}

with e0 > e1,

and let α← a′′′0 − a′′′1 , β ← ρ′′0 − ρ′′1, β̂ ← ρ̂′′0 − ρ̂′′1 and γ ← e0− e1. The proof of Theorem 4.3 yields
that with save but negligible probability

(γ | α) ∧ (γ | β) ∧ (gα/γ · hβ/γ = ±c mod n) (5)

Note that since γ ∈ [2κc − 1], gcd(γ, q) = 1. We instruct the extractor to output (α′ ← α/γ, β′ ←
β/γ, β̂′ ← β̂ · γ−1 mod q). It thus left to prove that

Â = PedG,E(α
′; γ−1 · β̂)

Since both transcripts are accepting, we get that Â = PedG,E(γ
−1 ·α mod q; γ−1 ·β̂). This concludes

the proof since, as in the proof of Theorem 5.3 we have that γ−1 · α = α′ mod q. □

5.3 Equality with Paillier Encryption

In this section, we present an equality proof protocol between integer commitments and the ad-
ditively homomorphic Paillier encryption scheme introduced by Paillier [Pai99]. Recall that for
a public key n ∈ N, the plaintext domain is Z∗n2 , and the randomness domain is Z∗n. Given
m ∈ Z∗n2 and randomness ρ ∈ Z∗n, the Paillier encryption with respect to public key n is defined by
PEncn(m; ρ) := (n+ 1)m · ρn mod n2. Consider the following promise problem.
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ΠEqPals, dv, dr, pp, pk :=


Yes : {((Ã, Â), (a, ρ)) :

IntCompp(a; ρ) = Ã ∧ PEncpk(a; ρ̂) = Â ∧ a ∈ [dv], ρ ∈ [dr]}
Slack : {((Ã, Â), (a, ρ, ρ̂)) :

IntCompp(a; ρ) = ±Ã ∧ PEncpk(a; ρ̂) ∧ a ∈ [±s · dv]}

Namely, a Yes instance is a pair of Integer commitment and a Paillier encryption of the same
(not too large) value.

Protocol 5.7 (Equality proof with Paillier encryption ).

Parameters: 1κs , 1κc , dv, dr, pp = (n, g, h) ∈ N3, pk ∈ N.
Common input: Ã, Â.

P’s private input: a, ρ, ρ̂ ∈ N.
Operation: The protocol follows the same lines as Protocol 4.2, with the following additions:

Step 1. P (also) sends Â′ ← PEncpk(a
′; ρ̂′) to V, for ρ̂′

R← Z∗pk.

Step 3. P (also) sends ρ̂′′ ← ρ̂e · ρ̂′ mod pk to V.

Step 4. V (also) verifies that PEncpk(a
′′; ρ̂′′) = e · Ã+ Ã′ and that ρ̂′′ ∈ Z∗pk.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let PKeyGen be any algorithm that on input 1κc outputs pk ∈ N whose prime factors are of size
at least 2κc .10

Theorem 5.8 (Security of Protocol 5.7). If Assumption 2.14 holds and factoring is hard with

respect to PKeyGen, then Protocol 5.5 is computational Sigma protocol for
{
ΠEqPed

s,dv ,dr,pp,E

}
with

respect to the distribution ensemble
{
Pκ=(κs,κc)

}
that outputs s ← 2κs+κc+2, arbitrary dv, dr ∈ N,

pp
R← Gen(1κs , 1κc) and pk

R← PKeyGen(1κc).

The proof of Theorem 5.8, given in Section 5.3.2, uses a fact about the “Paillier modulus” that
is stated and proven in Section 5.3.1.

5.3.1 Paillier Ciphertexts Divisors

Proposition 5.9 (Paillier ciphertexts divisors). There exists an efficient algorithm that given as
input n ∈ N, x ∈ Zn, z, ρ ∈ Z∗n and Ã ∈ Z∗n2 such that

PEncn(z · x; ρ) = z · Ã,

it outputs r ∈ Z∗n with PEncn(x; r) = Ã.

Proposition 5.9 is proved using the following fact.

10This formulation allows the prover to sample pk by itself, and prove that it is of the right form. Note that we do
not require gcd(pk, ϕ(n)) = 1, which is not needed for the range proof.
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Proposition 5.10. There exists an efficient algorithm that given as input n ∈ N and ρ, y, z ∈ N
such that

1. ρ, z are relatively prime to n, and

2. ρn = yz mod n2,

it outputs r ∈ Z∗n with rn = y mod n2.

Proof. Using the extended GCD algorithm, we find the Bezout coefficients u, v ∈ Z such that
u · z + v · n2 = 1. Let r ← ρu · ynv mod n2. It holds that

rn = ρun · yvn2
= yzu · yvn2

= y mod n2.

