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Abstract. In this paper, we revisit venerable lower bounds on the AT or AT 2

performance metric of hardware designs. A series of works started in the late
1970’s has established that if a hardware circuit of area A computes a function
f : {0, 1}n → {0, 1}m in T clock cycles, then AT 2 is asymptotically larger than the
square of the communication complexity of f . These lower bounds ignore the active
components of the circuit such as the logic gates and only take into account the area
of the wiring connecting them.
It seems that it has become a common practice to report the performance character-
istics of hardware designs after synthesis, namely after having “compiled” the design
into the topological description of a hardware circuit made of standard cells. The
area of the cells can be be determined with certainty, whereas the area occupied by
the wires cannot. This may leads to optimistic performance figures, that may even
violate the old lower bounds.
In this paper, we take the case of the Möbius transform as a case study, following the
work of Banik and Regazzoni in TCHES, 2024(2) who presented hardware designs
that implement it. We first determine the communication complexity of the Möbius
transform. Then, following the old methodology, we derive lower-bounds on the area
(in µm2) of any circuit that implement the operation using several open Process
Design Kits for ASIC production. For large enough instances, the wires provably
occupy more area than the logic gates themselves. This invalidate previous theoretical
claims about the performance of circuits implementing the Möbius transform.
Fundamentally, the root cause of the contradiction between “VLSI-era” lower bounds
and current performance claims is that the lower bounds apply to a geometric
description of the circuit where the lengths of the wires are known, while it is common
to report performance results on the basis of hardware synthesis alone, where a
topological description of the circuit has been obtained but the actual lengths of
wires is unknown.
Keywords: Möbius transform · Area Lower bound · Communication Complexity ·
circuits

1 Introduction
Academic researchers proposing hardware designs often have to argue about their perfor-
mance before an actual transistor is etched onto a silicium wafer. Consider for instance
recent proposals of low-latency Pseudo-Random Functions such as Orthros [BIL+21],
Speedy [LMMR21], QARMAv2 [ABD+23] or Gleeok [ABC+24]. In all cases, the area
(µm2), power (mW), energy (pJ) and latency (ns) of the corresponding hardware designs
are reported for various industrial chip production processes. However, no actual chip was
manufactured for the purpose of obtaining these performance results experimentally. The
corresponding hardware designs have been synthetized for various cell libraries, such as
the Nangate 45nm library (“FreePDK45”), the Nangate 15nm (“FreePDK15”), the TSMC
90nm library or the STM 90nm library. This synthesis is almost universally performed
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Table 1: Characteristic of an OpenCore double-precision FPU circuit after synthesis, place
and route using two different process design kits. Data: [MMR+15].

FreePDK45 FreePDK15
#Cells 36,583 31,442

Cell area (µm2) 68,566.29 15,437.17
Total area (µm2) 211,068.87 21,706.92

Ratio ×3.08 ×1.4

using (closed-source) commercial tools. The performance metrics are derived from the
result of the synthesis process.

Starting from a higher-level description of the hardware design (for instance in VHDL or
Verilog), synthesis produces a lower-level description: the design is realized by assembling
logic cells taken from a cell library. Synthesis produces a netlist, namely a description
of the electrical connection between pins of the cells that compose the circuit. It is a
topological description of the final chip.

Placement and routing take the synthetized netlist and produce the actual physical
layout of the chip. The result is a geometric description of the circuit that is ready for
industrial production. At this point, it is possible to test if the geometric description of
the initial design satisfies constraints imposed by the manufacturing process (thickness
of wires, spacing ensuring electrical isolation, etc.). Foundries require this kind of geo-
metric description to produce actual chips (using a cell library that correspond to their
manufacturing process).

After placement and routing have been completed and a geometric description of a chip
has been obtained, the silicim area of the chip that would be manufactured is known with
certainty. Power and timing simulations can be performed with a high degree of realism as
well.

However, all these steps (synthesis, placement, routing) are complex and compu-
tationally intensive. Therefore, it is common to take a shortcut and to only perform
synthesis, not placement nor routing. The performance characteristics of the chip that
could be obtained by industrial production is then estimated from the netlist. The un-
derlying assumption is that it possible to estimate, with a reasonable degree of certainty,
characteristics of the geometric description of the circuit from its topological descrip-
tion alone. This is what is done for the evaluation of the low-latency PRFs mentionned
above [BIL+21, LMMR21, ABD+23, ABC+24] and it seems to be common in the literature.

With regards to the area of the circuit, once a netlist has been synthesized, the area of
the cells that compose the circuit is known. This is what is reported as “area” in these
works. The underlying assumption is then that adding electrical wires to connect these
cells does not significantly increase the area of the final hardware chip, and that most of
the silicium area is occupied by the cells.

In this article, we revisit this assumption and show that it is bound to be false, at
least in some cases. As a preliminary observation, we note that the article introducing
the FreePDK15 open cell library [MMR+15] provides the example of a double-precision
FPU core that has been synthetized, placed and routed using both the FreePDF45 and
FreePDF15 cell library and corresponding processes. The results are shown in Table 1.
Clearly, the final area of the circuit after placement and routing is larger than the area of
the cells. In this case, the expansion is nevertheless limited. It is smaller with the newer
15nm process than with the 45nm process, because the latter allows more layers of wires
(13 vs 10). In this article, we investigate another “real-life” example where the effect is
more dramatic.
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Figure 1: “Butterfly diagram” that computes the Möbius transform for inputs of size 16.

1.1 A Case Study: the Möbius Transform
To make our point, we use a recently published article by Banik and Regazzoni [BR24a]
and the follow-up work [BR24b]. It describes a hardware design that solves systems of
Boolean polynomial equations using the “memory-efficient” Möbius transform invented by
Dinur [Din21]. This is motivated by cryptanalytic applications. Any Boolean function

f : {0, 1}n → {0, 1}
(x0, . . . , xn−1) 7→ f (x0, . . . , xn−1)

on n variables can be completely described by providing its truth table, namely the array
of 2n bits that contain its value on each of the possible values of the n input variables. It
can also be described as a multivariate polynomial over F2 with 2n terms:

f(x) =
∑

m∈{0,1}n

amx
m1
1 . . . xmn

n

The function f is completely described by the values of the 2n coefficients a0, a1, . . . This
representation is the Algebraic Normal Form (ANF) of f .

The Möbius transform computes the ANF of a function given its truth table, and
vice-versa (the operation is involutive). The interested reader may consult [Jou09] for
more details. The Möbius transform is a linear function described by the block-matrix

Mn =
(
Mn−1 0
Mn−1 Mn−1

)
with M0 = (1)

It can be implemented efficiently, using the following observation. Suppose that the input
vector x of size 2n is split in two halves:(

y↑

y↓

)
= Mn ·

(
x↑

x↓

)
=

(
Mn−1 0
Mn−1 Mn−1

)
·
(
x↑

x↓

)
=

(
Mn−1 · x↑

Mn−1 · x↑ +Mn−1 · x↓

)
This suggests a simple in-place recursive algorithm to compute Mn · x: set y↑ ←Mn−1 · x↑

and y↓ ←Mn−1 · x↓, then do y↓ ← y↓ + y↑. This requires O (n logn) operations. From a
hardware point of view, the operation can be implemented by a depth-n circuit that has a
regular shape as illustrated by Fig. 1. On inputs of size 2n, n identical rounds with 2n−1

XOR gates and a permutation of wires are sufficient.
Two hardware designs called Expmob1 and Expmob2 to compute the Möbius

transform are described in [BR24a]. They are used as subcomponents of a broader design.
The Expmob1 circuit is fully unrolled and computes the Möbius transform of an input
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Table 2: Experimental performance results given in [BR24a, Appendix D]. σ denotes the
area of a XOR gate.

Expmob1 Expmob2
n A (µm2) A/(σn2n−1) Area (µm2) A/(σ2n−1)
6 95.600 1.13 157.041 11.1
7 233.128 1.18 300.958 10.7
8 572.473 1.27 573.702 10.2
9 1333.936 1.31 1138.754 10.1
10 3227.910 1.43 2255.831 10.0
11 7855.473 1.58 4486.152 9.9
12 18784.420 1.73 9046.868 10.0
13 46181.007 1.96 17860.706 9.9
14 110026.212 2.17 35611.803 9.8

of size N = 2n in a single clock cycle by using log2 N layers of “butterflies” as in Fig. 1
and has 0.5N log2 N XOR gates. The second circuit, Expmob2, uses a single layer of
butterlies and runs in log2 N clock cycles with just 0.5N XOR gates. These two circuits are
claimed in to have area proportional to the number of XOR gates they contain. They have
been synthetized for various input sizes, starting from VHDL code, using a commercial
tool and the FreePDK15 open cell library. The area, power and energy consumption, as
well as the latency of the corresponding hardware implementations are reported (part of
this data is reproduced in Table 2). The reported areas are indeed nearly proportional to
the number of XOR gates contained in the circuits, as suggested by Table 2.

