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Abstract. We construct the first tightly secure signature schemes in
the multi-user setting with adaptive corruptions from classical discrete
logarithm, RSA, factoring, or post-quantum group action discrete loga-
rithm assumption. In contrast to our scheme, the previous tightly secure
schemes are based on the decisional assumption (e.g., (group action)
DDH) or interactive search assumptions (e.g., one-more CDH). The se-
curity of our schemes is independent of the number of users, signing
queries, and RO queries, and forging our signatures is as hard as solv-
ing the underlying search problem. Our starting point is an identification
scheme with multiple secret keys per public key (e.g., Okamoto identifica-
tion (CRYPTO’92) and parallel-OR identification (CRYPTO’94)). This
property allows a reduction to solve a search problem while answering
corruption queries for all users in the signature security game. To convert
such an identification scheme into a signature scheme tightly, we employ
randomized Fischlin’s transformation introduced by Kondi and shelat
(Asiacrypt 2022) that provides straight-line extraction. Intuitively, the
transformation properties guarantee the tight security of our signature
scheme in the programmable random oracle model, but we successfully
prove its tight security in the non-programmable random oracle model.

Keywords: Digital signature, Multi-user setting with corruption, Tight secu-
rity

1 Introduction

1.1 Background

Digital signature. Signature schemes are fundamental cryptographic tools
to authenticate the sender of messages. The basic security notion for signa-
ture schemes is existential unforgeability against chosen message attacks (UF-
CMA) [14]. It guarantees that an efficient adversary, given a single verification
key, cannot forge a valid signature for any new message under that key. The
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UF-CMA security considers a single-user setting, but in real-world scenarios,
multiple users possess individual signing keys derived from a common public pa-
rameter, and some of these keys may occasionally be compromised. To address
a more realistic context, Bader et al. [3] defined the notion of UF-CMA in the
multi-user setting with adaptive corruption (MU-UF-CMA-C). This framework
extends UF-CMA by allowing adversaries to obtain multiple users’ verification
keys and adaptively corrupt users to access their secret signing keys. Notably,
MU-UF-CMA-C security precisely captures the requirements of practical appli-
cations that rely on digital signatures, such as authenticated key exchange [3]
and identity-based signatures [20].

Tight Security. To prove the security of cryptographic primitives, we gener-
ally construct a reduction algorithm, which transforms an efficient adversary who
breaks the security of the scheme (e.g., EUF-CMA security of signature scheme)
into an algorithm that solves an assumed-to-be-hard computational problem
(e.g., discrete logarithm problem). In general, there is a gap between the suc-
cess probability of the reduction and that of the adversary. This gap is called
reduction loss, representing the theoretical difference between the hardness of
breaking the scheme’s security and the hardness of solving the computational
problem. If the reduction has the same success probability as the adversary, we
say that the reduction is tight and the scheme is tightly secure. This means
the security of the primitive is independent of other factors, such as the num-
ber of users or hash function evaluations. Showing tight security is important
in both theory and practice. Tight reduction connects the hardness of breaking
the security to the hardness of computational problems. Since the hardness of
computational problems is well-studied, we can easily understand the security
level of the tightly secure schemes. In addition, tightly secure schemes allow
for optimal parameter selection that meets the desired security level based on
cryptoanalysis against computational problems. As a result, data size (e.g., key,
ciphertext, signature size) and computation cost (e.g., signature generation and
verification) are reduced compared to non-tight schemes with large parameter
sets considering reduction loss.

Tight MU-UF-CMA-C Secure Signature. Constructing MU-UF-CMA-C
secure signature schemes is a critical goal in cryptography. It is known that
EU-CMA security implies MU-UF-CMA-C security, albeit with a security loss
proportional to the number of users. In other words, these signature schemes
require a larger parameter to be selected to satisfy sufficient security level to
account for security loss. To mitigate this loss, researchers have focused on devel-
oping tightly MU-UF-CMA-C-secure signature schemes, where security remains
independent of the number of users and other factors such as the number of
signing and random oracle queries [2,3,13,27,9]. Table 1 summarizes the existing
works. These known schemes are based on decisional assumptions (e.g., (group
action) DDH, DLIN, SXDH, φ-hiding) or interactive search assumptions (e.g.,
one-more CDH), and no tightly MU-UF-CMA-C-secure signature scheme has
been constructed under static search assumptions (e.g., CDH or DL).
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Table 1: Existing tightly secure signatures in the multi-user setting with cor-
ruptions and our result. The column “Settings” indicates whether pairings/the
Programmable Random Oracle (PRO)/the Non-Programmable Random Oracle
(NPRO) is used. The column “SUF” indicates whether the scheme is proven
strongly unforgeable. λ denotes the security parameter, t denotes the bit-length
of the challenge space, and ρ denotes the number of repetitions, which satisfy
ρt = ω(λ). |X| denotes the bit-length of the elements in the set X.

