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ABSTRACT
We propose efficient, post-quantum threshold ring signatures con-

structed from one-wayness of AES encryption and the VOLE-in-the-

Head zero-knowledge proof system. Our scheme scales efficiently

to large rings and extends the linkable ring signatures paradigm.We

define and construct key-binding deterministic tags for signature

linkability, that also enable succinct aggregation with approximate

lower bound arguments of knowledge; this allows us to achieve

succinct aggregation of our signatures without SNARKs. Finally,

we extend our threshold ring signatures to realize post-quantum

anonymous ledger transactions in the spirit of Monero. Our con-

structions assume symmetric key primitives only.

Whilst it is common to build post-quantum signatures from the

one-wayness property of AES and a post-quantum NIZK scheme,

we extend this paradigm to define and construct novel security

properties from AES that are useful for advanced signature applica-

tions. We introduce key-binding and pseudorandomness of AES to

establish linkability and anonymity of our threshold ring signatures

from deterministic tags, and similarly establish binding and hiding

properties of block ciphers modeled as ideal permutations to build

commitments from AES, a crucial building block for our proposed

post-quantum anonymous ledger scheme.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
Post-Quantum Cryptography, Ring Signatures, Zero-Knowledge

1 INTRODUCTION
A 1-of-𝑛 ring signature permits a single party in a ring of possible

signers to authenticate a message without revealing which specific

key it controls. Introduced by Rivest et al. [39], ring signatures

enable applications such as anonymous whistle-blowing; the ring

anonymity grants deniability. Threshold ring signatures permit

𝑡-of-𝑛 parties in the ring (of size 𝑛) to sign a message without

the public verifier or signer learning which keys were involved

in signing; each of the 𝑡 signing parties anonymously broadcast

their signature contributions for public aggregation, while a verifier

gets the guarantee that at least 𝑡 signers produced the signature.

A key challenge in constructing such schemes is to ensure that a

single key cannot contribute multiple partial signatures towards the

threshold 𝑡 . This is ensured by establishing linkability of signatures

of the same signing instance that are contributed by the same key. A

common approach to adding linkability is through a deterministic

tag added to each signature.

We observe that this paradigm of constructing signatures with

determinstic, binding tags can be exploited for succinct aggregation;

here, multiple parties contribute partial signatures that are publicly

aggregated to produce the final signature string. For succinctness

in the number of required signers, a naive approach would be to

apply a post-quantum SNARK proof-of-knowledge of all partial

signatures. However, this comes at a cost of an expensive prover.

Instead, the application of pseudorandom deterministic tags that

bind the signing key and message instance is amenable for succinct

aggregation with approximate lower bound arguments of knowl-

edge, only requiring calls to a random oracle. For a 𝑡-of-𝑛 threshold

(ring) signature, this approach comes at the cost of requiring the

aggregator to possess more than 𝑡 signatures to convince the public

verifier.

The application horizon of linkable ring signatures is extended to

anonymous transactions by Monero [37], arguably the most widely

deployed application of anonymity-preserving signatures. Each

coin is a public key controlled by the coin owner and a commitment

hiding the value of the coin. A transfer of coins from a sender to a

recipient implies nullifying spent coins, and generating new coins

with fresh public keys controlled by the recipient. Transaction

anonymity from hiding the identity of coins that are being spent

is achieved with a nullifier that collides if a coin is spent twice.

A well-formed, anonymous transfer must ensure that the hidden

value of the new coins equals that of the spent ones; in Monero,

this is achieved with homomorphic commitments and range proofs.

We provide detailed comparisons with prior work in implemen-

tation sections sections 4.2.1 and 5.4, and refer to section 2 for a

wider coverage of related work.

Contributions. In this work, we present a toolkit for constructions

of post-quantum signatures
1
with advanced functionalities based

on the VOLE-in-the-head (VOLEitH) paradigm and AES encryption.

1
https://github.com/jachiang/PQ-Threshold-Ring-Sigs-from-VOLEitH



VOLEitH Disjunctions and PQ Ring Signatures.We describe a new ap-

proach to building proofs of disjunctive statements in VOLE-based

zero-knowledge proofs, which is simpler and/or more efficient than

prior methods. Using our disjunctive proofs and VOLEitH, we im-

plement and benchmark ring signatures and proofs of large disjunc-

tions to obtain the state-of-the-art in signature sizes and practical

runtimes. Compared with prior work based on identical symmet-

ric encryption schemes [22] (AES/AES-EM) and MPC-in-the-Head

techniques, our signature sizes are 35-40% smaller, for all reported

ring sizes at the 128-bit security level.

PQ Threshold Ring Signatures. To obtain threshold ring signatures,

we take the approach of adding deterministic tags to our ring sig-

natures, to achieve linkability. Intuitively, if each signature comes

with a proof that the tag was computed from a pseudorandom func-

tion depending on the signing key, then any two uses of the same

signing key should be publicly detectable. However, applying this

idea in the MPCitH/VOLEitH setting requires some care. Firstly,

pseudorandom tags alone are not enough for linkability, since if a

corrupt signer with secret key 𝑘 can find another key 𝑘′ that is valid
for the same public key, then it can produce two signatures with

the same tag. We therefore need a stronger key binding property

(or, collision resistance) for the public key generation algorithm.

Secondly, for efficiency inside VOLEitH, we wish to instantiate

both the public key derivation function and tag functions using

AES. Since AES has a fixed 128-bit block size, it fails to give key

binding at the 128-bit security level. To remedy this, and also allow

for higher security levels, we show how to use multiple blocks to

instantiate both the public keys and tags with the required proper-

ties. We formalise these properties and show that they are satisfied

by our construction in the ideal cipher model.

We implement and benchmark our threshold ring signatures.

They achieve state-of-the-art efficiency compared to prior works

with practical runtimes (< 60𝑠), which are focused on lattice-based

techniques andMPCitH; for small rings of size 2
3
our signer/verifier

runtimes of 12 ms improve on [10] with 90 ms runtimes. Even with

large rings of 2
12

our signer/verifier runtimes remain below 50 ms.

PQ Succinct Signature Aggregation. We show that our tag functions

introduced for linkability can also be used to obtain practical, suc-

cinct proofs of knowledge sets as introduced in Approximate Lower

Bounds Arguments [14] (ALBA). ALBA originally requires fully

unique signatures, for which efficient post-quantum constructions

are not known. With tag functions, we instead get the guarantee

that one component of the signature is unique. We therefore define

Expanded ALBA (ELBA), which allows proof of partially unique

items; this enables succinct aggregation of our linkable signatures

with tags that are unique for each key and signing instance. This

can be used, for instance, to build large-scale, approximate multi-

signatures with post-quantum security.

PQ Anonymous Ledger Transactions. As another application of our

ring signatures and tag functions, we propose a post-quantum

anonymous ledger scheme in the template ofMonero; ring anonymity

hides the coins being spent, and the consistency of input and output

coin amounts is maintained with range proofs of sums in VOLEitH.

Our proof-of-concept introduces the first PQ Monero-like scheme

constructed from symmetric primitives alone.

2 RELATEDWORK
Ring Signatures. Introduced by Rivest et al. [39] ring signatures

allow a member of a group, known as the ring, to sign a message

without revealing which particular member produced the signature.

In contrast to the previously introduced group signatures [15], ring

signatures havemuch stronger anonymity guarantees as they do not

require a trusted group manager or any previous interactive setup.

Various post-quantum ring signatures scheme have been proposed,

including constructions from lattices [10, 19, 24, 33, 34, 42], MPC-in-

the-Head approaches [22, 26, 30], and other assumptions [1, 9, 10].

Most notably, in the context of this work, Feneuil and Rivain [22]

achieve highly efficient (non-linkable) ring signatures; as discussed

in section 4.2.1 and shown in table 2.

Threshold Ring Signatures. In a natural generalisation of ring signa-

tures Bresson et al. [11] proposed threshold ring signatures, allowing
a 𝑡 members of a group to produce a signature, while remaining

anonymous within the group. The security modelling of [11] has

been strengthened in subsequent works. Haque and Scafuro [29]

modify security to allow quantum adversaries, and strengthen mod-

elling to encompass active adversaries which deviate arbitrarily

from specified procedures. In an alternative strengthening Munch-

Hansen et al. [36] require contributions to the threshold to be non-

interactive, and demand anonymity even against other signers,

something which [29] does not achieve. A similar notion called

inter-signer anonymity is introduced in [28].

Approximate Arguments and Short Certificates. The challenge of

proving knowledge of large sets with small comunication is grounded

in seminal contributions by Sipser and Gács [40], as well as Gold-

wasser and Sipser [27]. Their work highlights universal hash func-

tions as powerful tools in demonstrating that small sets are unlikely

to yield certain collisions. In contrast, the pigeonhole principle as-

serts that larger sets must inevitably produce them. This problem is

particularly relevant when full disclosure of the elements would be

impractical and costly. Similar goal are obtained for multisignature

schemes, including weighted multisignatures and compact certifi-

cates. These constructions, such as those by Micali et al. ([35]) and
the weighted threshold multisignature in Mithril [13], introduce

methods to validate that parties holding sufficient weight have

signed a message. These schemes rely either on specific algebraic

properties, such as bilinear pairings([25], [17]), or require auxiliary

structures like Merkle trees ([35]).

Anonymous Ledger Transactions. Monero [38] and subsequently

proposed improvements [32, 43] extend the application realm of

ring signatures to anonymous ledger transactions. In this model,

coins are publicly observable on the ledger state, but hold hidden

amounts controlled by the anonymous public key owner. Each

transaction adds fresh coins to the ledger state, and proves own-

ership of a subset of ledger coins (in the chosen ring) which were

spent. Importantly, the value of spent and fresh coins intended for

the recipient must be balanced, requiring balance proofs. In the

discrete-log setting, these can be achieved with homomorphic Ped-

ersen commitments and range proofs [12]. The latter help prevent

balance overflow. MatRiCT [20] introduces the first post-quantum

construction of Monero-like protocol with lattice-based instantia-

tions. A key challenge is to scale the proof sizes with the number of

coins being spent; in the unspent coin model of Monero, the total

2



Ring size

Ring Signature Linkable Assumption 2
3

2
6

2
8

2
10

2
12

2
20

Security

This work ✓ AES128 9.84 9.91 10.05 10.09 10.18 10.53 NIST I

This work AES128 4.78 4.86 4.99 5.03 5.12 5.47 NIST I

This work AES128-EM 4.34 4.42 4.55 4.59 4.68 5.03 NIST I

Falafl [10] ✓ MSIS/MLWE 30 32 - - 35 39 NIST I

Raptor [33] ✓ MSIS/MLWE 10 81 333 1290 5161 - 100 bit

Calamari [10] ✓ CSIDH 5 8 - - 14 23 128 bit

TCitH [22]

AES128 7.87 7.90 7.94 8.02 8.18 9.39 NIST I

AES128-EM 6.81 6.84 6.88 6.96 7.12 8.27 NIST I

MQ over F256 4.30 4.33 4.37 4.45 4.60 5.62 NIST I

SD over F256 7.37 7.51 7.96 8.24 8.40 10.09 NIST I

Table 1: (Linkable) ring signature sizes in KB

balance of a user tends to fragment over many coins. A transac-

tion may need to spend many coins to achieve sufficient funds for

the recipient. In follow-up work MatRiCT+ [18], a balance proof

based on CRT-packing is introduced which enables proofs which

are sublinear in the amount of coins spent.

3 PRELIMINARIES
Notation. For a set X we will use 𝑥 ← X to denote sampling 𝑥

uniformly from X. For PPT algorithmsA, we let 𝑏 ← A(𝑎) denote
the process of running A with input 𝑎 until it provides an output

𝑏. If A has oracle access to a procedure 𝑂 we will represent this

by superscript A𝑂
. We let the adversary be implicitly stateful in

security games where it is invoked multiple times. For string con-

catenation | |, we let | |𝑛
𝑖=1

𝑠𝑖 be shorthand for 𝑠1 | | . . . | |𝑠𝑛 . For 𝑖 ∈ N
we let bits(𝑖) be the unsigned bit representation of 𝑖 . For 𝑠 ∈ {0, 1}ℓ
and ℓ′ ≤ ℓ , let trunℓ ′ (𝑠) be the function returning the last ℓ′ bits of
𝑠 .

3.1 Zero-Knowledge from VOLE-in-the-Head
We provide a gentle introduction to the VOLE-in-the-Head proof

system introduced in [4]. Towards this, we first describe interactive

zero-knowledge derived from random Vector Oblivious Linear Eval-

uation (VOLE) correlations held by prover and verifier introduced

in Quicksilver [41]; this interactive proof system is later lifted to the

non-interactive setting with the VOLE-in-the-Head technique [5].

Random VOLE Correlations. Let a random VOLE correlation over

F
2
𝑘 of length ℓ be characterized by a random global key Δ ∈ F

2
𝑘 ,

random bits 𝑢 ∈ Fℓ
2
, random 𝑣 ∈ Fℓ

2
𝑘
, and keys 𝑞 ∈ Fℓ

2
𝑘
such that:

𝑞𝑖 = 𝑢𝑖 · Δ + 𝑣𝑖 for 𝑖 = 0, . . . , ℓ − 1.

For instance 𝑖 , the prover knows the values 𝑢𝑖 and 𝑣𝑖 , while the

verifier holds 𝑞𝑖 and Δ. A VOLE correlation commits the prover

to bit 𝑢𝑖 . This commitment is hiding since random 𝑣𝑖 masks 𝑢𝑖 ,

and binding since the cheating prover would still need to preserve

the correlation on unknown Δ to open to a different message 𝑢′
𝑖
,

namely 𝑞𝑖 = 𝑢′
𝑖
Δ + 𝑣 ′

𝑖
. This occurs with probability 2

−𝑘
.

Quicksilver Polynomials. Given random VOLE instances held by

prover and verifier, Quicksilver (QS) provides a constraint system to

prove statements expressed as arithmetic constraint circuits; fresh

random VOLE instances are interpreted as polynomials of degree 1.

The prover holds the random polynomial coefficients 𝑃 (𝛾) = 𝑢𝛾 +𝑞,
such that 𝑢 ∈ F2 and 𝑞 ∈ F2𝑘 , and the verifier holds an evaluation

of the polynomial at coordinate Δ, namely 𝑞 = 𝑃 (Δ) = 𝑢Δ + 𝑣 .

Here, the highest-degree coefficient is interpreted as the message

committed to the VOLE instance. Interpreting fresh VOLE instances

as quicksilver polynomials (held by the prover) and their evaluation

at a secret point (held by the verifier), we write J𝑢K(𝑑 ) to denote a

QS polynomial of degree 𝑑 which commits message 𝑢 at its highest-

degree coefficient. The QS proof system is as follows;

• Input(𝑥): Given a fresh instance 𝑃 (𝛾) = 𝑢𝛾 + 𝑣 and 𝑃 (Δ) held
by P and V, respectively, P sends 𝛿 = 𝑥 − 𝑢 to V and updates

𝑃 (𝛾) ← 𝑥𝛾 + 𝑣 . V then updates 𝑞 ← 𝑞 + 𝛿Δ.
• Add(J𝑥K(𝑑𝑥 ) , J𝑦K(𝑑𝑦 ) ): Let 𝑃𝑥 (𝛾) and 𝑃𝑦 (𝛾) be polynomials of de-

grees𝑑𝑥 and𝑑𝑦 respectively, with𝑑𝑥 ≥ 𝑑𝑦 . P updates 𝑃𝑥+𝑦 (𝛾) ←
𝑝𝑥 (𝛾) + 𝑝𝑦 (𝛾)𝛾𝑑𝑥−𝑑𝑦 , and V updates 𝑞𝑥+𝑦 ← 𝑞𝑥 + 𝑞𝑦Δ𝑑𝑥−𝑑𝑦 .