It follows that the two proposed designs, Expmob1 and Expmob2 both offer an
area-time tradeoff given by AT 2 = O (N logN) and AT 2 = O

(
N log2 N

)
, respectively.

This is explicitly claimed in [BR24a]. Both circuits offer the tradeoff AT = O (N logN).
However, the algorithm to compute the Möbius transform is quite reminiscent of the

most common way to implement the Discrete Fourier Transform: the radix-2 decimation
in time that is ususally called “the Fast Fourier Transform”. From the point of view of
hardware implementations, it was shown more than 45 years ago [Tho79] that any circuit
of area A running in time T that computes the Discrete Fourier Transform of a input of
size N is subject to a lower-bound of the kind AT 2 = Ω

(
N2)

. Because any circuit that
computes the discrete Fourier transform must be able to contain the whole input data,
there is an area lower-bound of A = Ω (N), and this gives a lower-bound on the area-time
ratio AT = Ω

(
N1.5)

.
The same kind of lower-bounds have subsequently been proved for various other opera-

tions: cyclic shift and convolution [Vui83], sorting [BP86], integer multiplication [BK80],
matrix product [Sav81], etc. These bounds have generally been matched by corresponding
designs, and hence are tight. The common argument is based on communication complexity.
The general argument is now standard and it is described in the Handbook of Theoretical
Computer Science [Len90]. In short, if the (planar) circuit is cut in two in a certain way,
then a given amount of information must flow across the cut. This in turn requires a
minimum number of wires to be cut if the flow is fast enough, and hence a minimum area
for these wires.

The two proposed designs in our case study, Expmob1 and Expmob2, apparently
escape the kind of lower-bound that applies to a very similar operation, namely the Fast
Fourier Transform. So, two outcomes are possible: either the Möbius transform, despite
its resemblance with the FFT, is not subject to a comparable AT 2 = Ω

(
N2)

lower-bound.
Or the usual assumption that the area of wiring can be ignored led the authors of [BR24a]
to state erroneous theoretical performance claims and present experimental results about
their hardware designs that may not representative of the performance of real chips that
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Table 3: Effective lower-bounds, with A given in µm2. T denotes the number of clock
cycles required to evaluate f(·). CC(f) is the communication complexity of f with the
natural input partition, and CC(f) is the communication complexity of f for the “best”
input partition.

Process Thm. 2 Thm. 3
FreePDK15 70.4

√
A+ 149 ≥ CC(f)/T 458

√
A+ 35394 ≥ CCbest(f)/T

FreePDK45 19.7
√
A+ 124 ≥ CC(f)/T 196

√
A+ 26604 ≥ CCbest(f)/T

GF 180nm 4.68
√
A+ 184 ≥ CC(f)/T 98

√
A+ 31284 ≥ CCbest(f)/T

could be manufactured from their design.

1.2 Our Contribution
We answer the above question by rigorously proving that any hardware circuit that imple-
ments the Möbius transform is subject to a lower-bound of the kind AT 2 = Ω

(
N2/ log2 N

)
.

This invalidates the theoretical claims made in [BR24a]. We also show that if the circuit
meets certain conditions, namely receiving its input from a bus, then in fact AT 2 = Ω

(
N2)

.
We do this by determining the communication complexity of the Möbius transform: if
Alice owns the first half of x and Bob owns the second half, then computing y = Mn · x
requires that Alice and Bob exchange at least CC(Mn) ≥ 2n−1 − 1 bits. If Alice owns an
arbitrary subset of half the bits of x (and Bob owns the complement), then we show that
they need to exchange CCbest(Mn) ≥ 2n−1/n− 1 bits to complete the computation.

Because the square of the communication complexity is an (asymptotic) lower-bound
on the AT 2 metric of any hardware circuit that implement the corresponding function, this
implies that any hardware implementation of Expmob1 must have area Ω

(
N2/ log2 N

)
(re-

member that it operates in a single clock cycle), while Expmob2 has area Ω
(
N2/ log4 N

)
.

This is asymptotically larger than the area of the cells.
The root cause of the contradiction between these lower bounds and the results presented

in [BR24a] is the following: the lower bound apply to the area occupied by wires in the
circuit whereas [BR24a] provides the area of the cells (obtained after a netlist has been
synthesized), ignoring the area of the wires. We assume that the total length of the wires
cannot be know with certainty without completing placement and routing.

These lower bounds on wiring area have been known for decades but they are asymptotic
in nature. While it is clear that they contradict the theoretical claims of [BR24a] about the
asymptotic grow of A, AT or AT 2 for the Expmob1 and Expmob2 families of circuits,
it is difficult to compare them with the accompanying concrete experimental data. Surely
the area of any actual piece of silicon that implement the Möbius transform must grow
faster than initially announced, but does that mean that the area reported in [BR24a] for,
say, n = 10 is physically impossible?

To answer this question, we derive an “effective” version of the now classic asymptotic
lower boundAT 2 = Ω

(
CC2)

, where CC denotes the “best-case” communication complexity
of the computed function. In other terms, we explicitly determine the constants hidden in
the “big Omega”, and express it in terms of simple properties of the cell library and of the
underlying industrial process. This yields a lower-bound, in µm2, on the area of any circuit
that computes a function f on a given technological process. Table 3 shows the result
for several open process design kits. Theorem 2 offers a better lower-bound but requires
an additional assumption (the circuit reads its inputs from a bus), while theorem 3 does
not. More advanced technological processes offer weaker bounds because they offer more
routing layers or thinner wires, so that the area they require is lower.

We finally compare this concrete lower bound with the experimental results given
in [BR24a] using the FreePDK15 cell library. We combine our “effective” AT 2 = Ω

(
CC2)
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Figure 2: Extending the numbers given by [BR24a] versus the lower bound from theorem 2.
σ denotes the area of the smallest XOR cell available in the cell library.

Table 4: Smallest value of n such that the area lower bound of theorem 2 becomes larger
than the projected cell area (σn2n−1 for Expmob1 and 9.8σ2n−1 for Expmob2, where σ
denotes the area of a XOR cell).

Process Expmob1 Expmob2
FreePDK15 17 25
FreePDK45 15 23
GF 180nm 15 23

with our lower-bound on the communication complexity of the Möbius transform. The
results are shown in Figure 2. Clearly, the lower bounds we obtain do not invalidate
the experimental data. In other terms, our lower bound on the area occupied by the
wiring stays below the area of the cells determined after synthesis has been performed
for n = 6...14. We therefore extrapolated the size of the cells for larger values of n and
determined the crossing point where the wiring would provably be larger than the XOR
cells required to implement the function, for various cell libraries and production processes.
The results are shown in Table 4.

We conclude that if the authors of [BR24a] had used the older FreePDK45 process
design kit along with the Nangate 45nm open cell library instead of FreePDK15, and
synthetized their design for n = 15, then they would unfortunately have given an area
figure that is physically impossible to reach in the real world. This provides a concrete
example of a situation where assuming that the size of the hardware chip is just the size
of the cells may be dangerous.

In addition, the lower bounds given in this article are not tight. For instance, in this
paper, for the sake of simplicity, we assume that the circuits under study are rectangular,
and these lower bound consider the area of the enclosing rectangle. It the circuit is not
rectangular, but has a convex shape, then there is an enclosing rectangle that has at most
twice the surface (this loses a factor of at least two in the lower bound).

We cannot draw conclusions about the other performance metrics mentionned in [BR24a]
(power, energy, latency). It seems to us that, without having performed placement and
routing, and thus without knowing the geometry of the final chip, it is difficult to estimate
them without making strong assumptions (for instance about the propagation time in
wires of unknown length).