(a) Classical group-based schemes. Let G be a multiplicative group with order q.

Scheme Public key Signature Assumptions Settings SUF?

Bader [2] |G| 6|G| SXDH Pairing, PRO —
BHJKL [3] O(λ)|G| O(λ)|G| DLIN Pairing —
GJ [13] 2|G| 2|G|+ 4|Zq|+ 2λ CDH & DDH PRO —
WLGSZ [27] |G| 2|G|+ 1 OM-CDH Pairing, PRO —
DGJL [9, Sec. 5.1] 4|G| 3|Zq| DDH NPRO ✓

Ours (based on [21]) |G| ρ(2|Zq|+ t) DL NPRO ✓

(b) Classical factoring or RSA-based schemes. Let N be an integer such that N = pq
for some primes p and q.

Scheme Public key Signature Assumptions Settings SUF?

DGJL [9, Sec. 5.2] 2|ZN | 2|ZN |+ λ/4 φ-hiding NPRO ✓

Ours (based on [15]) |ZN | ρ(2|ZN |+ t) RSA NPRO ✓

Ours (based on [12]) |ZN | ρ(2|ZN |+ 2t+ poly(λ)) FACT NPRO ✓

(c) Group action-based schemes. Let G be a group that acts on a set E (i.e., there exists
a group action ⋆ : G × E → E).

Scheme Public key Signature Assumptions Settings SUF?

PW [24, Sec. 4.2] 4|E| 2λ(2|E|+ |G|) GADDH PRO —

Ours (based on [7,5,26]) 2|E| 2ρt(|G|+ 1) GADL NPRO ✓

At the same time, several impossibility results regarding tightly MU-UF-
CMA-C-secure signatures have been established [4,24,28]. These results identify
specific conditions under which tightly MU-UF-CMA-C-secure signatures cannot
exist. However, they do not rule out the possibility of constructing such schemes
under static search assumptions.

This literature leads to the following research question:

Can we construct a tightly MU-UF-CMA-C secure signature
from static search assumptions?3

3 [23,22] left the same question as an open problem.
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1.2 Our Contributions

We provide an affirmative answer to the open question above. Specifically, we
construct the first signature scheme achieving tight (strong) MU-UF-CMA-C
security4 under static search assumptions such as (group action) discrete loga-
rithm, RSA, or factoring assumptions. The security of our schemes is indepen-
dent of the number of users, signing queries, and random oracle (RO) queries,
and forging a signature is provably as hard as solving static search problems.

Our approach begins with a specialized identification scheme that allows mul-
tiple secret keys per public key, such as the Okamoto identification scheme [21]
and parallel-OR identification scheme [8]. This unique property enables a re-
duction, which solves a search problem, to address corruption queries for all
users in the MU-UF-CMA-C security game. To tightly convert an identification
protocol into a signature scheme, we utilize a randomized variant of Fischlin’s
transformation [11], introduced by Kondi and shelat [17]. This transformation
features straight-line extraction, meaning that the reduction can extract a secret
key corresponding to a given public key without rewinding the adversary. While
the transformation guarantees tight security in the programmable random ora-
cle model, we advance this result by proving the tight security of our signature
scheme in the non-programmable random oracle model.

By instantiating our framework appropriately, we obtain tightly MU-UF-
CMA-C secure signature schemes based on classical DL, RSA, or factoring as-
sumptions and post-quantum group action DL (GADL) assumption, as shown
in Table 1. It is worth noting that we obtain the first tightly MU-UF-CMA-
C secure signature from computational assumptions that are not random self
reducible (e.g., RSA assumption). Further, we obtain a GADL-based scheme
with a shorter public key and signature than the existing group action DDH
(GADDH)-based scheme by Pan and Wagner [24].