• CMult(𝑐, J𝑥K(𝑑 ) ): P updates 𝑃𝑐𝑥 (𝛾) = 𝑐 · 𝑃𝑥 (𝛾), and V updates

𝑞𝑐𝑥 ← 𝑐 · 𝑞𝑥 .
• Mult(J𝑥K(𝑑𝑥 ) , J𝑦K(𝑑𝑦 ) ): P updates 𝑃𝑥𝑦 (𝛾) = 𝑃𝑥 (𝛾) · 𝑃𝑦 (𝛾), and V

updates 𝑞𝑥𝑦 ← 𝑞𝑥 · 𝑞𝑦 .
We highlight that linear operations maintain the degree of the QS

polynomials, whilst multiplication of J𝑥K(𝑑𝑥 ) and J𝑦K(𝑑𝑦 ) implies

a degree increase. In general, each multiplicative depth of the eval-

uated arithmetic circuit will double the polynomial degree.

• CheckZero(J𝑥K(𝑑 ) ): Let P possess 𝑃𝑥 (𝛾) = 𝑎0 + · · · + 𝑎𝑑𝛾𝑑 of

degree 𝑑 ; for 𝑥 = 0, it follows that 𝑎𝑑 = 0. P generates random

polynomial 𝑃𝑟 (𝛾) of degree 𝑑 − 1 with coefficients in F
2
𝜆 from

𝜆(𝑑 − 1) fresh VOLEs, enabling V to compute 𝑞𝑟 locally. P sends

𝑃 ′𝑥 = 𝑃𝑥 +𝑃𝑟 (of degree 𝑑−1) to V, which asserts 𝑞𝑥 +𝑞𝑟 = 𝑃 ′𝑥 (Δ).
We note that CheckZero instances can be batched by applying

a random linear function on all constraints J𝑧𝑖K(𝑑𝑖 ) which must

equal zero to verify. For the remainder of this work, we assume that

only a single, batched instance of CheckZero is performed.

Proof Complexity.Wenote that themessage complexity of the Quick-

silver proof system is driven by the number of consumed random

VOLEs (Figure 1). A VOLE correlation is consumed for each witness

bit that is input by the prover, and for each additional degree of the

final QS proof polynomial sent during CheckZero, 𝑘 fresh VOLEs

are consumed for masking.

To prevent the degree blow-up of QS polynomials, resulting in

a larger prover messages during CheckZero, a degree reduction

can be performed by allowing the prover to input a fresh witness

J𝑥𝑦K(1) for each multiplication of J𝑥K(𝑑 ) and J𝑦K(𝑑 ) ; prover and
verifier then run CheckZero(Add(Mult(J𝑥K(𝑑 ) , J𝑦K(𝑑 ) ),−J𝑥𝑦K(1) )
to assert that J𝑥𝑦K(1) indeed commits the multiplication of 𝑥 and

3



𝑦. The additional CheckZero does not impact the prover message

complexity, as these can be batched.

VOLE-in-the-Head from GGM trees.We now show how VOLE cor-

relations are generated with the all-but-one vector commitment

technique from [2, 4]. Let the prover generate a GGM tree from

a length-doubling PRG and then define 𝑢 = 𝑢1 + · · · + 𝑢𝑛 and

𝑣 = −(1 · 𝑢1 + ... + 𝑛 · 𝑢𝑛) over pseudorandom leaves 𝑢𝑖∈[𝑛] . Upon
committing to the leaves of the tree, and then opening all leaves

except one at position Δ chosen by the verifier, observe that the

following correlation holds:

𝑞 =
∑︁
𝑖∈[𝑛]

(Δ − 𝑖)𝑢𝑖 = 𝑢Δ + 𝑣 .

The interactive protocol follows:

1. P sends vector commitment and input bits

2. V sends random challenge (for constraint batching)

3. P sends final QS proof polynomial

4. V sends random Δ

5. P sends vector comm. opening punctured at Δ

Note that the verifier can defer the sampling of Δ until its last

message: at this point, all prover messages have been committed.

A NIZK is obtained from Fiat-Shamir security of the VOLEitH

protocol. For security level 𝜆, this naive construction requires the

prover to open a vector commitment at 2
𝜆 − 1 indices; a practical

construction is obtained by considering 𝜏 distinct tree instances

with 2
𝑘
leaves each, such that 𝜆 = 𝜏 · 𝑘 . To ensure that the same

message is committed to each smaller instance, correction bits are

sent by the prover; consistency is verified with a linear hash ([3]).

In this work, we implement our VOLEitH proofs with the all-

but-one vector commitment optimization from [2]. Here, a single

larger tree is interpreted as embedding 𝜏 smaller instances with an

opening punctured at 𝜏 distinct indices; the authors of [2] show the

active paths of these 𝜏 instances overlap with sufficient probability,

resulting in smaller openings. A key parameter here is the internal

node threshold Topen which cannot be exceeded during the opening
phase. We parameterize this VOLEitH construction below and refer

to [2] for further details.

VOLE-in-the-Head Proof Sizes. We provide an overview of VOLEitH

proof sizes for all examples presented later sections in fig. 1. These

implement the all-but-one-vector commitment construction from [2];

for security levels 128, 192 and 256, the sub-tree count 𝜏 and in-

ternal node threshold TOpen are set to 11, 16, 22 and 102, 162, 245

respectively. These parameters determine the linear relationship be-

tween random VOLEs required by the proof and the final proof size

in fig. 1. We remind the reader that random VOLEs are required for

the witness bits input by the prover, and for masking the 𝑑 degree

proof polynomial during the final, batched CheckZero instance.

3.2 Efficient proofs of AES.
In this work, we prove AES evaluations in VOLEitHwith constraints

introduced [2]. Recall that AES encryption proceeds in rounds, each

consisting of SubBytes, ShiftRows,MixColumns and AddRound-
Key operations, of which only SubBytes is non-linear. Recall from
section 3.1 that the degree of commitment polynomials grows with

2
𝑑
, where 𝑑 is the multiplicative depth of the evaluated constraint
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Figure 1: VOLEitH proof size is linearly dependent on the
VOLE instances consumed in the proof. Data points for 𝜆 =

128 are detailed in example 4.1, example 5.10 and example 7.3;
these are also shown for higher security levels above.

circuit. Evaluating all rounds of the encryption schedule naively

therefore induces an exponential blow-up in the required VOLEs

and resulting proof size. Instead, the 128 bit state following the

ShiftRows operation for each round is committed as part of the wit-

ness. Since all operations other than SubBytes are linear, the AES
state just before and after each SubBytes operation can be inferred

from witness bits from rounds 𝑖 and 𝑖 +1. To show that SubBytes in-
version are correctly evaluated, chunks of 8 bit elements over F2 in
the committed AES state blocks are first lifted to elements in F

2
8 ; to

show inversion over bytes is well-formed, the following constraint

is satisfied by each pair of bytes J𝑠inK(1) , J𝑠outK(1) preceding and

following a SubBytes operation in the AES schedule.

J𝑧2K(2) = J𝑠inK(1) · (J𝑠outK(1) )2 − J𝑠outK(1) (1)

J𝑧3K(2) = (J𝑠inK(1) )2 · J𝑠outK(1) − J𝑠inK(1)

In addition to enforcing well-formed inversion for non-zero ele-

ments, the constraints also ensure that both are 0 if either 𝑠in or

𝑠out are. While these constraints have degree 3 over F
2
8 , it is shown

in [2] that squaring can be performed linearly over committed

bits before lifting to F
2
8 , resulting in constraints of degree 2. All

constraints over the AES schedule are batched by random linear

combination resulting in a final CheckZero on a polynomial of de-

gree 2 only. Constraints for the AES key schedule follow similarly.

To prove an AES encryption 𝑦 = AES.ENC(𝑘, 𝑥) for public x and y,

the VOLEitH prover inputs witness bits

J𝑤K(1) = J𝑤key-sch |𝑤enc-schK(1)

consisting of key 𝑤key-sch = 𝑘 |𝑤key-sch
1

| . . . |𝑤key-sch
𝑟 and encryp-

tion schedules 𝑤enc-sch = 𝑤enc-sch
1

| . . . |𝑤end-sch
𝑟−1 which encode in-

termediary state blockwise in each round (recall, 𝑥 and𝑦 are public).

Let Ckey-sch and Cenc-sch𝑥,𝑦 denote (in shorthand) the batched inver-

sion constraints shown in eq. (1) applied to both key schedule

(induced by key 𝑘) and encryption schedule witness bits induced

4



by 𝑦 = AES.ENC(𝑘, 𝑥).

J𝑧key-schK(2) = Ckey-sch (J𝑤key-schK(1) ) (2)

J𝑧enc-schK(2) = Cenc-sch𝑥,𝑦 (J𝑤enc-sch |𝑤key-schK(1) )

CheckZero on J𝑧key-schK(2) and J𝑧enc-schK(2) must hold.

Witness complexity. The AES block-cipher for security levels 128,

192, 256 are instantiated with 1, 2, 2 blocks of 128 bits each, 10,

12, 14 encryption rounds and key schedule periods of 16, 24, 16

respectively; the latter determines the byte spacing in sub-words

operation in the key schedule. The witness bits required for proving

the AES key schedule in Equation (2) are 448, 448, 672 for the re-

spective security levels, implied by the aforementioned encryption

round and key schedule period parameters.

The witness bits required for proving an AES encryption sched-

ule are 1152, 2816, 3328 bits for the respective security levels. For

example, at the 128 bit security level, this is determined by multi-

plying blocks (1), block size (128), rounds minus 1 (10-1); AES input

and output blocks are public when used as a one-way-function for

signatures.

3.3 Approximate Lower Bound Arguments
In recent work, Chaidos et al. [14] introduced Approximate Lower

Bound Arguments (ALBA), which allow proving possession of a

large set of elements while only sending a small, carefully chosen

subset satisfying certain conditions with respect to the random ora-

cle. This method significantly improves efficiency in terms of both

communication and verification time relative to sending the entire

set directly. However, this efficiency gain comes at the cost of intro-

ducing a gap between the size threshold for honestly generating a

proof, denoted by 𝑛𝑝 , and the threshold for an adversary, denoted

by 𝑛𝑓 . A larger ratio 𝑛𝑝/𝑛𝑓 leads to smaller proof sizes. Specifically,

for 128-bit security and ratios 𝑛𝑝/𝑛𝑓 = 60/40, 66/33 and 80/20 the
sets in the proof have 232, 136 and 68 elements respectively.

We wish to explore how ALBA may be applied to post-quantum

signatures from a set of signers. The soundness of ALBA requires

that the adversary holds a limited number of elements. However, in

the context of signatures if the underlying scheme lacks uniqueness,

an adversary could generate multiple signatures on the same mes-

sage for any party it controls. For many post-quantum signature

schemes, achieving uniqueness is not an option due to inherent

randomization. To address this, Chaidos et al. [14] propose applying
ALBA to verification keys rather than signatures, incorporating the

corresponding signatures into the argument. This method has a

notable drawback: the set of useful signatures becomes predictable,

enabling adversaries to target parties with valuable signatures in

denial-of-service attacks. In Section 6 we show that with very light

modification ALBA schemes may still be used as long as the signa-

tures in question have a computationally unique sub-string.

4 RING SIGNATURES FROM LARGE
DISJUNCTIONS

Both ring signatures and anonymous ledger constructions can be

realized with proofs of disjunctions over large rings (implying large

anonymity sets). We show our techniques for proving large disjunc-

tions in the VOLEitH setting, which allow the prover to obliviously

select the active OR branch.

4.1 Efficient OR proofs
In the setting of VOLEitH, let J𝑧1K(𝑑 ) , ..., J𝑧𝑛K(𝑑 ) denote the output
wires of circuit evaluations C1 (J𝑤K(1) ), ..., C𝑛 (J𝑤K(1) ) on witness

𝑤 . As introduced in Sec. 3.1, the superscript (𝑑) denotes the de-
gree of the VOLEitH polynomials committing 𝑧1, ..., 𝑧𝑛 . Proving

OR(J𝑧1K(𝑑 ) , ..., J𝑧𝑛K(𝑑 ) ) then implies that J𝑧𝑖K(𝑑 ) is 0 for at least

one branch index 𝑖 ∈ [𝑛]. A naive approach is to simply multiply

J𝑧1K(𝑑 ) , ..., J𝑧𝑛K(𝑑 ) in a binary tree fashion. This results in proof

complexity linear in 𝑛; such a circuit is of size 2𝑛 − 1 and depth

log(𝑛). Evaluated on inputs J𝑧1K(𝑑 ) , ..., J𝑧𝑛K(𝑑 ) , this will result in
an 𝑂 (𝑛) increase of the proof size: recall from section 3.1 that the

VOLEitH prover either commits to multiplication gate output wires

(for degree reduction) or accepts a doubling of the commitment

polynomial with each multiplicative circuit layer. The former re-

sults in the growth of the witness by 𝑂 (𝑛), the latter grows the
final proof polynomial by degree 𝑂 (𝑛).

Our OR proof inspired from [23], applies a 1-hotvector selector

to J𝑧1K(𝑑 ) , ..., J𝑧𝑛K(𝑑 ) , which obliviously outputs the input selected

at the active index. Recall that a 1-hotvector is a bit array with a

single active bit.

4.1.1 OR proof with two 1-hotvectors. The prover commits to the ac-

tive branch index 𝑖 ∈ [𝑛] by first encoding the branch 𝑖 in its base-
√
𝑛

decomposed form, namely (𝑖1, 𝑖2) = decomp√𝑛 (𝑖). This implies two

1-hotvectors (J𝑏1,1K(1) , ..., J𝑏1,√𝑛K(1) ) and (J𝑏2,1K(1) , ..., J𝑏2,√𝑛K(1) ),
which have active bits at vector positions 𝑖1, 𝑖2 respectively. These

are of length

√
𝑛 and require prover witness bits sublinear in 𝑛. For

example, consider 𝑛 = 2
4
and active index 6; this implies a base-2

2

encoding of branch 6 in form of (2, 2), requiring the prover activate
the 2nd bit in both 1-hotvectors. Then, prover and verifier evaluate

following constraints;

∀𝑖 ∈ [𝑛] : J𝑧or,𝑖K(𝑑+2) = J𝑧𝑖K(𝑑 ) · J𝑏1,𝑖1K(1) · J𝑏2,𝑖2K(1) (3)

where (𝑖1, 𝑖2) = decomp√𝑛 (𝑖)

and execute CheckZero(J𝑧or,𝑖K(𝑑+2) ) for each branch 𝑗 ; this must

hold for the honest prover, since the product 𝑏1,𝑖1 · 𝑏2,𝑖2 activates a
single branch and zeroes all others. The proof size is now sublinear

in the number of OR branches 𝑛; each 1-hotvector consists of

√
𝑛

witness bits and the polynomial underlying J𝑧𝑖K(𝑑 ) for each branch

𝑖 will be of degree 𝑑 + 2; the additional VOLEs for the VOLEitH
proof attributed to the OR over 𝑛 branches is 2

√
𝑛 + 2𝜆.

4.1.2 OR proof with additional 1-hotvectors. We note that selec-

tion of the active OR branch selector with 1-hotvectors can be

generalized to higher number of 1-hotvectors, enabling a tunable

parameter to obtain optimal proof sizes for different number of

OR branches. Let branch index 𝑖 ∈ [𝑛] now be encoded by dim
number of 1-hotvectors; the respective active bits are located at po-

sitions (𝑖1, ..., 𝑖dim) = decomp dim√𝑛 (𝑖). Prover and verifier evaluate
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Figure 2: Ring Signature Size vs. Ring Size for various 1-
hotvector dimensions (dim) and security levels (𝜆).

the following constraint

∀𝑖 ∈ [𝑛] : J𝑧or,𝑖K(𝑑+dim) = J𝑧𝑖K(𝑑 ) ·
∏

d∈[dim]
J𝑏d,𝑖dK

(1)
(4)

where (𝑖1, ..., 𝑖dim) = decomp dim√𝑛 (𝑖)

and assert CheckZero(J𝑧or,𝑖K(𝑑+dim) ). This induces dim · dim
√
𝑛 +

dim · 𝜆 consumption of VOLEs, where the first term is contributed

by the 1-hotvector inputs to the witness and the latter by the degree

increase of the final quicksilver proof polynomial. We illustrate this

trade-off for various ring sizes in fig. 2.