Lastly, lower bounds on AT are usually derived from separate lower bounds on A and
on AT 2 (multiplying them gives a lower-bound on A2T 2 and it remains to take the square
root). It is sometimes easy to establish that any circuit computing a function f must have
area A = Ω (n) because it has to memorize its entire input. This is for instance the case
when all output bits potentially depend on each input bits. The circuit then cannot start
emitting the output before reading its whole input, and therefore it must have area at
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least O (n) to store it. This argument is sufficient for the Fast Fourier Transform, integer
multiplication modulo a power of two, cyclic shifts, etc. However, this simple argument
does not apply when the circuit reads its input progressively and may emits part of its
output “on the fly”, before reading the entire input. This is in particular the case of the
Möbius transform, where the i-th output bit depends only on the first i input bits.

We provide an area lower-bound based on one-way communication complexity. Intu-
itively, the one-way communication complexity is a lower-bound on the number of memory
bits that the circuit must have to compute the function. This strategy (space lower bounds
from communication complexity) is well-known. Our lower bound on the communication
complexity of the Möbius transform then shows that a circuit for the Möbius transform
that reads its input in the natural order must have area Ω (2n), regardless of the number
of clock cycles it requires to complete the computation. If it is allowed to read its input in
an arbitrary order, then it has area Ω (2n/n).

These last results are given in appendix.

2 Integrated Circuits
We consider a circuit model that is not too far removed from the reality of contemporary
design and production processes. At a high level, a circuit consists of transistors connected
by electrical wires. To simplify the design process, the standard-cell methodology is used
almost universally. The final circuit is formed by assembling copies of ready-made cells
taken from a cell library. Cells implement boolean operations (inverter, AND, XOR, . . . )
and flip-flops or latches that can store a single bit. A cell contains transistors and wires,
tightly packed, with a well-defined interface. A circuit can then be obtained by placing
cells and adding wires to connect their ports.

Cell libraries are specific to a production process. In their relationships with circuit
designers, commercial foundries usually impose non-disclosure agreements that cover the
precise decsription of their production process as well as the corresponding cell libraries.
For this reason, free “Process Design Kits” (PDKs) have been made available for research
and education. While they cannot be used to manufacture actual circuits, they provide
an as-good-as-possible approximation of the process. The FreeDPK45 process and the
associated Open Cell library (also known as the Nangate45 cell library), released in 2008,
is one such widely-used cell library, simulating a 45nm production process. There has
been an upgraded version to a improved 15nm in 2015, termed FreePDK15 [BD15]. The
associated cell open cell library [MMR+15] is also called the FreePDK15 library. It can be
obtained either from the Silicon Integration Initiative [Fre14a] or from the North Carolina
State University [Fre14b]. All the information we present below is extracted from the
former, because the latter can only be exploited using commercial tools that we do not
own.

In these cell libraries, each cell may come in a number of variants. For instance, in
FreePDK15 there are AND2, AND3 and AND4 cells with 2, 3 and 4 inputs respectively. However,
there is only a two-input XOR cell. Some cells may also be available in different versions,
depending on their drive strength (tolerated output electrical load). For instance, in
FreePDK15, the AND2 cell comes in two versions, while the XOR2 only has a single version.
In this paper, we disregard the issue of drive strength.

We assume that all the cells of a library are rectangles of the same height (768nm in
FreePDK15) and they are aligned in rows. There are two wide power tracks at the bottom
and top of each row. The cells do not all have the same width: the AND2 show in Fig. 3
has width 384nm, whereas the XOR2 cell has width 575nm and the smallest Flip-flop cell
has width 1664nm.

It follows that a circuit in FreePDK15 technology that is capable of storing n memory
bits must have area at least n× 0.768µm× 1.664µm = 1.277nµm2 (this is the size of its
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Figure 3: Three cells from the FreePDK15 library: AND2_X1, XOR2_X1, DFFRNQ_X1. Wires
in the M1 layer are shown in blue. Wires in the Mint1 layer are shown in red. The vias
between the two layers are visible. The images have been generated by the KLayout
software [Köf24].

flip-flop cells).
Each cell has input and output ports (not all of the same size and shape). All

the inputs of a circuit must be connected to different input ports of different gates
(otherwise they would either be shorted or ignored). In the FreePDK15 cell library, the
cell with the highest ratio of inputs to area are the AOI22 and OAI22 (that compute
(a ∧ b) ∨ (c ∨ d) and (a ∨ b) ∧ (c ∨ d), respectively). They have four inputs and width
448nm. Therefore a circuit in this technology that has n inputs must have area at least
n/4 × 0.448µm × 0.768µm ≈ 0.086 · n · µm2 just for the cells that are connected to its
inputs.

The ports of the cells must be connected by electrical wires (thin metal layers laid
out on an insulator material). Two wires transporting different signals cannot touch, as
otherwise they would be electrically connected. This imposes a minimum amount of space
between wires. The wires themselves have a minimum width. Several layers of wires can
however be stacked up vertically. Wires in different layers can be connected by “vias” that
go through the insulating material. Because wires cannot cross, each layer has a preferred
direction (horizontal or vertical).

A Process Design Kit specifies how many layers of wires can be used and specifies
physical characteristics of the wires (minimum wire width, minimum space between the
wires, resistivity, capacitance, etc.). For instance the FreePDK15 library assumes up to 13
layers of metal wires summarized in Table 5. For the sake of completeness, let us mention
that there are also other layers of semi-conductor materials below the first metal layer,
that are not relevant here. The cells have many wires in these semiconductor layers, as
well as in the first metal layer. A few of the most complex cells such as the flip-flop shown
on the right of Fig. 3 also have a few wires in the second metal layer. It follows that the
first metal layer is mostly unavailable for routing wires between cells.

In the contemporary design process, it is common to do “over-the-cells routing”, namely
to stack the cells as tightly as possible and to connect them by routing wires in all layers
above the cells. This justifies the common assumption that “cells occupy all the area and
wires do not require any extra space”, because there is sufficient space in all layers above
the cells to accommodate the wiring.

The M1 layer itself is so densely used inside the cells themselves that it is mostly
unavailable for routing. Wires in M1 cannot cross the VDD and VSS power lines, so they
could only be used to connect adjacent cells — for instance, if two XOR cells were adjacent,
the Z output of the left one could be connected to the A2 input of the right one. Note
that the A1 input of a XOR cell is inaccessible using the M1 layer. Therefore, we assume
that at most one horizontal wire can be added by the router between the VDD and VSS
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Table 5: Characteristics of the routing layers in FreePDF15.
Layer Routing min. width (nm) min. spacing (nm)
M1 ∅

28 36

Mint1 ↔
Mint2 ↕
Mint3 ↔
Mint4 ↕
Mint5 ↔
Msmg1 ↕

56 56
Msmg2 ↔
Msmg3 ↕
Msmg4 ↔
Msmg5 ↕

Mg1 ↔ 112 112Mg2 ↕

power rails in the M1 layer.
It follows from Table 5 in the Mint1 layer, at most 15.6 horizontal wires can cross a

vertical section of 1µm. If we add layers M1, Mint3, Mint5, Msmg2, Msmg4 and Mg1, we find
a total of at most 70.5 horizontal wires per µm (and 62.5M vertical wires per µm).

The process of producing a circuit from a high-level description is usually broken into
steps. The synthesis step takes a description of the circuit in a high-level language as well
as the description of a cell library and outputs a netlist, namely a description of the circuit
in terms of cells and nets (that connect the ports of the cells). Given a netlist, the total
area occupied by the gates can be determined. This provides a lower bound on the final
area of the circuit. The common assumption is that this lower bound is tight.

After synthesis, obtaining a physical description of the circuit usually involves two
subsequent steps. The placement step decides the physical location of the cells. The cells
in each row must be adjacent, so the placer decides the number of rows and their total
width. It may also add “filler” cells that serve no other purpose than making room for
wires on upper layers (in the FreePDF15 library, the smallest filler cell has width 128nm).
Finally, the routing step draws the wires specified by the netlist in all layers and places
the vias. Routing may fail if the cells are too densely packed; in this case, placement is
redone and more filler cells are added to make the layout more amenable to routing.

3 Communication Complexity
The notion of communication of complexity was introduced by Yao in 1979 [Yao79].
meterReaders interested in more details could read well-known textbooks [NK96, RY20].
Informally, two parties cooperate to compute a function f , each party has a separate part
of the input and has unlimited computational power. How many bits do they need to
exchange in order to compute f?

3.1 Two-Way Communication Complexity
Consider a function f : X × Y → Z. Informally, (deterministic) two-way communication
complexity is when two parties, Alice and Bob, wish to compute f(x, y). Alice’s input is
x ∈ X and Bob’s input is y ∈ Y . They can exchange information back and forth until
being able to compute the function.