Zero-Knowledge of Randomized Fischlin, Recosndiered. As a side con-
tribution, we point out a flaw in the proof for the zero-knowledge property of
randomized Fischlin transformation by Kondi and shelat [18, Proof of Theorem
6.4]. They claimed randomized Fischlin transformation is unconditionally zero-
knowledge in contrast to the original Fischlin transformation [11]. We notice
that the transcripts generated by their ZK simulator are not necessarily indis-
tinguishable from real ones against unconditional adversaries. We employ the
strong special soundness of the underlying interactive protocol, which is a newly
introduced soundness property by Kondi and shelat, to fix the flaw in the proof.
This means the zero-knowledge property of randomized Fischlin transformation
is computational if the strong special soundness is computational.5 The details
are in Appendix C.

4 As mentioned in [9], some applications require strong unforgeability. So, we also
target it.

5 Although the definition of strong special soundness [18, Definition 3.2] does not
seem to take computational assumptions into account, the authors are probably
considering the computational one. See Remark 1.
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2 Preliminaries

2.1 Notations

λ ∈ N denotes a security parameter. ⊕ denotes bit-wise exclusive-or operation.
poly(·) and negl(·) are any polynomial function and negligible function, respec-
tively. e denotes the base of the natural logarithm (i.e., Napier’s constant). For
n ∈ N, we define [n] := {1, 2, . . . , n} as the set of the first n natural numbers.
For a finite set S, we use s←$ S to denote the uniformly random sampling of an
element s from S. A probabilistic algorithm A is said to be PPT(probabilistic
polynomial time) if its running time TA can be bounded by a polynomial in its
input size. The notation y ← A(x) means that the variable y is assigned to the
output of the algorithm A on input x. We write y ∈ A(x) to state that y is a
possible output of A on input x. Whenever we deal with statistically negligible
terms, we denote them by Greek letters, e.g., ǫXX; for computationally negligible
terms, we use notation like Adv

game
A,Π (λ)

2.2 Signature Schemes

We recall the syntax and security notions of signature schemes.

Definition 1 (Signature scheme). A signature scheme SIG is a tuple of the
following algorithms.

– Setup(1λ) → par: On input the security parameter 1λ, the setup algorithm
outputs a public parameter par. We assume the following algorithms implic-
itly take par as input.

– KGen(par)→ (svk, ssk): On input a public parameter par, the key generation
algorithm outputs a public key svk and a secret key ssk.

– Sign(ssk,m) → σ: On input a secret key ssk and a message m, the signing
algorithm outputs a signature σ.

– Vf(svk,m, σ)→ 1/0: On input a public key svk, a message m, and a signature
σ, the verification algorithm outputs 0 or 1.

Definition 2 (Correctness). We say that a signature scheme SIG is (1− β)-
correct if for any λ ∈ N, any par ∈ Setup(1λ), any key pair (svk, ssk) ←
KGen(par), and any message m, it holds that

Pr[Vf(svk,m, Sign(ssk,m)) = 1] ≥ 1− β.

In this work, we focus on strongly existential unforgeability against adaptive
chosen-message attacks in the multi-user setting with adaptive corruptions [9].
As mentioned in [9], strong unforgeability is useful for constructing authenticated
key exchange protocols. Thus, we consider it the notion of target security. We
call it MU-SUF-CMA-C security in short.
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N -MU-SUF-CMA-C(λ)

1 : Lcorr, Lsig ← ∅

2 : par← Setup(1λ)

3 : foreach i ∈ [N ] do

4 : (svki, sski)← KGen(par)

5 : O := (OSign,OCorr)

6 : SVK := {svki}i∈[N ]

7 : (i∗,m∗, σ∗)← AO(par, SVK)

8 : if i∗ ∈ Lcorr then return 0

9 : if (i∗,m∗, σ∗) ∈ Lsig then

10 : return 0

11 : ok := Vf(svki∗ ,m
∗, σ∗)

12 : return ok

OSign(i,m)

1 : if i ∈ Lcorr then

2 : return ⊥

3 : σ ← Sign(sski,m)

4 : Lsig := Lsig ∪ {(i,m, σ)}

5 : return σ

OCorr(i)

1 : Lcorr := Lcorr ∪ {i}

2 : return sski

Fig. 1: Security game for signature scheme.