4.1.3 Wellformedness of 1-hotvectors. Our protocol requires (1)
the sum of all elements in the hotvector equal to 1 and that (2) at

most one bit is active. The first constraint is trivially enforced by

requiring the prover to input all but the last 1-hotvector bit, which

is implied by the prior
dim
√
𝑛−1 elements. To prove (2), each element

of each committed 1-hotvector 𝑗 ∈ dim is first multiplied with its

position 𝑘 ∈ [ dim
√
𝑛];

∀𝑗 ∈ dim : J𝜎 𝑗 K(1) =
∑︁

𝑘∈[ dim
√
𝑛]

J𝑏 𝑗,𝑘K(1) · 𝑘

Then, the following constraint is applied over each 𝜎 𝑗 and commit-

ted 1-hotvector 𝑏 𝑗 ;

∀𝑗 ∈ dim : ∀𝑘 ∈ dim√𝑛 : J𝑧1-htvc
𝑗,𝑘

K(2) = (J𝜎 𝑗 K(1) − 𝑘) · J𝑏 𝑗,𝑘K(1)

(5)

Each 𝑧1-htvc
𝑗,𝑘

is satisfied iff 𝜎 𝑗 = 𝑘 or 𝑏 𝑗,𝑘 = 0. For a malformed 𝑗 ’th

1-hotvector with multiple active bits, 𝜎 𝑗 cannot equal the position

of any of the individual active bits.

In contrast to [23], our constraints for well-formed 1-hotvectors

do not require the prover to explicitly provide the active bit po-

sition for each 1-hotvector as part of the witness, saving 𝑂 (dim ·
log( dim

√
𝑛)) proof bits and simplifying the proof.

4.2 Ring signatures from disjunction proofs.
We now follow the paradigm of constructing signatures from a

public key function 𝑃 (𝑘, 𝑥) = AES.ENC(𝑘, 𝑥) = 𝑦. Further, let ring

𝑅 = ((𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)) be defined over 𝑛 public keys; the signer

with knowledge of key 𝑘𝑖 satisfying AES.ENC(𝑘𝑖 , 𝑥𝑖 ) = 𝑦𝑖 then

commits to extended witness J𝑤K(1) ∈ F𝑙
2
as detailed in section 3.2,

such that J𝑧key-sch
𝑖

K(1) = Ckey-sch (J𝑤K(1) ) and J𝑧enc-sch
𝑖

K(1) =

Ckey-enc𝑥𝑖 ,𝑦𝑖 (J𝑤K(1) ) are satisfied. A ring signature is then a FS sig-

nature derived from the VOLEitH proof of

J𝑧𝑖K(𝑑 ) = OR
(
C𝑥1,𝑦1 (J𝑤K(1) ), ..., C𝑥𝑛,𝑦𝑛 (J𝑤K(1) )

)
(6)

Here, we note that the witness𝑤 must also commit to 1-hotvectors

encoding the active branch 𝑖; as shown in fig. 2, the dimension of

1-hotvectors that minimizes the proof size will differ for chosen

security levels and ring sizes.

Example 4.1. We detail the parameterization and resulting sig-

natures size for our implementation based on VOLEitH proofs of

disjunctions for a ring size of 2
10

and security level 128; the prover

commits 2 separate 1-hotvectors of size

√
2
10

which encode the

active branch; for chosen ring size of 2
10
, the choice of 1-hotvector

dimension of 2 is optimal (Figure 2). The prover further inputs

following witness bits required to prove the public key function

(eq. (2)) for the chosen active branch.

• 1x AES encryption schedule: 1152

• 1x AES key schedule: 448

• 1-hotvector bits: 2 x 31 (rounded to 8 bytes)

The 1664 witness bits consume the same number of random VOLE

instances in input protocol (section 3.1). The final proof polynomial

degree in eq. (6) is 4, since the batched key schedule and encrypytion

schedule constraints are multiplied with an element from each 1-

hotvectors; masking the QS proof polynomial in the final CheckZero

protocol requires 3 F
2
128 elements lifted from 3× 128 random VOLE

instances. The proof consumes 2048 = 1664+3×128 random VOLEs

resulting in a proof size of 5034 bits (Figure 1).

4.2.1 Implementation & Benchmarking. As a stepping stone to-

wards threshold ring signatures, we implement the ring signature

scheme with public key functions instantiated with AES and AES-

EM; the latter defines a public key function as𝑦 = AES.ENC(𝑥, 𝑘)+𝑘 ,
where the key 𝑘 is a private input to the block cipher and 𝑥 from

public key 𝑥,𝑦 is a block cipher public input. This is a less conser-

vative building block as AES, but permits fewer witness bits, as the

key schedule is now public; further, it permits better comparison

with prior art [22] with AES-EM as an underlying building block.

Our ring signature sizes represent an 35-40 % improvement

over state-of-art, as shown in Table 1. We highlight [22] as a post-

quantum ring signature scheme based on mpc-in-the-head; for a

comparison based on the same conservative block-cipher assump-

tions (AES/AES-EM), our signatures sizes represent an 35-40 %

improvement. Ring signature sizes in [22] based on non-standard

MQ block ciphers are matched by our ring signatures based on AES-

EM and slightly surpassed for larger rings. In principle, our scheme

can also be based on other blockciphers; based on the improvements

in signature sizes over [22] for AES/AES-EM, we conjecture similar

improvements for MQ/SD constructions as well.

Whilst entirely practical, our implementation run-times shown

in Figure 9 do not seem to match those reported in [22] which are

based on less conservative MQ and SD block cipher assumptions;

the authors report sub 20 ms signing time for ring size 2
12

(Fig. 4

in [22]), whereas our AES128 implementation is bench-marked at

46 ms for signing and 31 ms verification; the authors do not report

runtimes for AES/AES-EM constructions. The ring signature [22])
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does not implement a general disjunction techinque over arbitrary

circuits; rather, it implements an oblivious selection of public keys,

over which the encryption schedule is proven. We conjecture that

this trade-off of generality for application-specific efficiency is a

key source of the runtime discrepancy.

Benchmarks in this work are performed on a third generation

Intel Xeon Scalable machine featuring 16 threads and 32 GB of mem-

ory; our implementations do not exploit multi-threading support of

the underlying system.We implement our threshold ring signatures

by extending the VOLEitH implementation of [2] written in C; this

requires adding the support of our public key and tag functional-

ities (section 3.1), support for large disjunctions (section 4.1) and

quicksilver polynomials of higher degree (section 3.1). The source

code is made available as part of this submission and will be open

sourced.

5 THRESHOLD RING SIGNATURES
In the threshold ring signature setting, it does not suffice to aggre-

gate multiple ring signatures, as ring anonymity permits a single

key to generate multiple signatures without detection. Thus, we

require ring signature linkability in the threshold setting. Our ap-

proach is to involve a tag function𝑇 : K ×M → Y, which binds a

signing key and signing instance to a deterministic, pseudorandom

tag. Colliding tags prevent a single signing key from contributing

multiple partial signatures towards threshold 𝑡 .

For each partial signature on𝑚 by key 𝑘 in ring 𝑅, the signer

publishes 𝜏 = 𝑇 (𝑘, ℎ(𝑚,𝑅)) and extends the VOLEtiH proof to sat-

isfy constraint C𝑇 , which outputs 0 iff the tag is well-formed and

consistent with the active key and signing instance. We instantiate

a post-quantum tag function with block ciphers modeled as ideal

permutations, supporting the heuristic instantiation with AES; to-

wards this goal, we highlight that both public key function 𝑃 and

tag function𝑇 need to be carefully constructed frommultiple blocks

to maintain security. In the presence of tags, the public key function

must now satisfy key-binding (Eq. 8) in addition to one-wayness;

the tag function must satisfy pseudorandomness (Eq. 9) to preserve

signer anonymity.

5.1 Deterministic tags
For the tag 𝜏 to be unique we must ensure that a public key is

(computationally) binding with respect to the secret key. Otherwise,

it may be possible to produce signatures with distinct tags 𝜏, 𝜏 ′ by
finding secret keys sk ≠ sk′ where 𝑦 = 𝑃sk (𝑥) = 𝑃sk′ (𝑥). In other

words, we require collision resistance for 𝑃 as a function of sk and

a fixed 𝑥 .

Throughout this section we will explore various instantiations

of 𝑃 and 𝑇 in the ideal cipher model. This supports the heuristic

instantiation of permutations with AES.

5.1.1 Security properties. Let 𝜋 be a family of independent random

permutations 𝜋𝑘 : {0, 1}ℓ → {0, 1}ℓ for every 𝑘 ∈ K , where the
oracles allow querying the permutation 𝜋𝑘 (·) and its inverse 𝜋 -1𝑘 (·).
Public key function: A function 𝑃𝜋 : K × X → Y, that is:

One-way, for all 𝑥 , given 𝑥,𝑦 = 𝑃𝜋 (𝑘, 𝑥) it should be hard

to find 𝑘 ,

Pr

[
𝑘 ← K ;
𝑘∗ ← A𝜋 (𝑥,𝑦) :

𝑃𝜋 (𝑘, 𝑥) = 𝑃𝜋 (𝑘∗, 𝑥)
]
= negl(𝜆). (7)

Key binding, it should be hard to find two keys preserving

the mapping of an input,

Pr

[
(𝑥, 𝑘, 𝑘′) ← A𝜋

:

(𝑘 ≠ 𝑘′)∧
(𝑃𝜋 (𝑘, 𝑥) = 𝑃𝜋 (𝑘′, 𝑥))

]
= negl(𝜆). (8)

Tag function: A function𝑇 : K×X×{0, 1}∗ → T , that is pseudo-
random: for 𝑥 ← X, 𝑘 ← K a PPT adversary has negligible

advantage in distinguishing 𝑇 (𝑘, 𝑥, ·) from a random func-

tion 𝑅 given oracle access and 𝑥,𝑦 = 𝑃𝜋 (𝑘, 𝑥),���Pr[A𝑇𝜋 (𝑘,𝑥,· ),𝜋 (𝑥,𝑦) = 1] − Pr[A𝑅 ( ·),𝜋 (𝑥,𝑦) = 1]
��� (9)

= negl(𝜆).

When constructing𝑇 we will employ a compressing hash function

𝐻 : {0, 1}∗ →{0, 1}ℓH which is collision resistant,

Pr

[
𝐻 ←H ; (𝑣, 𝑣 ′) ← A : 𝐻 (𝑣) = 𝐻 (𝑣 ′)

]
= negl(𝜆) .

5.1.2 Security for single blocks. Consider functions 𝑃,𝑇 , given ac-

cess to a family of random permutation oracles 𝜋 , using H with

ℓH = ℓ .

𝑃𝜋 : K × {0, 1}ℓ → {0, 1}ℓ , 𝑇𝜋
: K × {0, 1}ℓ × {0, 1}∗ → {0, 1}ℓ

𝑃𝜋 (𝑘, 𝑥) = 𝜋𝑘 (H(0| |𝑥)), and 𝑇𝜋 (𝑘, 𝑥,𝑚) = 𝜋𝑘 (H(1| |𝑥 | |𝑚)). (10)

The function 𝑃 is one-way when 𝜋 is instantiated by a secure PRP

following [6, Lemma 7]. We may argue that 𝑃 is key binding.

We consider an adversary A making a bounded number of per-

mutation queries 𝑞. In general the adversary may output (𝑥, 𝑘, 𝑘′)
where it has not queried 𝜋𝑥 (𝑘) or 𝜋𝑥 (𝑘′). Throughout the remain-

der of this section it will be convenient to assume that the outputs

produced by the adversary have always been queried to the oracles,

as this avoids having to treat this as a special case. More formally,

one could simply construct an adversary A′ which runs A and

then queries 𝜋𝑥 (𝑘) and 𝜋𝑥 (𝑘′), for a total of 𝑞′ = 𝑞 + 2 queries.

We stress that this has no impact on our asymptotic results. It will

also be convenient to assume that the adversary never repeats any

query to the oracles, this is without loss of generality for

Lemma 5.1. In the ideal cipher model the probability that an ad-
versary making at most 𝑞 queries breaks key binding (8) for the public
key function 𝑃𝜋 (10) is bounded by𝑂 (𝑞2/2ℓ ) given that 𝑞 ≤ 𝑐 · 2ℓ for
some constant fraction 𝑐 ∈ (0, 1).

Proof. Consider an adversary having made a sequence of 𝑖

queries (𝑘1, 𝑥1, 𝑦1) . . . (𝑘𝑖 , 𝑥𝑖 , 𝑦𝑖 ) s.t.𝑦 𝑗 = 𝜋𝑘 𝑗
(𝑥 𝑗 ).Wewish to bound

the probability that the next query results in a collision. For a query

𝑦 = 𝜋𝑘 (𝑥) or 𝑥 = 𝜋 -1
𝑘
(𝑦) this occurs if there was a previous query

(𝑘 𝑗 , 𝑥,𝑦) where 𝑘 𝑗 ≠ 𝑘 . For any fixed previous query (𝑘 𝑗 , 𝑥 𝑗 , 𝑦 𝑗 )
where 𝑘 ≠ 𝑘 𝑗 , the probability of a collision is at most 1/(2ℓ − 𝑖 + 1);
this is the case where all other previous queries (𝑘𝑟 , 𝑥𝑟 , 𝑦𝑟 ) have
𝑘𝑟 = 𝑘 𝑗 and 𝑥𝑟 ≠ 𝑥 (or 𝑦𝑟 ≠ 𝑦 in the case of 𝜋 -1). Union bounding
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across all queries 𝑗 ∈ [𝑞], the probability the adversary breaks key

binding is at most,

𝑞∑︁
𝑖=1

𝑖

2
ℓ − 𝑖 + 1

≤ 1

2
ℓ − 𝑞 + 1

𝑞∑︁
𝑖=1

𝑖 =
𝑞(𝑞 + 1)
2(1 − 𝑐)2ℓ

= 𝑂 (𝑞2/2ℓ ),

when 𝑞 is at most a constant fraction of 2
ℓ
. □

The above bound explicitly requires the number of queries be

sublinear in the block size and gives no guarantees when 𝑞 ≈ 2
ℓ
. In

fact, we cannot hope for any security against an adversary making

more than 2 ·2ℓ queries. Let 𝜋, 𝜋 ′ be two random permutations over

𝑛 values. There are 𝑛! choices of a permutation over 𝑛 values. For a

fixed 𝜋 , there are only (𝑛−1)! choices for 𝜋 ′ where 𝜋 ′ (𝑥) ≠ 𝜋 (𝑥) for
all 𝑥 ∈ [𝑛]. This may be seen as 𝜋 ′ (1) permits (𝑛−1) choices subject
to 𝜋 ′ (1) ≠ 𝜋 (1), and fixing the first value 𝑦′

1
= 𝜋 ′ (1) there are only

(𝑛 − 2) choices for 𝑦′
2
= 𝜋 ′ (2) ≠ 𝜋 (2), and so on. The probability

that 𝜋 ′ has no collisions with 𝜋 is therefore (𝑛 − 1)!/𝑛! = 1/𝑛. This
would mean an adversary querying two complete permutations

over {0, 1}ℓ would in fact succeed in finding a collision with high

probability: (1 − 2−ℓ ).

Lemma 5.2. In the ideal cipher model the advantage of an adver-
sary making at most 𝑞 𝜋 queries and 𝑡 𝑇 queries in the PRF game (9)
for 𝑇, 𝑃 (10) is bounded by 𝜖H

col
+ 𝑞/|K| + 𝑡 (𝑡 − 1)/2ℓ+1, where 𝜖H

col

is a bound on the probability of finding a collision in H.

Proof. We follow a sequence of hybrids. Recall we assume

w.l.o.g. that the adversary never makes the same query twice.

H0: Run the PRF game for 𝑃,𝑇 and pass on the output of A.