Note that the same holds for ρ′ ← r mod n (powering by n removes any additive terms that are
divisible by n). Finally, since ρ and y are relatively prime to n, so are r and ρ′. □

Proof of Proposition 5.9. For Ŷ ← Ã − PEncn(x; 1), it holds that z · Ŷ = PEncn(0; ρ). Thus, for
y ← Ŷ (y is viewed as integer), it holds that yz = ρn mod n2. By Proposition 5.10, we can
efficiently compute r ∈ Z∗n such that rn = y mod n2. It follows that PEncn(0; r) = Ŷ , and therefore
PEncpk(x; r) = Ã. □

5.3.2 Proving Theorem 5.8

Using Proposition 5.9, we prove Theorem 5.8 as follows.

Proof of Theorem 5.8.

Correctness. Clear.

Zero knowledge. Consider the simulator Sim’ that acts like Algorithm 4.7 but adds the following
values to the generated view:

• ρ̂′′
R← Z∗pk.

• Â′ ← PEncpk(a
′′; ρ̂′′)− e · Â.

It is clear that the added (Â′, ρ̂′′) part in the view, is perfectly emulated by Sim’. Hence, the
zero-knowledge property follows from the same lines as that of Protocol 4.2.

Special soundness. Fix two accepting transcripts
{
(Ã′, Â′, ej , a

′′′
j , ρ

′′
j , ρ̂
′′
j )
}
j∈{0,1}

with e0 > e1,

and let α← a′′′0 − a′′′1 , β ← ρ′′0 − ρ′′1, β̂ ← ρ̂′′0 · (ρ̂′′1)−1 mod pk (note that ρ̂′′1 ∈ Z∗pk), and γ ← e0 − e1.
The proof of Theorem 4.3 yields that with save but negligible probability

(γ | α) ∧ (γ | β) ∧ (gα/γ · hβ/γ = ±c mod n) (6)

Since both transcripts are accepting, it holds that

PEncpk(α; β̂) = γ · Ã (7)

Since γ ∈ [2κc − 1], it holds that gcd(γ, pk) = 1. Thus by Proposition 5.9 (letting n ← pk,
x ← α′, z ← γ, and ρ ← β̂), we can efficiently compute β̂′ ∈ Z∗pk such that PEncpk(α

′; β̂′) = Ã.

Outputting (α′, β′, β̂′) concludes the proof. □
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5.4 Applications

In this section we present several application of the above protocols. For readability, we focus
on group commitments, but all the following readily generalized to Pedersen Commitments and
Paillier encryption.

5.4.1 Range Proof for Rough Groups

An immediate application of Protocol 5.2 is a range proof protocol for arbitrary rough groups.
Namely, an extended computational Sigma protocol for the promise problem

ΠRng
s,dv ,G

=

{
Yes : {(A, a) : a ·G = A ∧ a ∈ [dv]}
Slack : (A, a) : a ·G = A ∧ a ∈ [s · dv]

The protocol is straightforward. In the preamble stage, the verifier samples pp using Gen and prove
the verifier it is well formed (see Section 3.2). Then the prover sends Ã ← IntCompp(a; ρ) to the
verifier, and the parties continue according to Protocol 5.2.

5.4.2 Equality Proof between Rough Groups

Similarly to the above, Protocol 5.2 yields a computational, extended, Sigma protocol for the
following promise problem:

ΠEqGrp

s,dv ,G,Ĝ
:=

Yes :
{
((A, Â), a) : a ·G = A ∧ a · Ĝ = Â ∧ a ∈ [dv]

}
Slack :

{
((A, Â), a) : a ·G = A ∧ a · Ĝ = Â ∧ a ∈ [±s · dv]

}
where G and Ĝ are generators of two suitable rough groups.

Note that without the bound on a, the above promise problem is meaningless: let q and q̂ be
the orders of the prime order groups generated by G and Ĝ, respectively, and assume gcd(q, q̂) = 1.
By CRT, for any a ∈ Zq and â ∈ Zq̂ there exists b ∈ Zq·q̂ such that b = a mod q and b = â mod q̂.

So any (A, Â) is a Yes instance for this variant. In typical applications, we set the bound dv so
that q > s · dv. Hence, (A, Â) is a Yes instance only if the unique discrete log a ∈ [q − 1] of A, is a
discrete log of Â.

The protocol is again straightforward. In the preamble stage, the verifier samples pp using
Gen and proves to the prover that it is well formed. Then the prover sends Ã ← IntCompp(a; ρ)
to the verifier, and the parties interact in two parallel executions of Protocol 5.2: one with input
(Ã, A) with respect to the group G, and the second with input (Ã, Â) with respect to the group Ĝ.
(Actually, it is easy to see that it suffices for the verifier to send a single challenge e, to be used for
both executions.)

5.4.3 Commit-and-Prove

Another immediate application of Protocol 5.2 is when G is taken as the additive group Zq, i.e.,
the additive group generated by 1 modulo q, assuming q does not have small factors. In this case,
Protocol 5.2 allows you to commit to a bounded integer a using an integer commitment, and later
expose the value of a mod q for any suitable q. Thus, it implements the so-called commit-and-prove
functionality, presented below.
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Functionality 5.11 (Cmt&Prv).

Parameter: s ∈ N.
Parties: S and R.

Commit:

Common input: da ∈ N.
S’s input: a ∈ [da].

Operation: Store a.

Prove:

Common input: q ∈ N, a′ ∈ Zq.