Definition 3 (N-MU-SUF-CMA-C Security). Let N = poly(λ) be a natural
number. We say a signature scheme SIG is N -MU-SUF-CMA-C secure if for any
PPTadversary A, it holds that

AdvMU-SUF-CMA-C
A,SIG (λ) := Pr[N -MU-SUF-CMA-C(λ)⇒ 1]

≤ negl(λ),

where the game N -MU-SUF-CMA-C is depicted in Figure 1.

2.3 Canonical Identification Schemes

We follow the syntax of canonical identification schemes in [16].

Definition 4 (Canonical Identification Schemes). A canonical identifica-
tion scheme ID is a tuple of the following four algorithms.

– ISetup(1λ) → par: The setup algorithm takes the security parameter 1λ and
outputs a public parameter par. We assume that par defines the set of chal-
lenges ChSet and the following algorithms implicitly take par as input.

– IGen(par)→ (pk, sk): The key generation algorithm takes a public parameter
par as input and outputs a public and secret key (pk, sk). We assume the
secret key sk is chosen uniformly and randomly from the secret key space.

– P = (P1,P2): The prover algorithm is split into two algorithms. P1 takes as
input the key pair (pk, sk) and returns a commitment com and a state st; P2

takes as input a challenge ch and a state st, and returns a response resp.
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– V(pk, com, ch, resp)→ 1/0: The verifier algorithm takes the public key pk and
the conversation transcript (com, ch, resp) as input and outputs 1 or 0.

Let SK(pk) := {sk : (pk, sk) ∈ IGen(par)} denote the set of all valid secret keys
w.r.t. a given public key pk and let K := |SK(pk)|. We say that an identification
scheme ID has K-multiple secret keys if each pk has K secret keys. When K = 1,
we say that ID has a single secret key.

We require that identification schemes ID satisfy the following properties.

Definition 5 (Correctness). We say that ID is correct if for all λ ∈ N, all
par ∈ ISetup(1λ), all (pk, sk) ∈ IGen(par), all (com, st) ∈ P1(pk, sk), all ch ∈
ChSet and all resp ∈ P2(ch, st), we have V(pk, com, ch, resp) = 1.

We say a transcript (com, ch, resp) is valid w.r.t. pk if V(pk, com, ch, resp) = 1.

Definition 6 (Key Verifiability [24]). We say that ID is key verifiable if
there exists a deterministic polynomial time algorithm VerKey such that for all
λ ∈ N, all par ∈ ISetup(1λ) and any (pk, sk),

VerKey(par, pk, sk) = 1⇐⇒ (pk, sk) ∈ IGen(par).

Definition 7 (Min-Entropy of Commitments [16]). We say that ID has
κ-bits of commitment min-entropy, if for all (pk, sk) ∈ IGen(par), the commit-
ment generated by the prover algorithm is chosen from a distribution with at
least κ-bits of commitment min-entropy. That is, for all strings com′, we have
Pr[com′ = com] ≤ 2−κ if (com, ∗) ← P1(pk, sk) was honestly generated by the
prover.

Given ID as above, we define transcript generation algorithm Tran as follows:

Tran(pk, sk, ch)

1 : (com, st)← P1(pk, sk)

2 : resp← P2(ch, st)

3 : return (com, ch, resp)

Definition 8 (Special Honest-Verifier Zero-Knowledge, HVZK [24] ).
We say that ID is ǫZK-special honest-verifier zero-knowledge (ǫZK-HVZK) if there
exists a PPTalgorithm Sim, a simulator, such that for all par ∈ ISetup(1λ) and
all (pk, sk) ∈ IGen(par), the following distributions have statistical distance at
most ǫZK:

{(com, ch, resp)← Tran(pk, sk, ch)|ch←$ ChSet}

and

{(com, ch, resp)|ch←$ ChSet; (com, resp)← Sim(pk, ch)}.

If ǫZK = 0, we say ID is perfect HVZK.
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In this work, we define strong special soundness, which was introduced by
Kondi and shelat [17]. This is a stronger version of special soundness in the
sense that the extractor can extract a secret key of pk from two valid transcripts
(com, ch, resp) and (com, ch′, resp′) such that (ch, resp) 6= (ch′, resp′). That is, the
extractor works even in the case ch = ch′ and resp 6= resp′. In this work, we
define computational strong special soundness.