H1: As previous, except if the adversary queries 𝑚 ≠ 𝑚′ to
𝑇 (𝑘, ·) where H(1| |𝑥 | |𝑚) = H(1| |𝑥 | |𝑚′) output 0 directly.
If the adversary queries𝑚 where H(0| |𝑥) = H(1| |𝑥 | |𝑚) to
𝑇 (𝑘, ·) also output 0 directly.

H2: As previous, but rather than sampling𝑇 (𝑘,𝑚) = 𝜋𝑘 (H(1| |𝑥 | |𝑚)),
set 𝑇 (𝑘,𝑚) = 𝑟 for random 𝑟 in {0, 1}ℓ , sampling indepen-

dently of 𝜋𝑘 but without replacement.

H3: As previous, but sample 𝑇 (𝑘,𝑚) = 𝑟 ← {0, 1}ℓ with re-

placement. This is identical to the true random case.

The behaviour of H0,H1 is different exactly when A provides a

collision for H.

𝜖H
col
≥ |Pr[H0 = 1] − Pr[H1 = 1] | .

The adversaries view in H1 and H2 is identical if the adversary

does not query 𝜋𝑘 . Let K′ be the set of keys 𝑘′ where 𝜋𝑘 ′ has been
queried. If the adversary has not yet queried the correct key, then

all 𝑘∗ ∈ K \ K′ are equally likely to be the correct key.

𝑞

|K | ≥ |Pr[H1 = 1] − Pr[H2 = 1] | .

By H1 we are guaranteed that 𝜋𝑘 is always queried on distinct

inputs for distinct 𝑚. The distribution of 𝑇 (𝑘, ·) is independent
of the oracles 𝜋 . We may apply the standard PRP/PRF switching

lemma with 𝑡 queries, see [8, Lemma 1], to get

𝑡 (𝑡 − 1)
2
ℓ+1 ≥ |Pr[H2 = 1] − Pr[H3 = 1] | .

This gives, AdvPRF
𝑃,𝑇 ,A ≤ 𝜖H

col
+ 𝑞

|K | +
𝑡 (𝑡−1)
2
ℓ+1 . □

For 𝜖H
col

= negl(𝜆) the output space of H must be at least ℓH =

ℓ ≥ 2𝜆.

5.1.3 Stronger binding with multiple blocks. For single block public
keys we have encountered a quadratic security loss in the number

of permutation queries. The resulting bit-security is therefore es-

sentially half the bit-length of the block size. Put differently, the

block size for the public key must be twice the desired security

parameter for security to hold. To increase security we may pursue

one of two options, increasing the blocksize by using the Rijndael

cipher rather than standardised AES,
2
or extending the public key

to include multiple blocks such that collisions are harder to find. In

this section we explore the latter option. The goal is to strengthen

security by moving from a single block to 𝑛 blocks. We must restrict

the choice of input to prevent the adversary from attacking the

construction block-by-block. We define 𝑃𝜋 and 𝑇𝜋
for multiple

blocks as,

𝑃𝜋 : K → {0, 1}𝑛 ·ℓ , 𝑇𝜋
: K × {0, 1}∗ → {0, 1}ℓ , 3

𝑃𝜋 (𝑘) = | |𝑛𝑖=1𝜋𝑘 (0 . . . 0| |bits(𝑖)), and 𝑇
𝜋 (𝑘,𝑚) = CBC-MAC𝑛

𝑓𝑘
(𝑘,H(𝑚)).
(11)

where CBC-MAC (Figure 3) is instantiated with the PRF

𝑓𝑘 (𝑥) = truncℓ−1 (𝜋𝑘 (1| |𝑥)) .

Observe, by defining 𝑓𝑘 as above we ensure separation of permu-

tation inputs between 𝑃𝜋 and 𝑇𝜋
. For the sake of stronger key

binding 𝑃 no longer takes an argument 𝑥 , this comes at the cost of

weakening multi-user security, as an adversary given many public

keys 𝑃𝜋 (𝑘) for many keys 𝑘 may recover one of the keys more

efficiently than by attacking each public key individually.

The function 𝑃𝜋 is one-way when 𝜋 is instantiated by a secure

PRP following [6, Lemma 7]. Perhaps surprisingly, this result is

relatively non-trivial in the context of multiple blocks, as an adver-

sary may find a key 𝑘′ which is different to the actual key 𝑘 but

consistent with 𝑦 = 𝑃 (𝑘′, 𝑥). Such a key would allow winning the

OWF game, without breaking PRP security.

CBC-MAC𝑛
𝑓
(𝑥)

1 : // Given 𝑓 : {0, 1}𝑤 → {0, 1}𝑤

2 : parse 𝑥 = 𝑥1 | | . . . | |𝑥𝑛
3 : 𝑐0 ← 0

𝑤

4 : for 𝑖 ∈ [𝑚] :
5 : 𝑐𝑖 ← 𝑓 (𝑐𝑖−1 ⊕ 𝑥𝑖 )
6 : return 𝑐𝑛

Figure 3: The CBC-MAC algorithm for a fixed length input.

Lemma 5.3. For an integer constant 𝑛 > 0, the probability that an
adversary making 𝑞 queries breaks key binding (8) for the counter
mode construction (11) with 𝑛 blocks in the ideal cipher model is
bounded by 𝑂 (𝑞2 |X|−𝑛).

See Appendix B.1 for the proof of Lemma 5.3.

2
See the FAEST specification [6] for a deeper discussion of the use of Rijndael with

alternative block sizes.

3
Note, the functions 𝑃,𝑇 now no longer take an input 𝑥 .
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Lemma 5.4. In the ideal cipher model the advantage of an adver-
sary making at most 𝑞 𝜋 queries and 𝑡 𝑇 queries in the PRF game for
𝑇, 𝑃 (10) is bounded as

Adv𝑃𝑅𝐹
𝑃,𝑇 ,A (𝜆, 𝑞, 𝑡) ≤ 𝜖H

col
+ 𝑞

|K | + 6.5
𝑡2𝑛2

2
ℓ
.

Proof. First we will argue that 𝑓𝑘 (𝑥) = truncℓ−1 (𝜋𝑘 (1| |𝑥)) is a
PRF, for all PPT adversaries making at most 𝑞𝑓 queries to 𝑓𝑘 and

random 𝑘, 𝑥 ,���Pr [
A𝜋,𝑓𝑘 (𝑥, 𝑃𝜋 (𝑘, 𝑥)) = 1

]
− Pr

[
A𝜋,𝑅 (𝑥, 𝑃𝜋 (𝑘, 𝑥)) = 1

] ���
≤ 𝑞

|K | +
𝑞𝑓 (𝑞𝑓 − 1)

2
ℓ+1 .

This follows by two hybrids. First, when computing 𝑓𝑘 replace 𝜋𝑘
with a freshly sampled permutation𝜋∗ to get 𝑓𝑘 (𝑥) = truncℓ−1 (𝜋∗ (1| |𝑥)),
also compute 𝑃 (𝑘, 𝑥) using 𝜋∗. This is indistinguishable unless the
adversary queries 𝜋𝑘 . Second, replace 𝜋∗ by a random function

𝑟 : {0, 1}ℓ → {0, 1}ℓ . At this point 𝑓𝑘 is a random function, as all in-

puts 1| |𝑥 are mapped to a uniform string over {0, 1}ℓ which is then

truncated resulting giving a uniform string over {0, 1}ℓ−1. Note,
𝑓𝑘 is now independent of 𝑃 (𝑘, 𝑥) as their inputs are disjoint. The
change is indistinguishable by the PRP/PRF switching lemma [8,

Lemma 1] with advantage 𝑞𝑓 (𝑞𝑓 − 1)/2ℓ+1 where 𝑞𝑓 is the number

of queries to 𝑓𝑘 .

We may now use the PRF security of 𝑓𝑘 to show PRF security of𝑇 .

For random functions 𝑅 : {0, 1}ℓ ′ → {0, 1}ℓ ′ and 𝑅′ : {0, 1}𝑚 ·ℓ ′ →
{0, 1}ℓ ′ Bellare et al. [7, Theorem 3.1] show,���Pr [

ACBC-MAC𝑚
𝑅 (1𝜆) = 1

]
− Pr

[
A𝜋,𝑅′ (1𝜆) = 1

] ��� ≤ 3𝑡2𝑛2

2
ℓ ′

.

By assumptionH is collision resistant, thus we may assume that the

adversary does not produce𝑚 ≠𝑚′ such that H(𝑚) = H(𝑚′) with
more than negligible advantage 𝜖H

col
. If the adversary does not cause

any collisions then all distinct queries to𝑇 result in distinct queries

to CBC-MAC𝑚
𝑓𝑘
. Combining the above bounds, using 𝑞𝑓 = 𝑡𝑛 and

ℓ′ = ℓ − 1 we may conclude,���Pr[A𝑇𝜋 (𝑘,· ),𝜋 (𝑥, 𝑃𝜋 (𝑘, 𝑥)) = 1] − Pr[A𝑅 ( ·),𝜋 (𝑥, 𝑃𝜋 (𝑘, 𝑥)) = 1]
���

≤ 𝜖H
col
+ 𝑞

|K | +
𝑡𝑛(𝑡𝑛 − 1)

2
ℓ+1 + 3𝑡2𝑛2

2
ℓ−1 ≤ 𝜖H

col
+ 𝑞

|K | + 6.5
𝑡2𝑛2

2
ℓ

□

5.1.4 Summary of security. In Figure 4 we summarize the hardness

of breaking key binding or pseudorandomness for the instantia-

tions 𝑃 and 𝑇 . Due to the quadratic loss in the number of queries,

single block approaches require a block-length of twice the desired

security level.

In Figure 5 we propose appropriate parameters for the multi-block

approach at various security levels.

VOLEitH proofs of multi-block public key and tag functions. The
prover provides witness bits for key, encryption (public key func-

tion) and the CBC-MAC (tag function). Note that the cbc encryption

schedule will require an additional block state for each cipher block

Instantiation Functions Key binding PRF

Single-block 𝑃 (𝑘, 𝑥) = 𝜋𝑘 (H(0| |𝑥))
𝑇 (𝑘, 𝑥,𝑚) = 𝜋𝑘 (H(1| |𝑚))

𝑂 (𝑞2/2ℓ ) 𝜖H
col
+ 𝑞/|K| +

𝑡 (𝑡 − 1)/2ℓ+1

Multi-block 𝑃 (𝑘) = | |𝑛
𝑖=1

𝜋𝑘 (0 . . . 0| |bits(𝑖))
𝑇 (𝑘,𝑚) = CBC-MAC𝑛

𝑓𝑘
(𝑘,H(𝑚))

𝑂 (𝑞2/2𝑛ℓ ) 𝜖H
col
+ 𝑞/|K| +

6.5𝑡2𝑛2/2ℓ

Figure 4: A summary of advantage bounds for 𝑃 and𝑇 , for an
adversary making 𝑞 queries to 𝜋 and 𝑡 queries to 𝑇 (𝑘, ·). We
assume 𝜋𝑘 : {0, 1}ℓ → {0, 1}ℓ is a random permutation drawn
from the family 𝜋 , and H : {0, 1}∗ → {0, 1}ℓH is collision resis-
tant. In the single block case ℓH = ℓ , while in the multiblock
case ℓH = 𝑛(ℓ − 1).

Instantiation 𝜆 (≈ log
2
(𝑞)) n 𝜋 t

Multi-block

128 2 AES128 2
29

192 3 AES192 2
29

256 4 AES256 2
28

Figure 5: Required block-number and permutation for vary-
ing security levels, alongwith themaximum allowed number
of tag evaluations 𝑡 . We take 𝑛 = 2 log

2
(𝑞)/ℓ , where ℓ is the

block length in bits. For AES ℓ = 128. We compute 𝑡 to ensure
the quantity 6.5𝑡2𝑛2/2ℓ ≤ 2

−𝜆𝑠 for a statisitical security pa-
rameter 𝜆𝑠 = 64.

following the first, resulting from the chaining of encryption sched-

ules.

J𝑤K(1) =J𝑤key-schK(1) |J𝑤enc-sch
1

| . . . |𝑤enc-sch
𝑛 K(1)

|J𝑤enc-sch-cbc
1

| . . . |𝑤enc-sch-cbc
𝑛 K(1)

These must satisfy key schedule and encryption constraints with

fixed input block in(𝑖); here, let Cenc-sch-cbc denote the sbox inver-
sion constraints (eq. (1)) on the encryption schedule witness bits

of the cbc encryption applied to public input 𝑥1, . . . , 𝑥𝑛 and final

block output 𝑦.

J𝑧key-schK(2) = Ckey-sch (J𝑤key-schK(1) ) (12)

∀𝑖 ∈ [𝑛] : J𝑧enc-sch𝑖 K(2) = Cenc-schin(𝑖 ),𝑦 (J𝑤
enc-sch
𝑖 |𝑤key-schK(1) )

J𝑧enc-sch-cbcK(2) = Cenc-sch-cbc𝑥1,...,𝑥𝑛,𝑦
(J𝑤enc-sch-cbc

1...𝑛 |𝑤key-schK(1) )

5.2 Threshold ring signature definition
We recall the syntax and defintions of threshold ring signatures as

set out in [36].

Definition 5.5 (Threshold ring signature, [36]). A tuple of PPT algo-

rithms TRS = (Setup,KeyGen, Sign,Combine,Verify) with syntax

Setup(1𝜆) → pp: On input security parameter 1
𝜆
outputs public

parameters pp.

KeyGen(pp) → (pk, sk): On input public parameters pp outputs

a public key, secret key pair (pk, sk).
Sign(pp,𝑚, {( 𝑗, pk𝑗 )} 𝑗∈R , sk𝑖 ) → 𝜎 : On input public parameters

pp; a message 𝑚; a ring of public keys {pk𝑗 } 𝑗∈R ; and a

secret key sk𝑖 corresponding to a public key in the ring,

outputs a signature 𝜎 .
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Combine(pp, {𝜎𝑖 }𝑖∈[𝑡 ] , 𝑡) → 𝜎 : Given public parameters pp; a set
of 𝑡 signatures {𝜎𝑖 }𝑖∈[𝑡 ] , outputs combined signature 𝜎 .

Verify(pp,𝑚, 𝜎, {( 𝑗, pk𝑗 )} 𝑗∈R , 𝑡) → 0/1: On input public parame-

ters pp; a message𝑚; a ring of public keys {pk𝑗 } 𝑗∈R ; and
a threshold 𝑡 , outputs accept (1) or reject (0).

is said to be a threshold ring signature (TRS) scheme, if it satis-

fies the definitions of correctness (Definition 5.6), unforgeability

(Definition 5.7) and anonymity (Definition 5.8).

In our use of the TRS syntax we will suppress public parameters

pp leaving this as an implicit input.

We require correctness of signatures. Note, we do not require

perfect correctness as in [36], this weakening is necessary as for our

scheme there exist signatures from distinct signers which cannot

be combined if their well-formed tags collide.

Definition 5.6 (Correctness [36, Modified]). A threshold ring sig-

nature TRS scheme is said to be correct if for any message 𝑚,

signer set and ring S ⊆ R, with |S| = 𝑡 , following the proce-

dure: pp ← Setup(1𝜆); {(pk𝑖 , sk𝑖 ) ← KeyGen()}𝑖∈R ; {𝜎𝑖 ←
Sign(𝑚, {( 𝑗, pk𝑗 )} 𝑗∈R , sk𝑖 )}𝑖∈S ; 𝜎 ← Combine({𝜎𝑖 }𝑖∈S, 𝑡), it sat-
isfies

Adv𝑐𝑜𝑟𝑟TRS,A = 1 − Pr
[
Verify(𝑚,𝜎, {(𝑖, pk𝑖 )}𝑖∈R , 𝑡) = 1

]
= negl(𝜆) .

Intuitively a signature is a forgery for message𝑚, ring R, and
threshold 𝑡 , if the signature verifies and 𝑡 is larger than the number

of honest parties for which the adversary has seen a signature on

𝑚 with ring R, plus the number of corrupt parties in the ring.