In the original model given in [Yao79], the output f(x, y) must be completely determined
by the transcript of the protocol (e.g. the bits exchanged by Alice and Bob). This can be
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seen as a way to formalize the fact that both parties learn the output of the computation.
In any case, if (say) Alice computes f(x, y), then she can send this value to Bob. When
the function f is a predicate, i.e. when its output is a single bit, this increases the total size
of the transcript by one — a quantity usually considered to be asymptotically negligible.
The existing literature almost exclusively deals with this specific case.

However, when the output of the function is large, i.e. when the range Z is larger than
{0, 1}, the situation is not so simple. One has to decide what exactly is the output of
the protocol and who emits it. The answers to these questions lead to different notions
of communication complexity. Fontes, Laplante, Laurière and Nolin [FLLN23] recently
explored the relationships between different such models.

We are interested in the situation where not only the input, but also the output is
split between the two parties, who have to emit their part of the output at the end of
the protocol. This is essentially the same model as in [Len90], that was proposed in the
context of deriving area-time lower bounds on circuits.

We thus consider a function f : X × Y → U × V where both the input and the output
are split between the two parties. If f(x, y) = (u, v), then we consider communication
protocols for f where Alice (resp. Bob) has local input x (resp. y) and must emit u
(resp. v). To some extent, this can be seen as the simultaneous evaluation of two functions
fa : X × Y → U (for Alice) and fb : X × Y → V (for Bob).

A protocol π is specified by a rooted binary tree. Each internal node v has two children,
and is owned either by Alice or by Bob. Each internal node v is also associated with a
function gv that maps the input of the owner of v to {0, 1}. We interpret the output of gv

as one of the children of v in the tree by associated 0 with the left child and 1 with the
right child. The outcome of the protocol π on input (x, y) ∈ X × Y is a leaf of the tree,
computed as follows. The parties first set the current vertex to the root of the tree. If this
vertex is owned by Alice, she announces the bit gv(x), otherwise Bob announces gv(y).
Both parties set the new current vertex to be the child of v indicated by the announced
value of gv. This process is repeated until the current vertex is a leaf, and this leaf is the
outcome of the protocol.

The input (x, y) induces a path from the root of the protocol tree to the leaf π(x, y).
This path corresponds to the transcript of the conversation between the parties. However,
the tree itself encodes all possible transcripts. We say that the protocol π computes a
function f if there are two maps ϕ and ψ such that f(x, y) = (ϕ(x, π(x, y)), ψ(y, π(x, y))).
Intuitively, ϕ produces Alice’s output (given Alice’s input and the transcript) while ψ
produces Bob’s output.

The length of the protocol π is the height of the binary tree, namely the length
of the longest possible transcript that may occur when the protocol is executed. The
communication complexity of a function f is the minimum length achieved by a protocol
that computes f .

We will use several times the well-known fact that if Alice owns an n-bit string x and
Bob owns another n-bit string y, the communication complexity of testing whether x = y
is exactly n + 1 bit (Alice sends x to Bob, and Bob sends back the Boolean that tells
whether x = y, so that the result can be obtained from the transcript of the protocol).
More formally, consider the predicate EQn : {0, 1}n × {0, 1}n → {0, 1} that evaluates to 1
when its two arguments are equal.

Theorem 1 ([MS82]). The communication complexity of EQn is n+ 1.

3.2 Best-Case Communication Complexity
We are primarly interested in the scenario where the inputs of a single function h :
{0, 1}2n → {0, 1}m are equally divided between the two parties. In other terms, h is a
function of 2n Boolean variables, and Alice (resp. Bob) possesses n input bits.
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Definition 1. Let h : {0, 1}2n → {0, 1}m be a function and write h(x1, . . . , x2n) =
(y1, . . . , ym). Let X and Y be a partition of the input variables x1, . . . , x2n into two
disjoints sets. Also let U and V be an arbitrary partition of the outputs y1, . . . , ym into
two disjoints sets. The communication complexity of h for the partition (X,Y, U, V ) is
denoted as CCX,Y,U,V (h).

The communication complexity of a given function is very dependent on the choice
of the input/output partition. For instance, consider the identity function over 2n bits,
where Alice receives the first half of the input and Bob the second half. If both parties
have to emit their input, then the communication complexity is zero. If both parties have
to emit each other ’s input, then they have to exchange their inputs and the communication
complexity is 2n. This leads to notions of “best-case” communication complexity with
varying amounts of freedom in the input/output partition.

Definition 2. The best-case communication complexity of h for the input partition (X,Y )
is the minimum of CCX,Y,U,V (h) over all (arbitrary) partitions U, V of y1, . . . , ym. It is
denoted as CCX,Y

best (h).
The best-case communication complexity of h is the minimum of CCX,Y,U,V (h) over

all partitions X,Y of x1, . . . , x2n with |X| = |Y | and all (arbitrary) partitions U, V of
y1, . . . , ym. It is denoted as CCbest(h).

3.3 AT 2 Lower Bounds from Communication Complexity
Suppose that a circuit computing a function h is sliced in two halves. The cut partitions
the input and output bits in two categories (those that are read/emitted on each side of the
cut). The communication complexity with this specific input/output partition is a lower
bound on the amount of information that the two parts must exchange to compute the
output. If the number of wires between the two halves is large, this information flow can be
fast, but the area will also be large. If the number of wires between the two halves is small,
the circuit can be compact but the amount of time needed to transfer the information flow
will be large. This argument is well-known [Len90].

In this section we derive an “effective” version where the constants are made explicit.
We use the following notations: h denotes the common height of all cells, w denotes the
width of the largest cell, ν the minimum wire width, β the minimum space between two
different wires and γ the maximum number of wires that can cross a line of length 1m.
We begin with a simple (but relevant) case.

Theorem 2. Consider a (rectangular) circuit of area A that evaluates a function f :
{0, 1}2n → {0, 1}m in T clock cycles and receives its input in a single clock cycle from a
bus (this means that the input ports are aligned horizontally or vertically as in Fig. 4a).
Let (I, J) denote the input partition where Alice receives the first n bits of the input and
Bob receive the last n ones. Then

max(h,w) +
√
A ≥

CCI,J
best (f)
γT

.

Lifting the restriction that input bits must arrive on a bus leads to the following result,
in terms of the best-case communication complexity.

Theorem 3. Consider a (rectangular) circuit of area A where each input port receives
the same number of input bits, that evaluates a function f : {0, 1}2n → {0, 1}m in T clock
cycles. Then (

1 + 2w
h

)√
A+ hw

(
6
β

+ 4
ν

)
≥ CCbest (f)

γT
.
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≤
√

A

≤
√

A

(a) Cutting a rectangular circuit that
receives its input from a bus.

(b) Cutting the XOR2 cell of FreePDK15
to put A1 on the left and A2 on the
right.

Figure 4: Cuts that separate input bits.

Table 6: Constants for the lower bounds, with A in µm2 and all physical measures in µm.
γ is given in wires / µm.

Process h w ν β γ
Thm. 2 Thm. 3
ϕ ψ ϕ ψ

FreePDK15 0.768 2.112 0.028 0.036 70.5 70.5 149 458 35394
FreePDK45 1.4 6.27 0.065 0.065 19.7 19.7 124 196 26604
GF 180nm 3.92 39.2 0.23 0.23 4.7 4.68 184 98 31284

We compiled the relevant information for some common open Process Design Kits.
Theorem 2 yields a lower bound of the kind ϕ

√
A+ψ ≥ CCI,J

best(f)/T and theorem 3 yields
ϕ
√
A+ ψ ≥ CCbest(f)/T . Table 6 shows the values of the relevant parameters as well as

the constants ϕ and ψ for some PDKs. The bound provided by theorem 2 is better (ϕ is
necessarily lower), and it is also better because it involves the communication complexity
for a fixed input partition, not the “best-case” communication complexity that can be
lower.

Proof of theorem 2. Without loss of generality, assume that the width of the circuit is the
longer side. If the input ports are aligned horizontally, draw a vertical line that separates
the n left ones from the n right ones (as in Fig. 4a, top). This line has length less than√
A. If the input ports are aligned vertically, draw a line with a “dogleg” in the middle to

separate the top n ones from the bottom n ones (as in Fig. 4a, bottom). The horizontal
segment of the dogleg can have the maximum length of a single cell to make sure that
none of the above input port are touched by the cut. The cut has length

√
A + h. It

follows that, in all cases (even if the longer side is the height), the cut has length less than
L :=

√
A+ max(h,w).