Definition 9 (Computational Strong Special Soundness). We say that
ID is strong special sound if there exists a PPTalgorithm Ext, an extractor, such
that for all PPT adversaries A, it holds that

AdvSSSA,ID(λ)

:= Pr













(ch, resp) 6= (ch′, resp′)
∧ok = ok

′ = 1
∧(pk, sk∗) /∈ IGen(par)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

par← ISetup(1λ),
(pk, com, ch, resp, ch′, resp′)← A(par),

ok ← V(pk, com, ch, resp),
ok

′ ← V(pk, com, ch′, resp′),
sk∗ ← Ext(pk, com, ch, resp, ch′, resp′)













≤ negl(λ).

Remark 1. Kondi and shelat introduced strong special soundness to relax the
requirement, “special soundness plus quasi-unique response” required for the un-
derlying protocol in the original Fischlin transformation [11]. The original defini-
tion of strong special soundness does not specify “who” generates two transcripts,
does not take into account the failure probability of Ext, and leaves no room
for computational assumptions. However, it is clear that special soundness plus
quasi-unique response does not imply such unconditional strong special sound-
ness. Since they said “Okamoto’s identification protocol satisfies strong special
soundness,” they are probably considering the computational one defined above.

We also introduce a variant of key recovery resistance. The following second
key recovery resistance ensures that when ID has multiple secret keys, given a
key pair (pk, sk), it is difficult to find another secret key sk∗ 6= sk with respect to
pk. For our purpose of constructing a tightly secure signature in the multi-user
setting, we define second key recovery resistance in the multi-user setting.

Definition 10 (Second Key Recovery in the Multi-User Setting). Let
N = poly(λ) be some natural number. We say that ID is second key recovery
resistant in the multi-user setting if for all adversaries A, it holds that

Adv2
ndKR

A,ID (λ) := Pr





(pki∗ , sk
∗) ∈ IGen(par)

∧sk∗ 6= ski∗

∣

∣

∣

∣

∣

∣

par← ISetup(1λ),
(pki, ski)← IGen(par) ∀i ∈ [N ],

(i∗, sk∗)← A(par, {(pki, ski)}i∈[N ])





≤ negl(λ).
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3 Signatures from Identification Scheme via Randomized

Fischlin Transformation

In this section, we describe the signature scheme from an identification scheme
via randomized Fischlin transformation [17]. Then, we prove that the signature
scheme tightly archives MU-SUF-CMA-C security.

Let ID = (ISetup, IGen,P = (P1,P2),V) be a canonical identification scheme
with the challenge space ChSet. Define the parameters t, ρ, γ for the bit-length
of the challenges, the number of repetitions, and the length of the hash value
such that ρ · γ = ω(λ), t− γ = ω(λ), t, ρ, γ = O(λ) and γ ≤ t ≤ ⌊log |ChSet|⌋.
Also, let T be the maximum number of retrying the signing algorithm. Let H :
{0, 1}∗ → {0, 1}γ be a random oracle. The signature scheme SIG[ID] := (Setup,
KGen, SignH,VfH) (in the random oracle model) is depicted in Figure 2.

We prove that SIG[ID] is correct and MU-SUF-CMA-C secure.

Theorem 1. If ID is correct, then the signature scheme SIG[ID] is (1−β)-correct

for β = 2(−2t−γ log e+log ρ)T .

Proof. Randomization does not affect correctness errors, so we can refer to the
existing correctness analysis for the original Fischlin transformation. According
to [6, Section 3], the probability that the Sign algorithm outputs ⊥ is at most

(ρ·e−2t−γ

)T = 2(−2t−γ log e+log ρ)T . Since ID is perfectly correct, SIG[ID] is (1−β)-

correct for β = 2(−2t−γ log e+log ρ)T .

Theorem 2. If ID has κ-bits of commitment min-entropy, K -multiple secret
keys for K ≥ 2, perfect HVZK, strong special sound, and second key recov-
ery resistant in the multi-user setting, then the signature scheme SIG[ID] is
MU-SUF-CMA-C secure in the non-programmable random oracle model.