Definition 5.7 (Unforgeability [36]). A threshold ring signature

TRS scheme is said to be unforgeable if for any PPT adversary A

Pr

[
A wins GameUnforgeTRS,A (1

𝜆)
]
= negl(𝜆) .

where GameUnforgeTRS,A is defined in Figure 6.

GameUnforgeTRS,A,𝑛
(1𝜆)

1 : U ← [𝑛], Qcorr ← ∅, Qsig ← ∅

2 : { (pk𝑖 , sk𝑖 ) ← TRS.KeyGen(1𝜆 ) }𝑖∈ [𝑛]
3 : (𝜎 ′,𝑚′, R′, 𝑡 ) ← ACorrupt,Register,Sign ({pk𝑖 }𝑖∈ [𝑛] )
4 : A wins iff

TRS.Verify(𝑚, { (𝑖, pk𝑖 ) }𝑖∈R′ , 𝜎, 𝑡 ) = 1,

R′ ⊂ U and | R′ ∩ (Qcorr ∪ Q𝑚
′,R′

sig ) |< 𝑡

Corrupt(𝑖)
Qcorr ← Qcorr ∪ {𝑖 };
return sk𝑖

Register(pk)
Qcorr ← Qcorr ∪ {𝑖 },U ← U ∪ {𝑖 }
pk𝑖 ← pk for 𝑖 = |U | .

Sign(𝑚,R, 𝑖)
if 𝑖 ∉ U \ Qcorr ∨ 𝑖 ∉ R : return ⊥

Q𝑚,R
sig ← Q

𝑚,R
sig ∪ {𝑖 }

𝜎𝑖 ← TRS.Sign(𝑚, { ( 𝑗, pk𝑗 ) } 𝑗 ∈𝑅, sk𝑖 )

Figure 6: Threshold ring signature unforgeability [36].

Anonymity requires that an adversary should only have neg-

ligible advantage beyond random guessing in distinguishing the

signatures produced by two honest parties in a ring, even if all

other members of the ring are corrupt.

Definition 5.8 (Anonymity [36]). A threshold ring signature TRS
scheme is said to have anonymity if for any PPT adversary A���Pr [

A wins GameAnon,0TRS,A (1
𝜆)

]
− Pr

[
A wins GameAnon,1TRS,A (1

𝜆)
] ���

≤ negl(𝜆).
where GameAnon,𝑏TRS,A is defined in Figure 7.

GameAnon,𝑏TRS,A (1
𝜆)

1 : U ← [𝑛], Qcorr ← ∅, Qsig ← ∅

2 : { (pk𝑖 , sk𝑖 ) ← TRS.KeyGen(1𝜆 ) }𝑖∈ [𝑛]
3 : (𝑚, R,U, 𝑖0 ∈ R, 𝑖1 ∈ R)

← ACorrupt,Register,Sign ({pk𝑖 }𝑖∈ [𝑛] )
4 : 𝜎𝑖𝑏 ← TRS.Sign(𝑚, {pk𝑗 } 𝑗 ∈R , sk𝑖𝑏 )

5 : 𝑏′ ← ACorrupt,Register,Sign (𝜎𝑖𝑏 )
6 : A wins iff

7 : 𝑏 = 𝑏′ ∧ (∀𝛽 ∈ {0, 1} : 𝑖𝛽 ∉ Q𝑚,R
sig ∧ 𝑖𝛽 ∉ Qcorr )

Figure 7: Threshold ring signature anonymity [36]. The ora-
cles given to the adversary are defined as in Figure 6.

5.3 Threshold ring signature construction
For threshold ring signatures, we wish to combine a set of 𝑡 sig-

natures for the same message and ring. This procedure should be

public to avoid any additional interaction which could compromise

the anonymity of the signers. A simple approach one might take

would be to just concatenate the set of ring signatures. However, fol-

lowing this approach there would be no guarantee that a sequence

of 𝑡 signatures originated from distinct members of the ring, and not

just the same signer. To resolve this we may further augment the

proof to include a substring or “tag” which is deterministically and

provably derived from the secret key for a fixed message and ring.

If two signatures have the same tag, then they are linkable and must

be from the same signer and vice versa. With the addition of tags

threshold ring signatures may be constructed by concatenation.

To construct our threshold ring signature scheme we will need

a public key function and a tag function as described in Section 5.1.

Furthermorewe require a non-interactive zero-knowledge argument-

of-knowledge for the relation,

R =

©­« 𝜙 =

(
PK = {(𝑖, 𝑥𝑖 , 𝑦𝑖 )}𝑖∈R ,

𝑚, 𝜏

)
𝑤 = 𝑘

ª®¬
������ ∃𝑖 ∈ [𝑛] :𝑃 (𝑘, 𝑥𝑖 ) = 𝑦𝑖 ,

𝑇 (𝑘, (PK,𝑚)) = 𝜏


with completeness, zero-knowledge andweak simulation-extractability,

see Section A.1.

We construct our threshold ring signature scheme in Figure 8. Re-

moving Combine and Verify would give a linkable ring signature

scheme, where the tags are computationally unique.
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Setup(1𝜆)
ppNIZK ← NIZKAoK.Setup(1𝜆 )
return ppNIZK
KeyGen(pp)
𝑥 ← X; 𝑘 ← K
𝑦 ← 𝑃 (𝑘, 𝑥 )
return (pk = (𝑥, 𝑦), sk = 𝑘 )
Sign(𝑚, PK, sk𝑖 )
𝜏 ← 𝑇 (sk𝑖 , (PK,𝑚) )
𝜙 ← (PK,𝑚, 𝜏 )
𝜋 ← NIZKAoK.Prove(𝜙, sk𝑖 )
return (𝜋, 𝜏 )

Combine(PK, {𝜎𝑖 }𝑖∈[𝑡 ] , 𝑡)
return 𝜎 = 𝜎1 | | . . . | |𝜎𝑡
Verify(𝑚,𝜎, PK, 𝑡)
// Immediately reject if 𝜎 does not contain 𝑡 items.

parse 𝜎 = | |𝑡𝑖=1 (𝜋𝑖 , 𝜏𝑖 )
if ∃𝑖 ∈ [𝑡 ], PVerify(𝑚,𝜎𝑖 , PK) = 0 :

return 0

if ∃𝑖, 𝑗 ∈ [𝑡 ], 𝑖 ≠ 𝑗, 𝜏𝑖 = 𝜏 𝑗 : return 0

else : return 1

PVerify(𝑚,𝜎, PK)
parse 𝜎 = (𝜋, 𝜏 )
return NIZKAoK.Verify( (PK,𝑚, 𝜏 ), 𝜋 )

Figure 8: Our threshold ring signature construction. Note,
PVerify gives the verification algorithm for a linkable ring
signature scheme, where signatures with identical tags are
linked. If we wish for signatures to be linked across messages
signing may be modified such that ℎ ← 𝑇 (sk𝑖 , PK).

Theorem 5.9. The threshold ring signature scheme defined in
Figure 8 is secure (Definition 5.6, Definition 5.8, Definition 5.7) if
NIZKAoK has completeness, zero-knowledge and weak simulation-
extractability, and 𝑃,𝑇 are pseudorandom, one-way and key binding.

We prove security through lemmas B.1, B.2, B.3 in Appendix B.2.

5.4 Performance evaluation
5.4.1 Implementation & Benchmarking. We report threshold ring

signature sizes in table 1, where the sizes of individual, linkable

partial signatures are shown, and prover/verifier runtimes in fig. 9.

These are performed on the machine specification reported in sec-

tion 4.2.1. Our proof of disjunctions technique require prover and

verifier to evaluate each OR branch, resulting in runtimes that must

(at minimum) scale linearly with the ring size.

We argue that our prover and verifier run-times for threshold

ring signatures are practical; even at 256 bit security, runtimes for

ring sizes up to ≈ 2
10

for security levels up to 256 bits remain

practical. We note that the dimension of 1-hotvectors chosen to

minimize signature sizes (fig. 2) has an impact on performance.

This is evident for ring size 2
16

in fig. 9, where the 4 dimension

1-hotvector encoding at 128 and 192 bits exceeds the 2 dimension

1-hotvector encoding at 256 bits. This results in faster runtimes at

the 256 bit security level than at 192 bits.

5.4.2 Comparison to other post-quantum threshold ring signatures.
We first discuss comparisons with prior art in table 1 with practical

runtimes. Lattice-based Falafl [10] features partial threshold signa-

tures which are sublinear in the ring size. The signature sizes of

Falafl are about twice of ours at the 128 bit security level, and the

authors only report signing times of 90 ms for small ring size of 2
3
,

which is orders of magnitude slower than our implementation (< 1

ms). Raptor [33] features smaller signature sizes for smaller rings

< 2
6
and does not scale to larger rings.

Ring size

Linkable Assumption 2
3

2
6

2
8

2
10

2
12

2
16

✓ AES128 12 12 13 17 47 830

✓ AES196 33 33 40 69 224 4710

✓ AES256 56 57 66 103 294 4074

AES128 11 11 12 16 46 817

AES192 28 29 34 64 224 4714

AES256 46 47 51 91 279 4098

AES128-EM 11 12 17 38 133 2031

AES192-EM 27 32 52 149 550 8702

AES256-EM 46 56 100 315 1044 16277

Figure 9:Max of signer and verifier runtimes (ms) for linkable
ring signatures in this work.

Whilst Isogeny-based Calamari [10] features smaller partial sig-

nature sizes (with exception of very large rings of size 2
20
), the

authors only report signing times of 79 s for small rings (2
3
); ar-

guably, this is beyond the realm of practicality for current hardware

platforms and applications.

We highlight the non-linkable ring signatures contributed by [22],

based on the MPC-in-the-head with practical similarities to VOLE-

itH. In principle, our public key and tag functionalities could also be

realized in the framework of [22]. Still, as discussed in section 4.2.1,

our (non-linkable) ring signature implementations with AES/AES-

EM provide heuristic evidence of VOLEitH as advantageous to [22]

for practical applications of concern in this work.

Example 5.10. We analyze the size of our threshold ring signa-

ture at 𝜆 = 128 and ring size 2
10
; as in the ring signature case

of Example 4.1, both key schedule and encryption schedule bits are

input by the prover. However, public key and tag functions now

require two AES blocks at 𝜆 = 128 (Figure 5). The public key func-

tion is instantiated by two AES encryptions in parallel, whereas

the tag function requires two AES blocks in CBC mode, requiring

one additional 128 bit block of state to be input as witness;

• 1 AES key schedule: 448

• 2 AES enc schedules: 2 × 1152 = 2304

• 2 AES enc schedules in CBC-mode: 1152 + 1280 = 2432

• 2 1-hotvectors: 2 × 31 ≈ 64 (rounded to bytes)

As in our parameterization of ring signatures in example 4.1, the

degree of the final QS polynomial remains 4 (for two 1-hotvectors),

requiring a total of 5248 = 448 + 2304 + 2432 + 64 witness bits

and 3 × 128 random VOLE instances to mask the degree 4 proof

polynomial; The VOLEitH proof consumes 5632 = 5248 + 3 × 128
random VOLEs resulting in a proof size of 9962 (Figure 1).

6 SUCCINCT MULTI-SIGNATURES
We begin by recalling an Approximate Lower Bound Argument

scheme proposed by Chaidos et al. [14], leaving the formal def-

inition to Appendix 6. Consider a binary hash function that for

any input outputs 1 and with a some probability 𝜀 independent of

other outputs. It follows that the probability that any input from

a fixed set results in an output 1 grows with the size of the set.

For an appropriate choice of 𝜀 one can ensure that a 1 will likely

be found given 𝑛𝑝 elements, and will only be found with smaller

probability if fewer than 𝑛𝑓 elements are known. Chaidos et al. [14]
11



observe that this disparity in success probability may be boosted by

requiring particular hash outputs for longer sequences of elements.

ALBA Scheme [14]. Let 𝑆𝑝 be the set of elements known to a prover,

with |𝑆𝑝 | ≥ 𝑛𝑝 . The prover aims to convince a verifier that |𝑆𝑝 | >
𝑛𝑓 , where 𝑛𝑓 < 𝑛𝑝 . Let 𝐻1 and 𝐻2 be hash functions that output 1

with probabilities 1/𝑛𝑝 and 𝑞, respectively.

Verify𝐻1,𝐻2 (𝑡, 𝑠1, . . . , 𝑠𝑢 ) checks that a sequence of 𝑢 elements to

constitute a valid proof:

• 𝑡 ∈ [𝑑] and for all 𝑖 ∈ [𝑢]: 𝐻1 (𝑡, 𝑠1, . . . , 𝑠𝑖 ) = 1,

• and 𝐻2 (𝑡, 𝑠1, . . . , 𝑠𝑢 ) = 1.

To construct a proof, the prover employs a depth-first search ap-

proach. For a chosen parameter 𝑑 , the prover begins by evaluating

𝐻1 (𝑖, 𝑠) for 𝑖 ∈ [𝑑] and 𝑠 ∈ 𝑆𝑝 , selecting the first pair for which 𝐻1

outputs 1. For (𝑖, 𝑠) with 𝐻1 (𝑖, 𝑠) = 1 the prover then attempts to

extend the sequence until 𝑠′ ∈ 𝑆𝑝 is found s.t. 𝐻1 (𝑖, 𝑠, 𝑠′) = 1, back-

tracking if this fails. The prover proceeds like this until a sequence

of length 𝑢 is found. Loosely, increasing 𝑑 allows improving com-

pleteness, while 𝑢 and 𝑞 tune the soundness error. For appropriate

parameters, the proof size 𝑢 is logarithmic, while completeness and

soundness error are negligible, all with prover runtime
4 𝑂 (𝑛𝑝 · 𝜆2)

in expectation, and𝑂 (𝑛𝑝 ·𝜆3) worst case. A more complex approach

et al. [14] allows improving runtimes to 𝑛𝑝 +𝑂 (𝜆2) in expectation

and 𝑛𝑝 +𝑂 (𝜆3) worst case.
For a given security parameter, the parameterization and result-

ing proof size of ALBA only depends on 𝑛𝑝/𝑛𝑓 ;

𝑢 ≥
𝜆𝑠𝑜𝑢𝑛𝑑 + log 𝜆𝑐𝑜𝑚𝑝 + 1 − log log 𝑒

log

𝑛𝑝
𝑛𝑓

; 𝑑 ≥
2𝑢𝜆𝑐𝑜𝑚𝑝

log 𝑒
; 𝑞 =

2𝜆𝑐𝑜𝑚𝑝

𝑑 log 𝑒
.

(13)

6.1 Expanded Approximate Lower Bound
Arguments

We define Expanded Approximate Lower Bound Arguments (ELBA),

extending ALBA to allow proofs of partially unique items. To this

end we interpret every element 𝑠 as consisting of two parts (𝜎, 𝜌),
where 𝜎 will be the unique substring. The algorithms of ELBA are

parameterized by a weight oracle expressing whether elements

are valid. Throughout our exposition we restrict ourselves to the

unweighted case, where all valid elements are of equal weight, i.e.

the weight oracle must be binary𝑊 : {0, 1}∗ → {0, 1}. See [14]
for a discussion of how weights may be introduced. We no longer

care if the adversary given 𝑠 = (𝜎, 𝜌) with𝑊 (𝑠) = 1 is able to

derive 𝑠′ = (𝜎, 𝜌′) with𝑊 (𝑠′) = 1 as the substring 𝜎 is common to

both elements, these will be considered equivalent in the game. For

notational convenience let𝑊 (𝑆) = |{𝜎 | ∃𝜌, ((𝜎, 𝜌) ∈ 𝑆∧𝑊 (𝜎, 𝜌) =
1)}| express the number of unique substrings of valid elements in a

set 𝑆 .

Definition 6.1. The tuple of PPT oracle algorithms (Prove,Verify,
Read) taking a random oracle 𝐻 and weight oracle𝑊 constitute an

(𝜆𝑠𝑜𝑢𝑛𝑑 , 𝜆𝑐𝑜𝑚𝑝 , 𝑛𝑝 , 𝑛𝑓 )-ELBA scheme if and only if they satisfy:

4
Runtime is measured in the number of oracle queries. 𝜆 is the parameter for soundness

and completeness.