The two parts of the circuit may communicate using all the wires that cross the cut.
By definition of γ, there are at most Lγ such wires, so that in T clock cycles the two parts
of the circuit can exchange at most TLγ bits. Together they form a two-party protocol
that evaluates f . Therefore they have to exchange at least CCI,J

best (f) bits.

In general, we need argue that there is a short curve that cuts the circuit in two while
separating one half of the input from the other half. Consider the case of a single cell.
Consider a partition of the input ports of a cell in two categories L and R. We claim that
the cell can always be cut in two by a continuous line that starts at the bottom of the cell,
ends at the top of the cell, and separates L and R. (this claim is proved below). See for
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(a) Black circles represent the ports that need to
be on the left of the cut.

(b) Expanding a port point to its original
size expands the cut line

Figure 5: Cutting a single cell to separate input ports.

instance Fig.4b. Consider the shortest possible cut, for any possible partition of the input
ports, and denote by ℓ the maximum length over all cells of the library. In other terms,
the input ports of any cell of the libray can be separated arbitrarily in two categories by a
cut of length at most ℓ.

Lemma 1. h ≤ ℓ ≤ hw
(

6
β + 4

ν

)
.

Proof. That h ≤ ℓ follows from the fact that the cut must cross the entire cell from bottom
to top.

Divide the cell into squares of length β/2 as in figure 5a and shrink all input ports to
their bottom-left point. If for an input port p, its representative point touches an edge
of the grid, replace it with a nearby point inside p’s region that does not touch any edge.
Since the distance between two points is at least β, then there is always a full square from
the grid, of length β, between any two points of two different input ports.

We cut the points that are on the bottom (at level y = 0), if any, then points at level
y = 1 (if any), and so on. At each level, the cut either starts from the rightmost or the
leftmost x position.

If the cut line starts at the leftmost x position at level y, then steer it to the right
tracing the bottom edges of the grid at level y. When it encounters a port point, go above
it if the port point should be to the right of the cut, otherwise go below it. After separating
a port point that it is not the rightmost point in this level, steer the cut down to level y,
then continue moving to the right. After the cut separates the rightmost point, steers it
up to the nearest y′ that has port points.

If the cut line starts at the rightmost x position, repeat the above procedure with
reversing directions except steering the cut down after passing a port point, and steering
the cut up after passing all port points. Figure 5a shows an example of this algorithm.
Separating the points requires at most traversing 3 sides of all the squares inside the grid.
Write σ = hw the area of the cell. Then the cut has length less than 6σ/β.

After separating the ports shrunk to a single point, expand them to their original shape
while pushing the cut in all directions it touches a port, see Figure 5b. This increases the
length of the cut by the sum of the perimeters of the input ports in the worst case. Denote
this sum by P .

Each input port is an assembly of non-overlapping rectangles. Number these rectangles
from 1 to n and say that the i-th rectangle has dimension wi × hi. All the rectangles are
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s
t

√
A

(a) Vertical cut.
S

at most
√
A

(b) Horizontal cut.

Figure 6: Cuts along the shortest side (goes through the red cell).

contained in the cell, therefore
∑
wihi ≤ σ. At least one side of the rectangles must be

larger than the minimum width of wires (ν), which brings:

ν

n∑
i=1

max(wi, hi) ≤
n∑

i=1
min(wi, hi) max(wi, hi) =

n∑
i=1

wihi ≤ σ.

The perimeter of the i-th rectangle is 2(hi + wi), and we find:

P = 2
n∑

i=1
(hi + wi) ≤ 4

n∑
i=1

max(hi, wi) ≤ 4σ
ν

This establishes the lemma.

We need the following setup before proving theorem 3.
Write [n] = {1, . . . , n}. Consider a collection of n weighted intervals of R. The i-th

interval is [ℓi, ri] and it has weight wi. Given a subset I ⊆ [n], write W (I) =
∑

i∈I wi the
total weight of the intervals in I. Write W := W ([n]) the total weight of all the intervals.
For any α, define:

Lα(I) = {i ∈ I : ri < α}
Rα(I) = {i ∈ I : α < ℓi}
Mα(I) = {i ∈ I : ℓi ≤ α ≤ ri}

Lα(I) contains the intervals of I that are strictly on the left of the line x = α. Rα(I)
and Mα(I) contain the intervals that are strictly on the right or that intersect the line,
respectively.

Lemma 2. For any subset of intervals I and any 0 ≤ X ≤W (I), there is an α such that
W (Lα(I)) ≤ X and W (Rα(I)) ≤W (I)−X.

Proof. Take all right ends of the intervals in I and order them: {ri : i ∈ I} = {α1 <
· · · < αr}. It is not difficult to see that W (Lα(I)) is an increasing function of α that stays
constant whenever α ∈ (αi, αi+1].
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As α passes αi, several intervals may switch from M to L. It follows that Lαi+1(I) ⊆
Lαi

(I) ∪Mαi
(I).

Now, take the largest i such that W (Lαi
(I)) ≤ X. By definition, this means that

W (Lαi+1(I)) ≥ X. By the above remark, We have X ≤ W (Lαi(I)) + W (Mαi(I)) =
W −W (Rαi(I)). It follows that the lemma holds with α = αi.

Proof of theorem 3. If there is only one input port, then the circuit needs T ≥ 2n cycles
to read its input. Also recall that n ≥ CCbest(f). Finally, we claim that ℓγ ≥ 1. Indeed,
h ≤ ℓ by lemma 1 and there is at least one wire that can cross a cell horizontally (otherwise
it would be impossible to connect the cells). Therefore, ℓ ≥ 1/γ and we have:(

1 + w

h

)√
A+ hw

(
6
β

+ 4
ν

)
≥ ℓ ≥ 1

2γ ≥
CCbest (f)

γT
.

So the theorem is established in this case.
Assume now that there are at least two input ports. Without loss of generality, assume

the height of the circuit is the shortest side as in Figure 6a. Because the circuit is assumed
to be rectangular, its height is less than

√
A.

Project all the cells of the circuit onto the x axis. Because cells are rectangles, their
projections are closed intervals. Set the weight of one of these intervals to the number
of input bits received by the corresponding cell. The total weight of the intervals is 2n.
By lemma 2 there is an x0 such that L input bits are received by cells that are strictly
on the left of the line x = x0, R input bits are received by cells that are strictly on the
right, and M input bits are received by cells that intersect the line, with L,R ≤ n and
L+M +R = 2n.

Next, project the cells that intersect the line x = x0 onto the y axis. This again defines
a weighted collection of intervals with total weight C. Use lemma 2 again with X = n−L
to find an y0 such that U input bits are received by cells strictly above the line y = y0
(they are orange in Fig. 6a), D input bits are received by cells below the line (green in the
same figure) and C input bits are received by the single cell that possibly intersect the
line (red). We thus have L+ U ≤ n and R+D ≤ n and (L+ U) + C + (D +R) = 2n.

If C ̸= 0, use lemma 1 to cut the single cell that intersect both lines in two parts A and
B such that A receives n− L− U input bits. Then the input ports in L+ U + A (resp.
R+D +B) receive exactly n input bits.

We now draw a curve that splits the circuit in two parts, where the n input bits received
by L+U +A are on the left of the curve. Starting from the bottom row of cells at x = x0,
we go round the green cells that intersect the line to the right. Passing a single cell requires
moving to the right by at most w, up by h and back left by at most w. We go up until
we hit the red cell (that intersect the line y = y0). We cut this cell using lemma 1, which
add at most ℓ to the length of the curve. Finally, we move up the circuit going round the
orange cells to the left. This adds 2w + h per row of cells passed in this way. The total
length of the curve is at most L :=

√
A/h(2w + h) + ℓ.