In particular, if there is an adversary A that breaks the MU-SUF-CMA-C
security of SIG[ID] in time TA with success probability AdvMU-SUF-CMA-C

A,SIG[ID] (λ), then
there is an algorithm B1 breaking the strong special soundness of ID in time TB1

=
O(TA) with probability AdvSSSB1,ID

(λ) and an algorithm B2 breaking the second key
recovery resistance of ID in the multi-user setting in time TB2

= O(TA) with

probability Adv2
ndKR

B2,ID
(λ) such that

AdvMU-SUF-CMA-C
A,SIG[ID] (λ) ≤

K

K − 1
Adv2

ndKR
B1,ID

(λ) + AdvSSSB2,ID
(λ)

+
QRO + 1

2ρκ
+

T ·Qsig(QRO + T ·Qsig)

2ργ
. (1)

Here, QRO and Qsig are the maximum number of RO queries and signature
queries issued by A, respectively.

This theorem shows that the MU-SUF-CMA-C security of our signature scheme
is tightly reduced to the security against the second key recovery attack and the
strong special soundness of ID in the non-programmable ROM. We will provide
the proof in Appendix A.
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Setup(1λ)

1 : par
′ ← ISetup(1λ)

2 : return par := par
′

KGen(par)

1 : (pk, sk)← IGen(par)

2 : return (svk, ssk) := (pk, (pk, sk))

VfH(svk,m, σ)

1 : (comj , chj , respj)j∈[ρ] := σ

2 : ~com := (com1, . . . , comρ)

3 : pfx := (pk,m, ~com)

4 : foreach j ∈ [ρ] do

5 : if H(pfx, j, chj , respj) 6= 0γ then

6 : return 0

7 : if V(pk, comj , chj , respj) = 0 then

8 : return 0

9 : endfor

10 : return 1

SignH(ssk,m)

1 : foreach τ ∈ [T ] do

2 : foreach j ∈ [ρ] do

3 : (comτ,j , stτ,j)← P1(pk, sk)

4 : endfor

5 : ~comτ := (comτ,1, . . . , comτ,ρ)

6 : pfxτ := (pk,m, ~comτ )

7 : foreach j ∈ [ρ] do

8 : Sj := ∅

9 : while Sj 6= {0, 1}
t
do

10 : ch←$ {0, 1}t \ Sj

11 : respτ,j,ch ← P2(ch, stτ,j)

12 : hτ,j,ch := H(pfxτ , j, ch, respτ,j,ch)

13 : if hτ,j,ch = 0γ then

14 : chτ,j := ch

15 : break // proceed to next j

16 : else

17 : Sj := Sj ∪ {ch}

18 : endwhile

19 : endfor

20 : if ∀j ∃ch : hτ,j,ch = 0γ then

21 : break // succeed in signing

22 : if τ = T then

23 : return ⊥

24 : endfor

25 : τ̂ := τ

26 : σ := (comτ̂ ,j , chτ̂ ,j , respτ̂ ,j,chτ̂,j
)j∈[ρ]

27 : return σ

Fig. 2: The signature scheme SIG[ID].

Remark 2. In our proof, we use the HVZK property of the underlying identi-
fication scheme in a different way than in the (typical) way that the HVZK
property is used in the single-user setting (i.e., to respond to signing queries),
which allows us to construct a reduction in the non-programmable ROM. To
prove the security in the non-programmable ROM, we cannot straightforwardly
adopt the result by Kondi-shelat [17], which proves the ZK property of the ran-
domized Fischlin transformation in the programmable ROM by assuming the
HVZK property of the underlying interactive protocol. We do not use this result

https://orcid.org/0000-0002-2232-9443
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to respond to signing queries. Instead, the reduction uses a secret key sampled by
itself to respond to signing queries. This allows us to avoid programming a RO.
The perfect HVZK property is used to argue that this secret key possessed by
the reduction will not leak to the adversary. On the other hand, according to the
proof by Kondi and shelat, zero-knowledge seems to rely only on a high entropy
of commitment and perfect zero-knowledge of the underlying Sigma protocol,
meaning that they achieve statistical zero-knowledge. However, we found a flaw
in their proof; zero knowledge also relies on the strong special soundness of the
underlying Sigma protocol. In Appendix C, we will point out the flaw in their
proof and provide the correct proof.