• Completeness: for all weight oracles𝑊 and all 𝑆𝑝 such that

𝑊 (𝑆𝑝 ) ≥ 𝑛𝑝 ,

Pr[𝜋 ← Prove𝐻,𝑊 (𝑆𝑝 );Verify𝐻,𝑊 (𝜋) = 1] ≥ 1 − 2−𝜆𝑐𝑜𝑚𝑝 .

Furthermore, for all 𝜋 where Verify𝐻,𝑊 (𝜋) = 1, then

𝑊 (𝑠) = 1 must hold for all 𝑠 ∈ ELBA.Read𝐻,𝑊 (𝜋) and
ELBA.Read𝐻,𝑊 (𝜋) ⊆ 𝑆𝑝 .

• Knowledge-soundness: there exists an algorithm Extract
which for any PPT adversary A running in time 𝑇 , with

advantage

AdvsoundELBA,A = Pr[𝐻 $←H , 𝜋 ← A𝐻,𝑊 ();

Verify𝐻,𝑊 (𝜋) = 1],
(14)

letting 𝜀 = AdvsoundELBA,A−2
−𝜆𝑠𝑜𝑢𝑛𝑑

, then 𝑆 ← Extract𝐻,𝑊 (A)
runs in expected time poly(𝑇, 𝑛𝑓 , 1/𝜀) and Pr[𝑊 (𝑆) >

𝑛𝑓 ] = 1.

Note the above definition has significant similarities with Defi-

nition 3 of [14] for ALBA in the CRS model.

6.2 Constructing ELBA from ALBA
Given an ALBA scheme constructing an ELBA is rather straight

forward, we simply input the unique substrings to the ALBA prover

and appropriately redefine the weight oracle. For a formal construc-

tion see Figure 10.

Prove𝐻,𝑊 (𝑆 = {𝑠𝑖 = (𝜎𝑖 , 𝜌𝑖 )}𝑖∈[𝑛𝑝 ] )
1 : 𝜋 ← ALBA.Prove𝐻,𝑊𝑆 ({𝜌𝑖 }𝑖∈ [𝑛𝑝 ] )

// collect complete elements contained in the proof

2 : 𝑅 ← { (𝜎∗, 𝜌∗ ) ∈ 𝑆 | 𝜎∗ ∈ ALBA.Read(𝜋 ) }; return (𝜋, 𝑅)

Verify𝐻,𝑊 (𝜋, 𝑅)
1 : Σ← ALBA.Read(𝜋 ) ; return (Σ ⊂𝑊𝑅 ∧ ALBA.Verify𝐻,𝑊𝑅 (𝜋 ) )

Figure 10: The ELBA construction. We define 𝑊𝑋 (𝜎) =

(∃𝑠 = (𝜎, ·) ∈ 𝑋,𝑊 (𝑠) = 1). Note ALBA.Read simply re-
turns the elements 𝜎 contained in the proof. Similarly,
ELBA.Read𝐻,𝑊 ((𝜋, 𝑅)) outputs an element 𝑠 = (𝜎, 𝜌) ∈ 𝑅 for
each 𝜎 ∈ ALBA.Read𝐻,𝑊 ∗ (𝜋) if𝑊 (𝑠) = 1.

We will state the security of ELBA, the proof follows from the same

reasoning as [14, Theorem 21], nonetheless a full proof can be found

in Appendix B.3.

Theorem 6.2. The construction in Figure 10 is a (𝜆𝑠𝑜𝑢𝑛𝑑 , 𝜆𝑐𝑜𝑚𝑝 , 𝑛𝑝 , 𝑛𝑓 )-
ELBA scheme if ALBA is a (𝜆𝑠𝑜𝑢𝑛𝑑 , 𝜆𝑐𝑜𝑚𝑝 , 𝑛𝑝 , 𝑛𝑓 )-ALBA scheme.

Example 6.3. Assume we want to apply Telescope ALBA [Sec-

tion 3][14] to our ELBA construction. As we do not require any

additional structure on the signature the size of the proof can be

directly evaluated by multiplying the size of one signature by 𝑢5.

With 𝜆𝑠𝑜𝑢𝑛𝑑 = 𝜆𝑐𝑜𝑚𝑝 = 128 and 𝑛𝑝 = 2 · 𝑛𝑓 a sequence of least 136

elements is required (eq. (13)).

5
It could be smaller, as the sequence could potentially contain the same element

multiple times
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7 ANONYMOUS LEDGER TRANSACTIONS
One of the most wide-spread usage of ring-signatures is Mon-

ero [38], an anonymous ledger which leverages linkable ring signa-

tures and Pedersen commitments in the discrete log setting to hide

transaction amounts. Each coin is a tuple comm(𝑣, 𝑟 ), pk; a com-

mitment to the coin value 𝑣 and a unique public key pk controlled

by the coin owner. A transaction spends input coins and generates

fresh output coins with (1) commitments holding the same total

value as the input coins and (2) fresh public keys controlled by the

recipient.

The ledger state consists of coins and pseudorandom nullifiers.

The latter are bound to each spent coin, preventing a coin to be

spent twice; nullifiers cannot be linked to specific coins. Let ring

R define the anonymity set of coins in the ledger. A Monero-style

transaction consists of;

• Input coins nullifiers

• Output coins commitments and public keys

• NIZK proof-of-knowledge of

R1 Secret keys that correspond to spent coins in R

R2 Well-formedness of input coin nullifiers

R3 Input coin amounts equal output coin amounts.

We contribute a post-quantum version of Monero from determin-

istic tags and commitments built from proving (multi-block) AES

evaluations in zero-knowledge. We do not provide a full security

treatment of our construction as this is beyond the scope of this

work, and refer to [16] for a formal security analysis.

Compared to Monero, which employs discrete-log based ring sig-

natures and bullet-proofs [12] to bound coin amounts and prevent

inflation of the coin supply, our construction only assumes sym-

metric primitives. We construct commitments from block ciphers,

which hide the value of coins in the ledger. Then, we introduce

proof of addition without overflow, which help enforce the coin sup-

ply invariant for each transaction. The multi-block tag construction

from section 5.1.3 serves as the coin nullifier.

7.1 Commitments from block ciphers
We show that key-binding eq. (8) and pseudorandomness eq. (9)

properties are closely related to hiding and binding required to

realize commitments frommulti-block evaluations of a block cipher.

Consider a message space𝑚 = 𝑚1 | |...| |𝑚𝑛 to be small relative

to the block-cipher width ℓ , such that |𝑚 | = 2
𝑑 ≪ 2

𝑛 ·ℓ
. Then, the

commitment function is defined as follows, where 𝜋 is instantiated

from an AES block.

𝐶𝜋
: {0, 1}𝑑 × K → {0, 1}𝑛 ·ℓ , (15)

𝐶𝜋 (𝑚, 𝑟 ) = | |𝑛𝑖=1𝜋𝑟 (0 . . . 0| |bits(𝑖) | |𝑚𝑖 )

Similar to themulti-block public key function in Section 5.1.3, inputs

to each block are fixed for all but the trailing message bits; for

each block, only 𝑑/𝑛 input bits are freely chosen. The cipher-block

key represents randomness sampled for the commitment. We state

message hiding (eq. 16) and binding (eq. 17) and prove these for our

multi-block commitment construction in Appendix B.4.

Commitment function: A function 𝐶𝜋
: K ×M → Y, that is:

Message hiding, it should be hard to distinguish commit-

ments of known messages.

Pr

𝑏 ← A
𝜋 (st, 𝑐)

�������
(𝑚0,𝑚1, st) ← A𝜋 ()
𝑏 ← {0, 1}, 𝑟 ← K
𝑐 = 𝐶𝜋 (𝑚𝑏 , 𝑟 )

 = negl(𝜆) . (16)

Message binding, it should be hard to find commitments

with different openings.

Pr

[
(𝑚, 𝑟,𝑚′, 𝑟 ′) ← A𝜋

:

(𝑚 ≠𝑚′)∧
(𝐶𝜋 (𝑚, 𝑟 ) = 𝐶𝜋 (𝑚′, 𝑟 ′))

]
= negl(𝜆).

(17)

Lemma 7.1. In the ideal cipher model the advantage of an adver-
sary making at most 𝑞 queries to 𝜋 in the hiding game (16) for 𝐶𝜋

(15) is bounded by

AdvHiding
𝐶,A (𝜆, 𝑞, 𝑡) ≤ 𝑞

|K | +
𝑞(𝑞 − 1)
2
ℓ+1

Lemma 7.2. For an integer constant 𝑛 > 0, the probability that an
adversary making 𝑞 queries breaks message binding (17) for multi-
block commitment construction (15) with 𝑛 blocks in the ideal cipher
model is bounded by 𝑂 (𝑞2 (2ℓ−𝑑/𝑛)−𝑛) = 𝑂 (𝑞2 (2ℓ )−𝑛).

Proving knowledge of commitment opening. The VOLEitH prover

must provide a witness

J𝑤K(1) = J𝑚1 |...|𝑚𝑛 |𝑤key-sch |𝑤enc-sch
1

| . . . |𝑤enc-sch
𝑛 K(1)

consisting of a key schedule, 𝑛 encryption schedules and committed

message𝑚, which can be interpreted as chunks of 𝑑/𝑛 bits. These

must satisfy following key schedule and encryption constraints;

J𝑧key-schK(2) = Ckey-sch (J𝑤key-schK(1) ) (18)

∀𝑖 ∈ [𝑛] : J𝑧enc-sch𝑖 K(2) =

Cenc-sch𝑐 (prefix(𝑖) |J𝑚𝑖K(1) |J𝑤enc-sch
𝑖 |𝑤key-schK(1) )

7.2 Proofs of addition without overflow
Let J𝑣K(1) = J𝑣1K(1) , . . . , J𝑣𝑑K(1) be the VOLEitH commitment of

the bitwise encoding of coin value. For a well-formed anonymous

transaction, we require the sum of input coin values to equal the

sum of all output coin values. We must prove that each addition in

these summations does not exceed 2
𝑑 − 1 to prevent overflow. We

restate bitwise addition on 𝑣𝑎, 𝑣𝑏 ∈ {0, 1}𝑑 below; operations are

bitwise on elements of 𝑣𝑎, 𝑣𝑏 .

(1) Input: 𝑣1𝑎, 𝑣
1

𝑏
∈ {0, 1}𝑑

(2) For 𝑖 ∈ [𝑑] :
(a) 𝑣𝑖+1𝑎 ← 𝑣𝑖𝑎 + 𝑣𝑖𝑏
(b) 𝑣𝑖+1

𝑏
← ShiftLeft(𝑣𝑖𝑎 · 𝑣𝑖𝑏 )

(3) Output: 𝑣𝑖+1𝑎

To prove a bitsum over witness bit vectors J𝑣𝑎K(1) and J𝑣𝑏K(1) , the
VOLEitH prover also inputs J𝑣𝑖

𝑏
K(1) for 𝑖 ∈ [2 : 𝑑 + 1] as witness

(to mitigate the degree blow-up of the final proof polynomial); the
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Input Coins

Scheme PQ 2 20 50

This work ✓ 35 257 627

MatRiCT+ [18] ✓ 29 39 40

MatRiCT [20] ✓ 110 310 610

Monero[38] 1.72 9.03 21.22

Figure 11: Transaction proof sizes (KB) with 2 output coins
and ring size 24.

constraints satisfied by the prover are as follows; they are shown

over committed bit vectors for brevity.

J𝑧𝑖+1addK
(1) = J𝑣𝑖+1𝑎 K(1) − (J𝑣𝑖𝑎K(1) + J𝑣𝑖

𝑏
K(1) ) (19)

J𝑧𝑖+1carryK
(2) = J𝑣𝑖+1

𝑏
K(1) − ShiftLeft(J𝑣𝑖𝑎K(1) · J𝑣𝑖

𝑏
K(1) )

To prove that no overflow occurs during each addition, the prover

also proves satisfaction of

J𝑧𝑖+1overflowK(2) = msb(J𝑣𝑖𝑎K(1) · J𝑣𝑖
𝑏
K(𝑖 ) ) (20)

7.3 Anonymous transactions
A transaction consists of a VOLEitH fiat-shamir signature, nullifiers

(ℓ bits) for each spent input coin, and a fresh commitment (𝑛 · ℓ
bits) and public key (𝑛 · ℓ bits) for each output coin. The VOLEitH

proof signs nullifiers and output coins, and proves the following: (1)

Commitment opening constraints from eq. (18) for each input/out-

put coin (2) Public key ownership & tag constraints from eq. (12)

for each spent input coin (3) Well-formed summation of input and

output coin amounts with eq. (19) and eq. (20) for the balance proof.

Example 7.3. We illustrate the anatomy of a VOLEitH proof for

an anonymous transaction with 2 input and 2 output coins with

coin anonymity set of size 2
10
; here, let coin amounts be encoded by

32 bits. For each of the 4 input and output coin commitments, the

following bits are required to prove commitment opening; 448 bits

for 1 AES key schedule, 2 × 1152 = 2304 bits for 2 AES encryption

schedules, 32 bits for committing the coin value. The total witness

bits input for all 4 commitments is 11136 = 4 × (448 + 2304 + 32).
For each spent input coins in ring R, proof of ownership and well-

formed tags requires a total of 10496 = 2 × (448 + 2304 + 2432 + 64)
witness bits;

• 1 AES key schedule: 448

• 2 AES enc schedules: 2 × 1152 = 2304

• 2 AES enc schedules in CBC-mode: 1152 + 1280 = 2432

• 2 1-hotvectors: 2 × 31 ≈ 64 (rounded to bytes)

Finally, 2 summations are required to prove equality of input and

output amounts; for coin values encoded as 32 bits, this implies

2048 = 2 × 32 × 32 witness bits for the bitwise summation of coin

amounts (eq. (19)). The total number of witness bits is 23680 =

10496 + 11136 + 2048, and the degree 4 of the final QS polynomial is

determined by the AES constraints of degree 2 that is increased by

multiplicative selection via two 1-hotvector elements (fig. 2). The

proof consumes a total of VOLEs 24064 = 23680 + 3 × 128 resulting
in a proof size of 35

′
306 bits (Figure 1).

As shown in fig. 11, our proof sizes scale quasi linearly with the

number of spent input coins, and are larger than prior work with

post-quantum security based on lattice assumptions. InMatRiCT+[18],

proof sizes sublinear in the number of inputs are enabled with bal-

ance proofs based on CRT-packing. Our constructions for anony-

mous transactions are the first to rely on symmetric key primitives

only.
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A OMITTED DEFINITIONS
A.1 Non-interactive Zero-knowledge

Arguments-of-Knowledge
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knowledge proofs, with a focus on arguments-of-knowledge. We

employ the definitions of [31] although transferred to the random

oracle model, in the spirit of [21].

A NIZKAoK includes the following PPT algorithms,

SetupH (RL , 1𝜆) → (crs): Given an NP relation RL for language

L and the security parameter 1
𝜆
produces a common ref-

erence string crs.
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Ring size

Ring Signature Linkable Assumption 2
3

2
6

2
8

2
10

2
12

2
20

Security

This work ✓ AES128 9.84 9.91 10.05 10.09 10.18 10.53 NIST I

This work ✓ AES196 27.15 27.26 27.58 27.64 27.77 28.54 NIST III

This work ✓ AES256 51.12 51.27 51.80 51.98 52.15 53.56 NIST V

This work AES128 4.78 4.86 4.99 5.03 5.12 5.47 NIST I

This work AES192 12.43 12.54 12.86 12.92 13.05 13.82 NIST III

This work AES256 22.48 22.63 23.16 23.34 23.51 24.92 NIST V

This work AES128-EM 4.34 4.42 4.55 4.59 4.68 5.03 NIST I

This work AES192-EM 10.51 10.62 10.94 11.00 11.13 11.90 NIST III

This work AES256-EM 21.33 21.49 22.02 22.19 22.37 23.79 NIST V

TCitH [22]

AES128 7.87 7.90 7.94 8.02 8.18 9.39 NIST I

AES128-EM 6.81 6.84 6.88 6.96 7.12 8.27 NIST I

MQ over F256 4.30 4.33 4.37 4.45 4.60 5.62 NIST I

SD over F256 7.37 7.51 7.96 8.24 8.40 10.09 NIST I

KKW [30] LowMC - 250 - - 456 - NIST V

GGHK [26] LowMC - - - 56 - - NIST V

Falafl [10] ✓ MSIS/MLWE 30 32 - - 35 39 NIST I

Raptor [33] ✓ MSIS/MLWE 10 81 333 1290 5161 - 100 bit

MatRiCT [19] MSIS/MLWE 19 31 - - 148 - NIST II

SMILE [34] MSIS/MLWE 16 - - 18 19 22 128 bit

DualRing [42] MSIS/MLWE 4.63 6.02 10.78 30.13 106.57 - 128 bit

Gandalf [24] MSIS/MLWE 4.87 38.81 155.16 621 - - 128 bit

Calamari [10] ✓ CSIDH 5 8 - - 14 23 128 bit

LESS [1] Code Equivalence 11 14 - - 20 - 128 bit

MR-DSS [9] MinRank 27 36 64 145 422 - NIST I

Table 2: Expanded overview: (Linkable) ring signature sizes in kilobytes.