Operation: Abort if a /∈ (da) or if a
′ ̸= a mod q. A malicious S can instruct to accept a ∈ ±(s·da).11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Lightweight Leaky Well-Formedness Proof

A main obstacle in using integer commitments is the choice of the parameters pp = (n, g, h).
Recall that for the soundness of the range and equality proofs, we require pp to be uniformly
sampled without leaking the randomness used to sample it to the prover. For the hiding property
to hold, however, we need g ∈ ⟨h⟩n. We can let the verifier sample pp and prove that g ∈ ⟨h⟩n,
but unfortunately, no highly efficient proof is known for this task. While the following sigma
protocol does not enforce g ∈ ⟨h⟩n, it does guarantee that any leakage induced by committing with
parameters that have passed verification is limited. In many settings, like those in this paper, this
leakage can be overcome.

Protocol 6.1 (Parameters well-formedness).

Parties: P,V.

Parameters: 1κs .

Common input: n, g, h ∈ N.
P’s private input: α ∈ N.
Operation:

1. P:

(a) Sample β
R← [n · 22κs ].

(b) Send c← hβ mod n to V.

2. V: Send e
R← [2κs ] to P.

3. P: Send x← e · α+ β mod φ to V.

4. V: Verify hx = c · ge mod n.

11Namely, correctness and zero-knowledge are only guaranteed to hold for inputs in (da), but a malicious sender
might cause the receiver to accept values in (s · da).
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It is clear that Protocol 6.1 is correct and zero-knowledge for the relation

RWF := {((n, g, h), α) : g = hα mod n}.

The soundness of the protocol is given in the following claim. Let ordn(a) = |⟨a⟩n|.

Definition 6.2. For n, h, g ∈ N, let mn,h(g) := argmin{ordn(a) : a ∈ Z∗n ∧ a · g ∈ ⟨h⟩n}, and let
δn,h(g) := ordn(mn,h(g)).

That is, mn,h(g) is the minimal element in Z∗n (i.e., of smallest order) that maps g into ⟨h⟩n.

Claim 6.3. On common input n, g, h ∈ N, V accepts in Protocol 6.1 with probability at most
2−κs + 1/δn,h(g).

Specifically, if V accepts with probability at least 21−κs , then there exist a ∈ Z∗n of order at most
2κs such that a · g ∈ ⟨h⟩n. The following claims yields that if δn,h(g) is small (and then V might
accept), using pp = (n, g, h) still yields a not-too-leaky commitment.

Claim 6.4. Let pp = (1κs , n, h, g) and let a ∈ Z∗n be such that a · g ∈ ⟨h⟩n. Then

SD(IntCmtpp(1
κs , x0), IntCmtpp(1

κs , x1)) ≤ 2−κs

for any x, x′ ∈ Z with x = x′ mod ordn(a).

Namely, a commitment to x only leaks x mod δn,h(g).

Proof. Let ĝ ← a · g, and let pp′ = (n, h, ĝ). It holds that

IntCompp(x; ρ) = hρgx = hρ · ĝx · a−x = IntCompp′(x; ρ) · a−x mod n.

Since ĝ ∈ ⟨h⟩n, it holds that IntCmtpp′ is of hiding. And since a−x = a−x
′
mod n, we conclude

that IntCmtpp(1
κs , x) is of statistical distance at most 2−κs from IntCmtpp(x

′). □

6.1 Commitments over Rough Integer Rings

When the value to commit comes from Zq for some q ∈ N that does not admit small factors,
Protocol 6.1 can be used to obtain non-leaky a commitment; after using the light-setup protocol
(yielding parameter pp), commit to x ∈ Zq as follows:

Algorithm 6.5 (IntCom’).

Paramters: pp = (1κs , n, g, h), q.

Input: x.

Operation:

1. Sample x′
R← [q · 22κs ] conditioned on x′ = x mod q.

2. Output to IntCompp(x
′, ρ) for ρ

R← [n · 2κs ].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Claim 6.6. Let pp = (1κs , n, g, h) such that Assume δn,h(g) ≤ 2κs. Then for any x0, x1 ∈ Zq, the
statistical distance between IntCom′(x1) and IntCom′(x1) is at most 2−κs.

That is, either the light setup protocol aborts with probability 1−2−κs , or IntCom′ is statistically
hiding.

Proof. Take the smallest integer s′ > s← n · 2κs divided by δ ← δn,h(g). Assuming IntCom’ would

sample x′
R← [s′]. Since gcd(δ ← δ, q) = 1, by CRT IntCom′(x1) and IntCom′(x1) are identically

distributed (given pp). It follows that in the real algorithm, IntCom′(x1) and IntCom′(x1) are at
distance at most (s′ − s)/s′ ≤ δ/s ≤ 2−κs . □

Applications. Recall, see Section 3.2, that the zero knowledge property of all the integer com-
mitment Sigma protocols considered in this paper hold for any choice (well formed or not) of the
parameter pp. Hence, for values in Zq (for any suitable q), using Protocol 6.1 yields a highly efficient
well-formedness proof for integer commitment-based protocols.
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