If the width of the circuit is the shortest side (as in Fig. 6b), then a similar reasoning
leads to a (shorter) cut of lenght L′ :=

√
A+ ℓ. It follows that in both cases, there is a cut

of length less than L.
The cut defines a balanced partition of the input bits, and an arbitrary partition of the

output bits. Say that Alice has the inputs on the left and emits the output on the left. Bob
receives the inputs on the right and emits the outputs on the right. The number of bits that
must cross the cut is at least the communication complexity for this specific input/output
partition. However, at most γL wires may cross the cut. Therefore, a certain number
of clock cycles is needed for the required number of bits to cross the cut. Combining all
above inequalities, we obtain TγL ≥ CCbest (f). Easy manipulations (and the value of ℓ
from lemma 1) conclude the proof.
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Table 7: Known upper-bounds on the best-case communication complexity of the Möbius
transform.

n 1 2 3 4 5 6 7 8
CCbest(Mn) 1 2 3 6 ≤ 10 ≤ 22 ≤ 40 ≤ 94

2n−1/n 1 1 ≈ 1.3 2 3.2 ≈ 5.3 ≈ 9.1 16

x↑

x↓

Mn × =

y↓

y↑

y↓ = 0⇔ x↑ = x↓

Figure 7: How to compare bit strings using the Möbius transform. Blue bits and red bits
are compared in the order they occur. Green bits are the comparison bits.

4 Communication Complexity of the Möbius Transform
In this section, we prove a lower bound on the best-case communication complexity of
the Möbius transform. The main tool we use is a reduction to equality testing: given a
protocol that computes the Möbius transform, we build a a protocol that tests equality
between bit strings. By theorem 1, there is a lower bound of the communication complexity
of equality testing, and the reduction extends this lower bound to the computation of the
Möbius transform. The main results of this section are the following:

Theorem 4. Let (I, J) denote the input partition where Alice owns the first half of x and
Bob owns the second half. Then CCI,J

best ≥ 2n−1 − 1.

Theorem 5. CCbest(Mn) ≥ 2n−1/n− 1.

The bound provided by theorem 4 is tight, because Alice can simply send her 2n−1

output bit to Bob, who then does the whole computation and emits the result. This means
that for the “natural” input partition where Alice has the first half, the communication
complexity is maximal. On the other hand, the “best-case” bound of theorem 5 seems
quite loose, as illustrated by Table 7. We obtained the numbers presented in this table by
finding input/output partitions and determining the actual communication complexity
(using techniques that are beyond the scope of this article).

4.1 Equality Testing With the “Natural” Input Partition
In this section we prove theorem 4. Consider the setting Alice owns the first half of the
input vector and Bob owns the second half (this is the “natural” input partition). In this
case, a two-party protocol to compute the Möbius transform directly leads to an equality
testing protocol, for which a lower bound on communication complexity is readily available.
The main tool used in the reduction is the following simple argument.

Lemma 3. Let x↑, x↓, y↑ and y↓ denote vectors of length 2n, with

Mn+1

(
x↑

x↓

)
=

(
y↑

y↓

)
.

Then x↑ = x↓ if and only if y↓ = 0.
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(
x0
x1

)
→

(
y0
y1

)
E1

0


x0
x1
x2
x3

→

y0
y1
y2
y3

 ,


x0
x1
x2
x3

→

y0
y1
y2
y3


E2

0,E
2
1



x0
x1
x2
x3
x4
x5
x6
x7


→



y0
y1
y2
y3
y4
y5
y6
y7


,



x0
x1
x2
x3
x4
x5
x6
x7


→



y0
y1
y2
y3
y4
y5
y6
y7


,



x0
x1
x2
x3
x4
x5
x6
x7


→



y0
y1
y2
y3
y4
y5
y6
y7


E3

0,E
3
1,E

3
2

Figure 8: The equality-testing configurations of M3. Blue bits are compared to red bits in
the order they appear in. Green bits are the all zero if they match.

Proof. Because Mn+1 =
(
Mn 0
Mn Mn

)
, we find that y↓ = Mn(x↑ + x↓). Because Mn is

invertible, y↓ = 0 is equivalent to x↑ + x↓ = 0, namely x↑ = x↓.

Consider a protocol π that computes Mn with the natural input partition (Alice owns
x↑ and Bob owns x↓ using the notations of lemma 3 and Fig. 7). The output partition
can be arbitrary. We build a protocol π′ that tests if Alice’s input is equal to Bob’s input.
Alice and Bob first run π. The lower half of the result (y↓) is then split between them.
Both parties locally compute the Boolean OR of the bits of y↓ that they own and broadcast
the result. This completes the description of π′. By lemma 3, x↑ = x↓ if and only if
y↓ = 0 and this condition is realized if and only if the last bit sent by each party is zero.
Therefore π′ correctly tests if x↑ = x↓ and the result can be inferred from the transcript of
its execution. By theorem 1, this shows that:

CCI,J
best (Mn) ≥ 2n−1 − 1,

where (I, J) denote the natural input partition.

4.2 Equality Testing for Some Other Input Partitions
In order to prove theorem 5, we first generalize the previous reasoning to more input
partitions that we call “equality-testing configuration”. Figure 8 illustrates some of them.

Definition 3. For 0 ≤ ℓ < n, the ℓ-th equality-testing configuration for Mn, is En
ℓ =

(In
ℓ , Cn

ℓ ), with:

In
ℓ =

2n−ℓ−1−1⋃
j=0

{
{i, i+ 2ℓ} : j2ℓ+1 ≤ i < j2ℓ+1 + 2ℓ

}
,

Cn
ℓ =

2n−ℓ−1−1⋃
j=0

{
k + 2ℓ : j2ℓ+1 ≤ i < j2ℓ+1 + 2ℓ

}
.

The interest of these input partitions is that they allow the comparison of the 2n−1

bits of Alice with the 2n−1 bits of Bob. This is what lemma 5 below claims, but we first
need a technical result about their structure.

Lemma 4. For all n ≥ 1 and all 0 ≤ ℓ < n, we have:

In+1
ℓ = In

ℓ ∪
{
{i+ 2n, j + 2n} : {i, j} ∈ In

ℓ

}
Cn+1

ℓ = Cn
ℓ ∪

{
k + 2n : k ∈ Cn

ℓ

}
In addition, all integers 0 ≤ u < 2n appear in In+1

ℓ .
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Proof. By expanding definition 3, and separating j = 0 to 2n−l−1 − 1 and j = 2n−l−1 to
2n−l − 1:

In+1
ℓ = In

ℓ ∪
2n−ℓ−1⋃

j=2n−ℓ−1

{
{i, i+ 2ℓ} : j2ℓ+1 ≤ i < j2ℓ+1 + 2ℓ

}

= In
ℓ ∪

2n−ℓ−1−1⋃
r=0

{
{i, i+ 2ℓ} : (2n−ℓ−1 + r)2ℓ+1 ≤ i < (2n−ℓ−1 + r)2ℓ+1 + 2ℓ

}
(1a)

= In
ℓ ∪

2n−ℓ−1−1⋃
r=0

{
{k + 2n,

(
k + 2ℓ

)
+ 2n} : r2ℓ+1 ≤ k < r2ℓ+1 + 2ℓ

}
(1b)

= In
ℓ ∪

2n−ℓ−1−1⋃
r=0

{
{k + 2n, k′ + 2n} : {k, k′} ∈ In

ℓ

}
In line (1a), j = r + 2n−ℓ−1, and in line (1b), i = k + 2ℓ. The exact manipulation

proves the statement for Cn+1.
The second point of the lemma is established by induction on n. If n = 1 (and ℓ = 0),

then In
ℓ = {{0, 1}} and all integers strictly less than 2 occur. If n > 1, then by induction

hypothesis all integers less than 2n occur in In
ℓ , and therefore in In+1

ℓ given the inclusion
proved above. Take an integer 2n ≤ k < 2n+1. Then k − 2n occur in In

ℓ , so that k occur
in In+1

ℓ given the first point of the lemma.

Lemma 5. Let x ∈ Fn
2 and y = Mn · x. For all 0 ≤ ℓ < n, we have:

xi = xj for all {i, j} ∈ In
ℓ ⇐⇒ yk = 0 for all k ∈ Cn

ℓ

Proof. We first observe that if ℓ = n− 1, then:

In+1
n =

{
{i, i+ 2n} : 0 ≤ i < 2n

}
Cn+1

n =
{
k : 2n ≤ k < 2n+1

}
.