ProveH (crs, 𝜙,w) → 𝜋 Given the common reference string and

statement, witness pair in the relation (𝜙,w) ∈ R, pro-

duces a non-interactive proof 𝜋 .

VerifyH (crs, 𝜙, 𝜋) → {0, 1} Given the common reference string and

statement, and a proof for the statement 𝜋 , outputs either

1 (accept) or 0 (reject).

We require that verification always accepts an honestly produced

proof for a statement in the language.

Definition A.1 (Perfect Completeness [31, Modified]). For all (𝜙,w) ∈
RL it holds that

Pr

[
crs← SetupH (RL , 1𝜆) : VerifyH (crs, 𝜙, 𝜋) = 1

]
= 1.

We further require zero-knowledge which is the property that

proofs do not reveal anything about the witness used to produce

them. This is captured following the simulation paradigm, where

we require it be possible to produce simulate proofs without access

to the witness which are indistinguishable from real proofs. At

the same time it should not be possible for the adversary to pro-

duce proofs without knowing the witness. We give the simulator

additional power to achieve this by allowing an alternative setup:

TdSetupH (RL , 1𝜆) → (crs, 𝜏, 𝜏𝑒𝑥𝑡 ): Given an NP relation R and

the security parameter 1
𝜆
produces a common reference

string crs along with a simulation trapdoor 𝜏 and extraction

trapdoor 𝜏𝑒𝑥𝑡 .

As we are in the random oracle model we also give the simulator the

power to simulate the random oracle. The simulator for a scheme

S = (S1,S2) consists of a random oracle simulator S1 and a proof

oracle simulator S2, we let the simulators hold a shared mutable

state st and give them access to the random oracle H, but leave this

implicit in the notation. We quantify the simulator as part of the

scheme as it is common to the following two definitions.

Definition A.2 (Computational Zero-knowledge [31, Modified]).
For all PPT adversaries A we require,

Pr

[
crs← SetupH (RL , 1𝜆) : AH,P(crs,·,· ) (crs) = 1

]
≈ Pr

[
(crs, 𝜏, 𝜏𝑒𝑥𝑡 ) ← TdSetupH (R, 1𝜆) : AS1 (crs,𝜏,· ),S

′
2
(crs,𝜏,·,· ) (crs) = 1

]
,

where P(crs, 𝜙,w) (resp. S′
2
(crs, 𝜏, 𝜙,w)) first checks (𝜙,w) ∈ RL ,

aborting the experiment if this does not hold, and outputs 𝜋 ←
ProveH (crs, 𝜙,w) (resp. 𝜋 ← S2 (crs, 𝜏, 𝜙)).

As we are constructing signature schemes it suffices for it to be

hard for the adversary to produce a proof for a statement 𝜙 without

a witness where it has not seen any simulated proofs for 𝜙 .

Definition A.3 ((Black-box) Weak Simulation-Extractability [31,
Modified]). There exists an extractor E such that for all PPT adver-

saries A,

Pr


(crs, 𝜏, 𝜏𝑒𝑥𝑡 ) ← TdSetupH (R, 1𝜆)
(𝑥∗, 𝜋∗) ← AS1 (crs,𝜏,· ),S′2 (crs,𝜏,·,· ) (crs)
𝑤∗ ← EH (𝜏𝑒𝑥𝑡 , 𝑥∗, 𝜋∗)

:

(𝑥∗, _ ) ∉ T∧
(𝑥∗,𝑤∗) ∉ RL∧
VerifyS1 (𝑥∗, 𝜋∗) = 1


≤ negl(𝜆),

whereT is the set of statementwitness pairs (𝜙,w)whereS′
2
(crs, 𝜏, 𝜙,w)

has been queried. As for zero-knowledge,S′
2
simply checks (𝜙,w) ∈

RL returning 𝜋 ← S2 (crs, 𝜏, 𝜙) if this is the case, and aborting

otherwise.

A.2 Omitted definitons from Section 6
We recall an definition of an ALBA scheme from [14, Definition 1].
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Definition A.4. The triple (Prove,Verify,Read) is a (𝜆𝑠𝑜𝑢𝑛𝑑 , 𝜆𝑐𝑜𝑚𝑝 ,

𝑛𝑝 , 𝑛𝑓 )−ALBA scheme if and only if:

• Prove is a probabilistic polynomial-time (PPT) program

with access to the random oracle 𝐻 and the binary oracle

𝑊 .

• Verify is a program with access to the random oracle𝐻 and

the binary oracle𝑊 .

• Read is a program that reads an ALBA proof and returns

the signatures.

• Extract is a program with access to the random oracle 𝐻

and the binary oracle𝑊 . The program is also given access

to the adversary A, but is restricted to only run it once

observing the queries A makes to the real oracles 𝐻,𝑊 .

Moreover, it must satisfy the following properties:

• Completeness: For all oracles 𝑊 and all 𝑆𝑝 such that

𝑊 (𝑆𝑝 ) ≥ 𝑛𝑝 ,

Pr[Verify𝐻,𝑊 (Prove𝐻,𝑊 (𝑆𝑝 )) = 1] ≥ 1 − 2−𝜆𝑐𝑜𝑚𝑝 .

• Proof of knowledge: Let 𝐸 be the random variable over

the random coins of A and Extract, which is 1 exactly

when𝑊 (𝑆𝑓 ) > 𝑛𝑓 for 𝑆𝑓 ← Extract𝐻,𝑊 ,A (). Knowledge
soundness requires for all oracles𝑊 ,

Pr[𝐸 = 1] ≥ Pr[Verify𝐻,𝑊 (A𝐻,𝑊 ())] − 2−𝜆𝑠𝑜𝑢𝑛𝑑 .
Note extraction is straight-line to the constrains on Extract.

B OMITTED PROOFS
B.1 Omitted proofs from Section 5.1

Proof of Lemma 5.3. Consider an adversary having made 𝑖 pre-

vious queries {(𝑘 𝑗 , 𝑦 𝑗,0, 𝑦 𝑗,1, . . . , 𝑦 𝑗,𝑛)} 𝑗∈[𝑖 ] such that𝑦 𝑗,ℓ = 𝜋𝑘 𝑗
(0 . . . 0| |

bits(ℓ)) for ℓ ∈ [𝑛]. We consider 𝑘 𝑗 to have been queried if the

adversary has queries 𝜋𝑘 𝑗
or 𝜋 -1

𝑘 𝑗
on any value. The adversary finds

a collision if it queries a fresh key 𝑘 ≠ 𝑘 𝑗 for 𝑗 ∈ [𝑖] where 𝜋𝑘
matches 𝜋𝑘 𝑗

for inputs 0 to 𝑛. For each of the previous queries we

may bound the probability,

Pr

[
𝑦 𝑗,1 = 𝜋𝑘 (0 . . . 0| |bits(1)), . . . , 𝑦 𝑗,𝑛 = 𝜋𝑘 (0 . . . 0| |bits(𝑛))

]
= Pr

[
𝑦 𝑗,1 = 𝜋𝑘 (0 . . . 0| |bits(1))

]
· Pr

[
𝑦 𝑗,2 = 𝜋𝑘 (0 . . . 0| |bits(2))

�� 𝑦 𝑗,1 = 𝜋𝑘 (0 . . . 0| |bits(1))
]
· . . .

· Pr
[
𝑦 𝑗,𝑛 = 𝜋𝑘 (0 . . . 0| |bits(𝑛))

�� . . . , 𝑦 𝑗,𝑛−1 = 𝜋𝑘 (0 . . . 0| |bits(𝑛 − 1))
]

≤
(
1

|X|

) (
1

|X| − 1

)
. . .

(
1

|X| − 𝑛 + 2

)
= 1

/(
𝑛−2∏
𝑟=0

|X| − 𝑟
)
= 𝑂

(
|X|−𝑛

)
.

where the last equality holds for constant 𝑛. For each new query

we apply a union bound over the collision probability with each

previous query. Bounding across all queries, the combined collision

probability is then at most

∑𝑞

𝑖=2
𝑖 ·𝑂 ( |X|−𝑛) = 𝑂 (𝑞2 |X|−𝑛) .

□

B.2 Omitted proofs from Section 5.3
Lemma B.1. The threshold ring signature scheme defined in Fig-

ure 8 is correct (Definition 5.6) if NIZKAoK has completeness and 𝑃,𝑇
are pseudorandom.

Proof of Lemma B.1. In a sequence of hybrids we will show

that the probability distribution of successful verification is in-

distinguishable from verification always succeeding. Fix arbitrary

polynomial size message𝑚, signer set and ring S ⊆ R, with |S| = 𝑡 .

H0: Consider the sequence,

pp← TRS.Setup(1𝜆);
{(pk𝑖 , sk𝑖 ) ← TRS.KeyGen()}𝑖∈R ;
{𝜎𝑖 ← TRS.Sign(𝑚, {pk𝑗 } 𝑗∈R , sk𝑖 )}𝑖∈S ;
𝜎 ← TRS.Combine({𝜎𝑖 }𝑖∈S, 𝑡)

let 𝑉 be the random variable taking the value of

TRS.Verify(𝑚,𝜎, {pk𝑖 }𝑖∈R , 𝑡)
with the probability being taken over the random coins of

the algorithms.

H1: As the previous game, but let 𝑉 = 1 if verification rejects

due to NIZKAoK.Verify((pk,𝑚, 𝜏), 𝜋) rejecting.
H2: (Sequence of 𝑡 hybrids) In a sequence of hybrids, with one

for each 𝑖 ∈ S, each is as the previous, but during signing

for 𝑖 ∈ S compute the tag as a random element of the

output space 𝜏 ← Y rather than 𝐹 (sk𝑖 , (PK,𝑚)).
H3: Let 𝑉 be a random variable which is always 1.

IfH0 ≈ H3 wemay conclude that the scheme is correct except with

negligible error. We prove indistinguishability of the sequence.

H0 ≈ H1: By correctness of NIZKAoK verification of an honest

proof can at most fail with some negligible probability

𝜖NIZKAoK
cor

.

H1 ≈ H2: For each 𝑖 ∈ S the tag an adversary distinguishing the

case where 𝜏 is random in Y and 𝑇sk𝑖 (ℎ) may be reduced

to an adversary winning the PRF game for𝑇 with the same

advantage.

H2 ≈ H3: The only case whereH2 andH3 differ is if there exist

two tags 𝜏𝑖 , 𝜏 𝑗 for 𝑖 ≠ 𝑗 ∈ S which are identical. As all

tags are uniformly random any single pair collides with

probability |Y|−1. A union bound across all pairs then

bounds the probability that there is any collision.

The bound follows,

AdvCorrectTRS,A ≤ 𝜖NIZKAoK
cor

+ 𝑡 · 𝜖𝑃,𝑇
prf
+ 𝑡 (𝑡 − 1)

2

|Y|−1 .

□

We may now proceed to prove anonymity.

Lemma B.2. The threshold ring signature scheme defined in Fig-
ure 8 is anonymous (Definition 5.8) if NIZKAoK is zero-knowledge
and 𝑃,𝑇 are pseudorandom.

Proof of Lemma B.2. Let𝑢 = poly(𝜆) be a bound on |U|. Through-
out this proofwewill consider the challenge query (𝑚,R ⊂ U, 𝑖0, 𝑖1)
to be one of the signing queries. Consider the sequence of hybrids,

H0: RunGameAnon,𝑏TRSA (1
𝜆) as in Figure 7, and sample two distinct

indices uniformly at random 𝑖∗ ≠ 𝑗∗ ← [𝑢].
H1: As previous but rather than providing real proofs, replace

all invocations of NIZKAoK.Prove with simulated proofs.
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This requires producing the CRS through TdSetup and re-

placing the random oracle with the simulated random ora-

cle.

H2: As previous, but if the challenge query (𝑚,R ⊂ U, 𝑖0, 𝑖1)
doesn’t satisfy {𝑖∗, 𝑗∗} = {𝑖0, 𝑖1} sample a random coin

𝑏 ← {0, 1} and output this as the result of the game.

H3: As previous, but replace 𝑦 in pk𝑖∗ with a uniform ran-

dom element of Y. Additionally, for every signing query

(Sign,𝑚,R, 𝑖∗) where 𝑖∗ has not yet signed𝑚,R ( i.e. 𝑖∗ ∉
Q𝑚,R
sig ) rather than computing 𝐹sk𝑖∗ (H(𝑚, {(𝑖, pk𝑖 )}𝑖∈R ))

sample 𝜏 ← Y, uniform independently. If 𝑖∗ ∈ Q𝑚,R
sig , re-

trieve the 𝜏 which was previously sampled.

H4: As previous, making the same modifications, but for 𝑗∗.

Starting fromH0 for 𝑏 = 0 or 𝑏 = 1 we may make the same hybrid

jumps arriving atH4 where the two cases are identical.

H0 ≈ H1: Indistinguishability follows directly from zero-knowledge

of NIZKAoK. Any adversary distinguishing the two hybrids

may be reduced to an adversary breaking zero-knowledge

of NIZKAoK with the same advantage.

𝜖NIZKAoK
zk

≥ |Pr[A winsH1] − Pr[A winsH0] | .

H1 ≈ H2: When the adversary wins there must be at least two

honest parties remaining in the system, the probability

that these have indices 𝑖∗, 𝑗∗ is 2/𝑢 (𝑢 − 1),

Pr[A winsH2] =
(
1 − 2

𝑢 (𝑢 − 1)

)
· 1
2

+ 2

𝑢 (𝑢 − 1) Pr[A winsH1] .

H2 ≈ H3: FromH2 we know 𝑖∗ is never corrupted, so outputs of

𝑇 (sk𝑖∗ , ·) may be replaced by values produced by a PRF

challenger. Indistinguishability follows by pseudorandom-

ness of 𝑃,𝑇 ,

𝜖𝐹
prf
≥ |Pr[A winsH3] − Pr[A winsH2] | .

H3 ≈ H4: By the same argument as forH3,

𝜖𝐹
prf
≥ |Pr[A winsH4] − Pr[A winsH3] | .

The signatures produced for a challenge query (𝑚,R ⊂
U, 𝑖0, 𝑖1), 𝑖∗ ∈ {𝑖0, 𝑖1} are now entirely independent of

𝑏, as the tag is sampled uniformly (and freshly) due to

𝑖∗, 𝑗∗ ∉ Q𝑚,R
sig and NIZKAoK proofs are simulated.

LetH0

(𝑏 )
be the hybrid starting at GameAnon,𝑏TRSA (1

𝜆), andH𝑖
(𝑏 )

be

the hybrid after 𝑖 jumps in the sequence above. We know

| Pr[A winsH4

(0) ] − Pr[A winsH4

(1) ] | = 0,

therefore,

| Pr[A winsH2

(0) ] − Pr[A winsH2

(1) ] | ≤ 4 · 𝜖𝐹
prf

.