3.1 Improving Efficiency

If the verifier algorithm of the underlying ID scheme can be represented as

V(pk, com, ch, resp) = 1 ⇐⇒ com = fV(pk, ch, resp) (2)

for some efficiently computable function fV, we can eliminate ~com in the sig-
nature as in Schnorr signature. In this case, VfH(svk = pk,m, σ = (chj , respj)j)

first reconstructs comj := fV(pk, chj , respj), ~com := (comj)j , and then checks if
H(pk,m, ~com, j, chj , respj) = 0γ holds for all j ∈ [ρ].

4 Instantiations

In this section, we provide concrete instantiations of tightly MU-SUF-CMA-C-
secure signatures from our framework. We consider an instantiation from clas-
sical groups based on the Okamoto identification [21] and an instantiation from
isogenies based on Couveignes-Stolbunov identification [7,5,26] with the parallel-
OR technique [8].

4.1 Instantiation based on Classical Groups

Okamoto Identification Scheme. The Okamoto protocol [21], which is based
on the discrete-logarithm assumption, is one of the most important instanti-
ations of our framework. Let GGen be a PPT algorithm, called group genera-
tor, that on input 1λ generates a prime q, a multiplicative group G with or-
der q, and a generator g ∈ G, and outputs (G, q, g). The Okamoto protocol
IDOka := (ISetupOka, IGenOka,POka,VOka) is defined in Figure 3.

For completeness, we show that IDOka has correctness, multiple secret keys,
perfect HVZK, strong special soundness, and second key recovery resistance in
the multi-user setting. To this end, we recall the discrete logarithm assumption.
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ISetupOka(1
λ)

1 : (G, q, g)← GGen(1λ)

2 : α←$ Zq; g1 ← gα

3 : ChSet := Zq

4 : return par := (G, q, g, g1)

IGenOka(par)

1 : sk := (s1, s2)←$ (Zq)
2

2 : pk := gs1gs21

3 : return (pk, sk)

VOka(par, pk, com, ch, resp)

1 : (y1, y2) := resp

2 : if com = gy1gy21 /pkch then

3 : return 1

4 : else return 0

POka,1(pk, sk)

1 : (r1, r2)←$ (Zq)
2

2 : R := gr1gr21

3 : com := R

4 : st := (sk, r1, r2)

5 : return (com, st)

POka,2(st, ch)

1 : y1 := r1 + ch · s1 mod q

2 : y2 := r2 + ch · s2 mod q

3 : resp := (y1, y2)

4 : return resp

Fig. 3: The Okamoto protocol IDOka.

Definition 11 (Discrete Logarithm (DL) Assumption). We say that DL
assumption holds for GGen if for all PPT adversaries A, it holds that

AdvDL
A,GGen(λ) := Pr









gα
′

= h

∣

∣

∣

∣

∣

∣

∣

∣

(G, q, g)← GGen(1λ),
α←$ Zq,
g1 := gα,

α′ ← A(G, q, g, g1)









≤ negl(λ).

We now prove IDOka’s properties.

Theorem 3. IDOka is correct, and it has log q-bits of commitment min-entropy
and q-multiple secret keys.

Proof. The correctness of IDOka is clear (proved in [21]). The commitment of
IDOka consists of a randomly chosen group element over G with order q. Thus,
IDOka has log q-bits of commitment min-entropy. Finally, for each pk, there are q
pairs of (s1, s2) such that pk = gs1gs21 . Thus, IDOka has q-multiple secret keys.

Theorem 4. Under the DL assumption, IDOka is strong special sound. More
precisely, there exists an extractor Ext such that, for any adversary A breaking
strong special soundness of IDOka with advantage AdvSSSA,IDOka

(λ), there exists a
DL solver B whose advantage is

AdvDL
B,GGen(λ) = AdvSSSA,IDOka

(λ).

This means that AdvSSSA,IDOka
(λ) is upper bounded by maxB AdvDL

B,GGen(λ).

https://orcid.org/0000-0002-2232-9443
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Proof. We define the extractor Ext as follows. Let (pk, com, ch, resp, ch′, resp′) be
Ext’s input. If ch 6= ch′, Ext computes

s∗1 := (y1 − y′1)/(ch− ch′) mod q,

s∗2 := (y2 − y′2)/(ch− ch′) mod q

and outputs sk∗ := (s∗1, s
∗
2). Otherwise, Ext outputs ⊥.