In this case, the theorem holds because it reduces to lemma 3. We now assume that
ℓ < n− 1 and we prove the result by induction on n. If n = 1 and ℓ = 0, then the result
holds as argued above. If n ≥ 2, let us decompose x and y into their two halves by writing(

y↑

y↓

)
=

(
Mn−1 0
Mn−1 Mn−1

)
·
(
x↑

x↓

)
Also write z = Mn−1 · x↓ so that y↓ = y↑ + z. Denote by (A) and (B) the conditions
on the left-hand side and right-hand side of the statement of the theorem, respectively.
We consider the following equivalences: 1) Lemma 4 states that (A) holds if and only if
both x↑

i = x↑
j and x↓

i = x↓
j for all {i, j} ∈ In−1

ℓ . 2) By induction hypothesis, y↑
k = 0 for

all k ∈ Cn−1
ℓ if and only if x↑

i = x↑
j for all {i, j} ∈ In−1

ℓ . 3) Also by induction hypothesis,
zk = 0 for all k ∈ Cn−1

ℓ if and only if x↓
i = x↓

j for all {i, j} ∈ In−1
ℓ . 4) Lemma 4 grants us

that y↑
k = y↓

k = 0, for all k ∈ Cn−1
ℓ if and only if (B) holds.

Now, suppose (A). Then points 1,2 and 3 combined with the definition of z prove that
y↓

k = 0 for all k ∈ Cn−1
ℓ . Point 4 then implies (B). Conversely, assume (B). Point 4 along

with the definition of z implies that zk = 0 for all k ∈ Cn−1
ℓ . Then points 1,2 and 3 imply

(A).
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Figure 9: Equality-testing configuration graph for M3.

4.3 Lower Bound for the Best-Case Communication Complexity
In this section we prove theorem 5. The results presented in sections 4.1 and 4.2 show that
the communication complexity of the Möbius transform is high for some specific input
partitions. However, to obtain a lower bound on the best-case communication complexity,
we need to cover all possible input partitions. While in general we cannot test if Alice’s
input is equal to Bob’s input, we can always test if a 1/n fraction of their input bits are
equal. This happens because any arbitrary input partition is (relatively) close to at least
one of the equality-testing configurations of the previous section.

Definition 4. The equality-testing configuration graph for Mn is the (undirected) graph
Gn = (V,E), where V := {0, . . . , 2n − 1}, and E = ∪n−1

ℓ=0 In
ℓ . In other terms, i↔ j is an

edge in Gn if and only if xi and xj can be compared together by one of the equality-testing
configurations.

The equality-testing configuration graph for M3 is shown in figure 9. The n-hypercube
graph Qn is the graph whose vertices are n-bit strings where u and v are adjacent if and
only if they differ in exactly one bit position.

Lemma 6. The equality-testing configuration graph Gn for Mn is exactly the n-hypercube
graph Qn.

Proof. First, we know that the n-hypercube graph has n2n−1 edges, while by definition
Gn has at most n2n−1 edges. Both graph have the same set of vertices. We now show that
Qn is contained in Gn. This proves the theorem.

Pick an edge u ↔ v in the hypercube graph. The two n-bit strings u and v differ
in a single position, say the ℓ-th. Without loss of generality, assume that u < v, which
means that v = u + 2ℓ. Because u and v agree on all bits except the ℓ-th one, we can
write u = j2ℓ+1 + r and v = j2ℓ+1 + 2ℓ + r with 0 ≤ j < 2n−ℓ−1 and 0 ≤ r < 2ℓ. By the
definition of In

ℓ , this shows that {u, v} ∈ In
ℓ and therefore that there is an edge u↔ v in

Gn.

We are now ready to prove theorem 5.

Consider that y = Mn · x and let (I, J) denote an arbitrary input partition: Alice owns
(xi)i∈I and Bob owns (xj)j∈J . We will show that CCI,J

best ≥ 2n−1/n, and the theorem
follows.

The two bits xi and xj (with i ∈ I and j ∈ J) can be compared by one of the equality-
testing configurations if i↔ j is an edge in the n-hypercube graph. Given an arbitrary
subset A of the vertices, the boundary ∂A := {{i, j} : i ∈ A, j ̸∈ A} is the set of edges
connecting vertices of A to vertices of its complement. Hypercube graphs enjoy a nice
edge-isoperimetric inequality [Til00]: |∂A| ≥ log2

(
|V |
|A|

)
|A|.

The input partition (I, J) in fact partitions in two the set of vertices of Qn. By the edge-
isoperimetric inequality, we find that there are at least 2n−1 edges between Alice’s input
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bits and Bob’s input bits. Because the graph is the assembly of n subgraphs corresponding
to the n equality-testing configuration (En

ℓ )0≤ℓ<n, it follows that there is ℓ0 such that En
ℓ0

contains at least 2n−1/n edges between I and J . Define ∆ := In
ℓ0
∩ I × J and number its

elements ∆ = {(i0, j0), (i1, j1), . . . }. By the previous reasoning, |Delta| ≥ 2n−1/n.
Let π denote a two-party protocol to compute y = Mn · x with the (arbitrarily chosen)

input partition (I, J) and an arbitrary output partition. We construct an equality-testing
protocol π′ for inputs of size |∆|. In this protocol, Alice (resp. Bob) receives a bitstring u
(resp. v) of size |∆|. Alice builds a vector x by setting xik

← uk for 0 ≤ k < |∆| and sets
all other coordinates to zero. Bob does the same with xjk

← vk. Alice and Bob execute
the protocol π to compute y = Mn · x. Alice then computes the Boolean OR of all the bits
of y with index in Cn

ℓ0
that she owns and broadcasts it. Bob does the same.

We claim u = v if and only if the last bit emitted by each party is zero. This follows
from lemma 5. The protocol π′ decides equality of bit strings of size |∆|, so by theorem 1
its communication complexity is at least |∆| + 1. It follows that the communication
complexity of π is at least |∆| − 1, and the theorem is proved by the lower bound on |∆|.

Conclusion
We have shown that the area of circuits that compute the Möbius transform is asymptoti-
cally dominated not by the area of the cells, but by the area occupied by the wires. We
have shown that the generic lower bound on wiring area can become quite close to the
area of the cells in actual circuits, using actual process design kits.

This shows that the usual assumption that “the area of the cells is the area of the
circuit” should be used with caution. At the very least, if only synthesis of a hardware
design has been performed, as opposed to placement and routing, then reporting the area
of the cells is free of any assumption. Other performance metrics (power, energy, latency)
are probably affected in the some way or some other.

Pushing this line of research further could be done by taking various hardware design
of cryptographic relevance (block ciphers, low-latency PRFs for instance, or the Möbius
transform), performing synthesis, placement and routing, then comparing the “extrapolated”
results obtained after synthesis with the “real” results obtained after routing.
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A Computational Model
Once a circuit has been synthetized and a netlist has been obtained, the behavior of the
circuit can be simulated.

A netlist is composed of cells and wires. It is essentially a hypergraph G = (V,E) that
describes the wires. We assume that the cells used in the netlist have distinct identifiers
(for instance, consecutive integers) and that each of them has a type (AND2_X1, DFFNRQ_X1,
. . . ) in accordance with the cell library. The type of a cell determines what input/output
ports it exposes. Each port is either an input or an output port. For instance, the AND
gate on the left of figure 3 has two input ports labelled A1 and A2 and an output port
labelled Z. The DFFRNQ flip-flop gate shown in the right of the same figure has three input
ports D, RN and CLK as well as one output port Q.

Informally, in the hypergraph that describes a netlist, a node v ∈ V is a port in some
gate. The nodes are therefore labelled with a cell identifier and the name of a port (that is
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exposed by this cell). A wire e ∈ E is in fact a hyperedge e ⊆ V connecting a subset of
the vertices. We expect that each wire is adjacent to at most one output port.

At each point in time, a wire is either in state 0, or in state 1 (we disregard transient
states). The state of a wire e in the i-th clock cycle is denoted by ei. The output ports of
cells are in the state dictated by the functional specification of the cell (AND gate, inverter,
etc.). Wires connected to an output port are in the state imposed by this output port.
We assume that an external mechanism provides the inputs to the circuit. If the circuit is
supposed to read n input bits x1, . . . , xn, then we are given an input specification, namely
a list of n pairs (e1, t1), . . . , (en, tn) with the following semantics: the external mechanism
forces the state of the wire ei to xi in the ti-th clock cycle. If t1 = · · · = tn, then the
circuit reads its whole input in a single clock cycle. We assume that these “input wires”
are not connected to an output port. In the same way, there is an output specification,
which is a list of pairs (ei, ti) such that the i-th output bit is set to the state of the wire ei

at the ti-th clock cycle. These wires must be connected to an output port. If a wire is not
connected to any output port and if its state is not forced by the input mechanisme, we
assume that it is in state 0.