Also,

| Pr[A winsH0

(𝑏 ) ] − Pr[A winsH1

(𝑏 ) ] | ≤ 𝜖NIZKAoK
zk

Following,

| Pr[A winsH1

(0) ] − Pr[A winsH1

(1) ] |

=
𝑢 (𝑢 − 1)

2

| Pr[A winsH2

(0) ] − Pr[A winsH2

(1) ] |

we derive the following advantage bound,

AdvAnonTRS,A ≤ 𝜖NIZKAoK
zk

+ 2𝑢 (𝑢 − 1) · 𝜖𝐹
PRF

.

□

Finally, we show unforgeability.

Lemma B.3. The threshold ring signature scheme defined in Fig-
ure 8 is unforgeability (Definition 5.7) if NIZKAoK is zero-knowledge
and weak-simulation-extractable and 𝑃,𝑇 are collision resistant, pseu-
dorandom and one-way.

Proof of Lemma B.3. Let 𝑢 = poly(𝜆) be a bound on |U|, and
𝑡 = poly(𝜆) be a bound on |R |.
H0: Run GameUnforgeTRSA (1

𝜆) as in Figure 6.

H1: As previous, but select a random index 𝑖∗ ← [𝑛]. At the
end of the game, let A lose if 𝑖∗ ∉ U or 𝑖∗ ∈ Qcorr.

H2: As previous but rather than providing real proofs, replace

all invocations of NIZKAoK.Prove with simulated proofs,

replace the random oracle with the simulated oracle asso-

ciated with proof simulation.

H3: As previous, but for a winning forgery (𝜎,𝑚,R, 𝑡) with
𝜎 = (𝜋1, 𝜏1) | | . . . | | (𝜋𝑡∗ , 𝜏𝑡∗ ), run the extractor to obtain a

witness from each statement (PK,𝑚, 𝜏𝑖 ) and proof 𝜋𝑖 for

𝑖 ∈ [𝑡∗]. Let A lose if extraction fails for any statement

𝜙 = (PK,𝑚, 𝜏𝑖 ) where no proof has been simulated for 𝜙

during the signing queries.

H4: Let E ⊂ [𝑡∗] be the indices where extraction succeeds

(resulting in 𝑘𝑖 for 𝑖 ∈ E), let A lose if there exist any

𝑖 ≠ 𝑗 ∈ E, such that 𝑘𝑖 , 𝑘 𝑗 correspond to the same public

key, i.e. for pk = (𝑥,𝑦) ∈ R it holds 𝑦 = 𝑃𝑘𝑖 (𝑥) = 𝑃𝑘 𝑗
(𝑥).

H5: LetA lose if the secret key for 𝑖∗ is not among the extracted

keys.

H6: For signing queries (Sign,𝑚,R, 𝑖∗) for 𝑖∗ change the state-
ment proofs are simulated for to 𝜙 = (PK,𝑚, 𝜏) where the
tag is now sampled uniformly at random 𝜏 ← Y. Store 𝜏 ,
so that it may be retrieved and used if 𝜏sk𝑖∗ is queried on

the same input again.

H7: Let A always lose.
As the adversary always loses inH7, we may use the distinguishing

advantages of the sequence to bound the advantage inH0.

H0 andH1: The index 𝑖∗ is chosen from [𝑢] uniform indepen-

dently, giving probabilities Pr[𝑖 ∈ U] = |U|/𝑢 and

Pr

[
𝑖∗ ∉ Qcorr

�� 𝑖∗ ∈ U]
= |U \ Qcorr |/|U|.

Putting these together, we obtain

Pr[A winsH1] ≥
|U \ Qcorr |

𝑢
Pr[A winsH0] .

H1 ≈ H2: Indistinguishability of these hybrids follows from zero-

knowledge of NIZKAoK. For advantage bound 𝜖NIZKAoK
zk

in distinguishing simulated and real proofs,

Pr[A winsH2] + 𝜖NIZKAoKzk
≥ Pr[A winsH1] .

As otherwiseA would allow distinguishingwith advantage

greater than 𝜖NIZKAoK
zk

in the zero-knowledge game.
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H2 ≈ H3: (Sequence of 𝑡 hybrids) For a forgery𝜎 = (𝜋1, 𝜏1) | | . . . | | (𝜋𝑡∗ , 𝜏𝑡∗ ).
Let hybrid 𝑗 in this sequence be as the previous, except

the hybrid runs the extractor for statement (PK,𝑚, 𝜏 𝑗 ) and
proof 𝜋 𝑗 . The hybrid causes A to lose if 𝑗 ≤ 𝑡∗ and extrac-

tion fails and no proof has previously been simulated for

(PK,𝑚, 𝜏 𝑗 ). Weak simulation extractability implies that it

must be possible to extract from any proof for a statement

where no proof has been simulated, except with negligible

probability. LetH2 = H3

(0)
andH3 = H3

(𝑡 )
, then for our

sequence of hybrids 𝑗 ∈ [𝑡]

Pr[A winsH3

( 𝑗 ) ] + 𝜖NIZKAoK
weak-sim-ext

≥ Pr[A winsH3

( 𝑗−1) ],

implying Pr[A winsH3]+𝑡 ·𝜖NIZKAoKweak-sim-ext
≥ Pr[A winsH2].

H3 ≈ H4: These two cases are distinguishable exactly when the ex-

tractor prodcues output which would win the key collision

game for 𝑃 , i.e. 𝑥, 𝑘, 𝑘′ subject to 𝑃𝑘 (𝑥) = 𝑃𝑘 ′ (𝑥). Thus,

Pr[A winsH4] + 𝜖𝑃col ≥ Pr[A winsH3] .

H4 andH5: We will argue that a forgery must result in extracting

the key of at least one honest party, it will then follow

directly that this includes party 𝑖∗ with probability at least

1/|U \ Qcorr |. Let,

S = { 𝑗 ∈ U | ∃𝑖 ∈ E, ∃pk = (𝑥,𝑦) ∈ PK : 𝑦 = 𝑃𝑘𝑖 (𝑥)}.

At this point we know that extraction can at most fail for

|Q𝑚,R
sig \ S| of the indices 𝑖 ∈ [𝑡], as extraction may only

fail for tags where a proof has been simulated. As each

extracted secret key corresponds to a distinct public key, it

follows |S| = |E | ≥ 𝑡∗ − |Q𝑚,R
sig \ S|.

For notational convenience, let QRcorr = Qcorr ∩ R. We may

show that at least one of the extracted keys must be from

an honest party

|S \ (Q𝑚,R
sig ∪ Q

R
corr) | = |S| − |S ∩ (Q

𝑚,R
sig ∪ Q

R
corr) |

= |S| − |(Q𝑚,R
sig \ (Q

𝑚,R
sig \ S)) ∪ (S ∩ Q

R
corr \ Q

𝑚,R
sig ) |

= |S| − |Q𝑚,R
sig | + |Q

𝑚,R
sig \ S| − |S ∩ Q

R
corr \ Q

𝑚,R
sig |

as |S| ≥ 𝑡∗ − |Q𝑚,R
sig \ S| it follows

≥ 𝑡∗ − |Q𝑚,R
sig | − |S ∩ Q

R
corr \ Q

𝑚,R
sig |

≥ 𝑡∗ − |R ∩ (Q𝑚,R
sig ∪ Q

R
corr) | ≥ 1

where the first inequality follows by S ⊂ R and the second

inequality follows as |R ∩ (Q𝑚,R
sig ∪ Q

R
corr) | < 𝑡∗ when A

wins. We may therefore conclude,

Pr[A winsH5] ≥
1

|U \ Qcorr |
Pr[A winsH4] .

H5 ≈ H6: A may be reduced to an adversary winning the PRF

game for 𝑃,𝑇 with advantage equal to the difference in

winning probabilities between H6 and H5 by using the

oracle in the PRF game to produce the tags for party 𝑖∗.

Pr[A winsH6] + 𝜖𝑃,𝑇prf
≥ Pr[A winsH5] .

H6 ≈ H7: At this we no longer need access to the secret key of

party 𝑖∗ as their tags are sampled randomly for signing

queries. Therefore, we may replace the public key of 𝑖 with

a challenge from the one-way game of 𝑃,𝑇 . An adversary

winningH6 may be reduced to win the OWF game with

the same advantage.

Pr[A winsH7] + 𝜖𝑃,𝑇owf
≥ Pr[A winsH6] .

By definition Pr[A winsH7] = 0, let ℎ = |U \ Qcorr |, collecting
our bounds we obtain,

AdvUnforgeTRS,A ≤ 𝑢

ℎ
·
(
𝜖NIZKAoK
zk

+ 𝑡 · 𝜖NIZKAoK
weak-sim-ext

+ 𝜖𝑃
coll
+ ℎ · (𝜖𝑃,𝑇

prf
+ 𝜖𝑃,𝑇

owf
)
)

≤ 𝑢 ·
(
𝜖NIZKAoK
zk

+ 𝑡 · 𝜖NIZKAoK
weak-sim-ext

+ 𝜖𝑃
coll
+ 𝜖𝑃,𝑇

prf
+ 𝜖𝑃,𝑇

owf

)
.

□

B.3 Omitted proofs from Section 6.2
Proof of Theorem 6.2. Completeness. Follows from the com-

pleteness of ALBA and Read only outputting elements of weight

1.

Knowledge-soundness. Consider the extractor defined in Figure 12.
6

Following the same reasoning as [14, Theorem 21] we may argue

Extract𝐻,𝑊 (A)
1 : Σ← ∅
2 : do

3 : 𝐻
$← H

4 : 𝜋 ← A𝐻 ( )

5 : if ELBA.Verify𝐻,𝑊 (𝜋 ) ≠ 1 then continue

6 : Σ← Σ ∪ (ELBA.Read(𝜋 ) ∩𝑊 )
7 : while |Σ | ≤ 𝑛𝑓

8 : return Σ

Figure 12: The extractor for ELBA.

that each run of the loop will result in at least one new signature

with probability 𝜀 = AdvsoundELBA,A − 2
−𝜆𝑠𝑜𝑢𝑛𝑑

, where AdvsoundELBA,A =

Pr[𝐻 $← H , 𝜋 ← A𝐻,𝑊
;𝑉𝐻,𝑊 (𝜋) = 1]. We recall their analysis

for the sake of completeness. Fix a set Σ ⊂𝑊 where |Σ| ≤ 𝑛𝑓 , let

Σ𝜋 = ELBA.Read𝐻,𝑊 (𝜋), let 𝑉 be the random variable taking the

value of ELBA.Verify𝐻,𝑊 (𝜋).
Pr[∃𝑠 ∈ (Σ𝜋 ∩𝑊 ) \ Σ] ≥ Pr[Σ𝜋 ⊄ Σ, Σ𝜋 ⊂𝑊 ]
≥ Pr[Σ𝜋 ⊂𝑊, Σ𝜋 ⊄ Σ,𝑉 = 1]
= Pr[(Σ𝜋 ⊂𝑊 ∧𝑉 = 1),¬(Σ𝜋 ⊂ Σ ∧𝑉 = 1)]
≥ Pr[Σ𝜋 ⊂𝑊,𝑉 = 1] − Pr[Σ𝜋 ⊂ Σ ∧𝑉 = 1]

≥ AdvsoundELBA,A − 2
−𝜆𝑠𝑜𝑢𝑛𝑑

Where the equality follows by Pr[(𝐴∧𝐵)∧¬(𝐶∧𝐵)] = Pr[(𝐴∧𝐵)∧
(¬𝐶 ∨ ¬𝐵)] = Pr[𝐴 ∧ 𝐵 ∧ ¬𝐶], and the final inequality follows by

6
History tells us that extraction from Elba is possible, we show the corresponding

result for ELBA.
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the soundness of ALBA. For 𝜀 = AdvsoundELBA,A −2
−𝜆𝑠𝑜𝑢𝑛𝑑 > 0 the loop

will run in an expected time poly(𝑇, 𝑛𝑓 , 1/𝜀) before |Σ| > 𝑛𝑓 . □

B.4 Omitted proofs from Section 7.1
Proof of Lemma 7.1. This follows from two hybrids. In the first

hybrid, sample a fresh 𝜋∗ when the adversary queries 𝜋 on a new

𝑟 ∈ K . This is indistinguishable unless the adversary queries 𝜋𝑟 ,

which is bounded by 𝑞/|K|. In the second hybrid, replace 𝜋∗ with
a random function; 𝐶𝜋∗ (𝑚, 𝑟 ) also appears uniform in this hybrid,

as each of the 𝑛 blocks are independent given disjoint inputs. First

and second hybrids are indistinguishable by the PRP/PRF switching

lemma [8, Lemma 1] with advantage 𝑞(𝑞 − 1)/2ℓ+1 where 𝑞 is the

number of queries to 𝜋 . The view of the adversary in the second

hybrid is independent of the committed message. □

Proof of Lemma 7.2. Consider an adversary having made 𝑖 pre-

vious queries {((𝑘 𝑗 ,𝑚 𝑗,1, · · · ,𝑚 𝑗,𝑙 , 𝑦 𝑗,1, . . . , 𝑦 𝑗,𝑛)} 𝑗∈[𝑖 ] such that

𝑦 𝑗,𝑙 = 𝜋𝑘 𝑗
(0 . . . 0| |bits(𝑙) | |𝑚 𝑗,𝑙 ) for 𝑙 ∈ [𝑛]. The adversary finds

a collision to break binding if it makes a fresh query (𝑘,𝑚1, ...,𝑚𝑛)
such that (𝑚1, ...,𝑚𝑛) ≠ (𝑚 𝑗,1, ...,𝑚 𝑗,𝑛) for 𝑗 ∈ [𝑖] where𝜋𝑘 matches

𝜋𝑘 𝑗
on𝑚 = (𝑚1, ...,𝑚𝑛) and𝑚 𝑗 = (𝑚 𝑗,1, ...,𝑚 𝑗,𝑛) respectively.

Without loss of generality, assume that the adversary has made 𝑖

previous queries for keys 𝑘 𝑗∈[𝑖 ] and for each query with a key, it ob-

tains oracle responses 𝑦1
𝑗
, . . . , 𝑦

|𝑚 |
𝑗

for all𝑚 ∈ 2𝑑 (constant message

space). Then, the probability of a fresh query (𝑚 = (𝑚1, ...,𝑚𝑛), 𝑘)
colliding with a prior query with key different 𝑘 𝑗 and a message

𝑚′ = 𝑚 is simply bounded by the probability of a fresh query

colliding with one of the prior oracle responses with a different

key.

For each prior query 𝑗 ∈ [𝑖], let (𝑦 𝑗,1, ..., 𝑦 𝑗,𝑛) denote the or-

acle response from any prior query (𝑚 𝑗 , 𝑘 𝑗 ). Then, the collision
event between fresh query (𝑚,𝑘) and prior query (𝑚 𝑗 ≠𝑚,𝑘 𝑗 ) is
bounded by

Pr

[
𝑦 𝑗,1 = 𝜋𝑘 (0 . . . 0| |bits(1) | |𝑚1), . . . , 𝑦 𝑗,𝑛 = 𝜋𝑘 (0 . . . 0| |bits(𝑛) | |𝑚𝑛)

]
≤

(
2
𝑑/𝑛

2
ℓ

) (
2
𝑑/𝑛

2
ℓ − 2𝑑/𝑛

)
. . .

(
2
𝑑/𝑛

2
ℓ − (𝑛 + 2)2𝑑/𝑛

)
= 1

/(
𝑛−2∏
𝑟=0

2
ℓ/2𝑑/𝑛 − 𝑟

)
= 𝑂

(
(2ℓ−𝑑/𝑛

)−𝑛
) .

where the last equality holds for constant 𝑛.

For each new query we apply a union bound over the collision

event probability with each previous query. Bounding across all

queries, the combined collision probability is then at most

∑𝑞

𝑖=2
𝑖 ·

𝑂

(
(2ℓ−𝑑/𝑛)−𝑛)

)
= 𝑂 (𝑞2 (2ℓ−𝑑/𝑛)−𝑛). □
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