An external mechanism provides a clock signal that triggers the next cycle. The
relationship between the states of the input and output ports of combinatorial cells (AND,
OR, XOR, . . . ) is straightforward. For instance, for the AND cells we have Zi = A1i ∧ A2i.
For flip-flow cells, the specification is slighlty more complex, because these cells have an
internal state s. We assume that initially s0 = 0. The state of the output Qi is always
equal to the internal state si. If the RN input is 0, then the internal state (and the output
port) are forced in state 0; otherwise if the RN input is 1, then the next value of the state
si+1 is set to the current state of the input port Di. Note that flip-flop cells need to be fed
the clock signal.

It follows that in a given clock cycle, the state of each wire is completely determined
by the input bits provided in this clock cycle and the current state of each flip-flop cell.

This natural computational model enables us to talk about the function that a given
circuit, provided as a netlist, computes.

B One-way Communication Complexity
The concept of (two-way, deterministic) communication complexity can naturally be
restricted to the setting of one-way communications where only Alice announces bits to
Bob and Bob remain silent. At the end of the protocol, both parties emit their local
output.

It must be noted that while there is always a two-way protocol for any partition of the
input and any partition of the output (Alice and Bob could just exchange their inputs), it
is not necessarily the case if communication is restricted from Alice to Bob. For example,
consider the case where Alice’s output is Bob’s input: she has no way of receiving it. In
the case where no such protocol exist, we define the one-way communication complexity
to be +∞.

Definition 5. Let h : {0, 1}2n → {0, 1}m be a function and write h(x1, . . . , x2n) =
(y1, . . . , ym). Let X and Y be a partition of the input variables x1, . . . , x2n into two
disjoints sets. Also let U and V be a partition of the outputs y1, . . . , ym into two disjoints
sets. The one-way communication complexity of h for the partition (X,Y, U, V ) is denoted
as owCCX,Y,U,V (h). The best-case one-way communication complexity of h is the minimum
of owCCX,Y,U,V (h) over all partitions X,Y of x1, . . . , x2n with |X| = |Y | and all (arbitrary)
partitions U, V of y1, . . . , ym. It is denoted as owCCbest(h). The variant where only the
input partition is fixed is denoted as owCCX,Y

best (h).

Note that the best-case one-way communication complexity is upper-bounded by n.
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Indeed, given any balanced partition of the input, there is always a partition of the output
that is feasible: Alice emits nothing and transmits her input to Bob, who computes the
function and emits the full result.

It is also fairly obvious that the (two-way) communication complexity is always lower
than the one-way communication complexity, both for fixed input/output partitions and
in the best case.

C Area Lower-Bounds from One-Way Communication Com-
plexity

Consider a circuit computing a functions f taking 2n bits as input. If the circuit reads its
entire input in a single clock cycle, then as argued in section 2 it must have area Ω (n).
But what if the circuit reads its input one bit at a time? It is sometimes easy to establish
that any circuit computing f must have area at least Ω (n) because it has to memorize its
entire input. This is for instance the case when all output bits potentially depend on each
input bits. The circuit then cannot start emitting the output before reading its whole
input, and therefore it must have area at least O (n) to store it. This argument is sufficient
for the Fast Fourier Transform, integer multiplication modulo a power of two, cyclic shifts,
etc.

However, this simple argument does not apply when the circuit reads its input progres-
sively and may emits part of its output “on the fly”, before reading the entire input. This
is in particular the case of the Möbius transform, where the i-th output bit depends only
on the first i input bits.

In this specific case, we provide an area lower-bound based on one-way communication
complexity. Intuitively, the one-way communication complexity is a lower-bound on the
number of memory bits that the circuit must have to compute the function. This strategy
(space lower bounds from communication complexity) is well-known.

Theorem 6. Consider a circuit that evaluates a function h : {0, 1}2n → {0, 1}m, in a
technological process where storing a memory bit requires area µ and receiving an input bit
requires area σ.

i) If A denotes the area of the circuit, then

A ≥ min(σ, µ) · owCCbest (h) .

ii) If in addition n = 2ℓ (for k, ℓ ∈ N) and the circuit reads either 0 or k input bits in
each clock cycle, then

A ≥ µ · owCCbest (h) .

Proof. Assume that we are given a circuit, given by a netlist and an input/output specifi-
cation as specified in Section A. Its input specification is I = (e1, t1), . . . , (e2n, t2n). Each
input bit is provided only once to the circuit. We denote by ni the number of input bits
that are provided in the i-th clock cycle, so that

∑
ni = 2n.

Define S−1 = 0 and Sj =
∑j

i=0 nk for all j ≥ 0. Sj is the total number of input
bits received by the circuit between the beginning of its execution and cycle j (included).
Denote by k the smallest j such that Sj > n (so that at cycle k, the circuit has received at
least half of its input).

Denote by left(I) the set of Sk−1 input bits received by the circuit during the first
k − 1 clock cycles. In the same vein, denote by middle(I) the set of nk bits received
during the k-th clock cycle. It follows from definition of k that |left(I)| ≤ n and
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|left(I)|+ |middle(I)| > n. Let extra(I) denote an arbitrary subset of middle(I) such
that |left(I)|+ |extra(I)| = n.

Next, we consider the following protocol with one-way communication to evaluate f .

• Alice receives the inputs bits in left(I) ∪ extra(I).

• Bob receives all the other input bits.

• Alice simulates the execution of the circuit for the first k − 1 cycles. If the circuits
emits some output bits, then these are part of Alice’s output.

• Alice transmits to Bob the internal state of all flip-flop cells, along with the input
bits in extra(I).

• Bob simulates the execution of the circuit starting from the k-th clock cycle. All the
output bits emitted by the circuit are part of Bob’s output.

It is straightforward that this protocol correctly computes the function h. If the circuit
has ℓ flip-flop gates, then the volume of data communicated by this protocol is ℓ+n−Sk−1.
Both Alice and Bob receives exactly n inputs bits, therefore ℓ+ n− Sk−1 ≥ owCCbest (h).

In the special case given by item ii), we have Sk−1 = n. The number of memory bits
of the circuit is then lower-bounded by owCCbest (h) and the area is lower-bounded by
the size of the corresponding number of flip-flop cells. This establishes the second point of
the theorem.

Otherwise, it is easy to check that n− Sk−1 ≤ nk−1. It follows that

ℓ ≥ owCCbest (h)− nk−1. (2)

Pick 0 ≤ α ≤ 1. Then, one of the following holds:

• Either nk−1 ≥ α · owCCbest (h). In this case, because of the number of inputs
accepted by the circuit, it has area greater than σnk−1 ≥ ασ · owCCbest (h).

• Otherwise, it follows from eq. (2) that the number of flip-flop gates is lower-bounded
by (1−α) ·owCCbest (h), and the area of the circuit is at least (1−α)µ ·owCCbest (h).

It follows that the area of the circuit is at least minα(ασ, (1−α)µ) · owCCbest (h). The
theorem follows from the fact that min0≤α≤1(ασ, (1− α)µ) = min(σ, µ).

If we restrict our attention to circuits with a particular input/output specification,
then the results can be strenghtened a little. The previous theorem applies to any
circuit that computes h, regardless of the order in which it receives its inputs and
emits its outputs. In practice, circuits often read their input and emit their results
in a specific order that makes sense from the application’s point of view. For instance,
a 64-bit multiplier may take 2 cycles to read its two 64-bit operands a0 . . . a63 and
b0 . . . b63 using 64 input ports. But is it likely that it is going to read first a and then
b, or first a0 . . . a31 and b0 . . . b31, while it seems quite unlikely that it is going to read
a0a1, a2, a3, b4a5, b6a7, b8, b9, b10a11, b12, a13, b14, b15, b16a17, b18, a19, b20, b21, b22, a23, . . . on
the first cycle and the complement on the second cycle...

If a circuit reads its input sequentially in the “natural” order, then the best-case one-
way communication complexity can be replaced by the best-case one-way communication
complexity for a specific input partition.

Corollary 1. Consider a circuit that evaluates a function h : {0, 1}2n → {0, 1}m, in a
technological process where storing a memory bit requires area µ and receiving an input bit
requires area σ.
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Suppose that the circuit conforms to the input specification I = (e1, t1), . . . , (e2n, t2n)
with ei ≤ ei+1 for 1 ≤ i < 2n. If in addition n = kℓ (for k, ℓ ∈ N) and the circuit reads
either 0 or k input bits in each clock cycle, then its area is lower-bounded by

A ≥ µ · owCCX,Y
best (f) .

where X contains the first n input bits read by the circuit and Y contains the n last ones.

The proof is almost exactly the same as that of the previous theorem.
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