When ch 6= ch′, it is easy to see that Ext outputs a valid secret key. So,
AdvSSSA,IDOka

(λ) is the probability that A outputs (pk, com, ch, resp, ch′, resp′) such

that ch = ch′, resp 6= resp′, and V(pk, com, ch, resp) = V(pk, com, ch′, resp′) = 1.
Note that (ch = ch′ ∧ resp 6= resp′) implies y2 6= y′2 if V(pk, com, ch, (y1, y2)) =
V(pk, com, ch′, (y′1, y

′
2)) = 1.

Now we construct a PPT algorithm B that solves the DL problem by us-
ing A. Upon receiving a DL instance (G, q, g, g1), B executes A on input par :=
(G, q, g, g1). IfA outputs pk and two valid transcripts (com, ch, resp) and (com, ch′, resp′)
with respect to pk such that ch = ch′ and y2 6= y′2, B can compute a DL of g1 as

α := (y1 − y′1)/(y
′
2 − y2).

Clearly, AdvDL
B,GGen(λ) = AdvSSSA,IDOka

(λ) holds. In addition, the running time of B
is A’s running time plus poly(λ).

Theorem 5. IDOka is perfect special honest verifier zero-knowledge.

Proof. Consider the following simulator: On input (pk, ch), choose y1, y2 ←$ Zq,

compute R := gy1gy2

1 /pkch, and output (R, (y1, y2)).
It is easy to confirm that the simulator’s output has the same distribution

as the real transcript between an honest prover and an honest verifier.

Theorem 6. Under the DL assumption, IDOka satisfies the second key recovery
resistance. In particular, if there is an adversary A that breaks the second key

recovery resistance in time TA with success probability Adv2
ndKR

A,ID (λ), then there
is an algorithm B solving the DL problem in time TB = TA + N · poly(λ) with

probability AdvDL
B,GGen(λ) = Adv2

ndKR
A,ID (λ).

Proof. Let A be an adversary that breaks the second key recovery resistance.
Consider the following DL solver B that uses A as a subroutine: Upon receiving
a DL instance (G, q, g, g1), B sets par := (G, q, g, g1) and generates (pki, ski) ←
IGen(par) for each i ∈ [N ]. B executes A on input (par, {(pki, ski)}i∈[N ]) and

receives (i∗, sk∗) from A such that sk∗ = (s∗1, s
∗
2) 6= ski∗ = (s1,i∗ , s2,i∗) and

gs
∗

1g
s∗
2

1 = pki∗ = gs1,i∗ g
s2,i∗

1 . Then, B computes

α := (s∗1 − s1,i∗)/(s2,i∗ − s∗2) mod q,

and outputs α as the solution of the DL instance.
We can verify that if A breaks the second key recovery resistance, B solves

the given DL instance. Therefore, we have AdvDL
B,GGen(λ) = Adv2

ndKR
A,ID (λ). Note

that the running time of B is TB = TA + N · poly(λ) since B executes A once
and prepares N key pairs.
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Table 2: Concrete parameters for SIG[IDOka] in 128-bit security and corresponding
efficiency. We set T = 3.

ρ γ t β #hash |svk| |σ|

32 4 9 2−123 512 32 B 2084 B

22 6 11 2−123 1241 32 B 1444 B

16 8 13 2−126 4096 32 B 1050 B

By instantiating SIG[ID] with IDOka, we obtain a signature scheme, SIG[IDOka],
whose MU-SUF-CMA-C security is tightly implied from the DL assumption.

Corollary 1. Under the DL assumption, SIG[IDOka] is MU-SUF-CMA-C secure
in the non-programmable random oracle model. In particular, for any adversary
A that breaks the MU-SUF-CMA-C security of SIG[IDOka] in time TA with prob-
ability AdvMU-SUF-CMA-C

A,SIG[IDOka]
(λ), there is an algorithm B solving the DL problem in

time TB = O(TA) with probability AdvDL
B,GGen(λ) such that

AdvMU-SUF-CMA-C
A,SIG[IDOka]

(λ) ≤ 3AdvDL
B,GGen(λ) +

QRO + 1

2ρ log
2
q

+
T ·Qsig(QRO + T ·Qsig)

2ργ
.

Remark 3 (Variants of Okamoto identification). It is worth noting that there
are versions of Okamoto identification based on RSA assumption [15] or Fac-
toring assumption [10]. Using these identification schemes, we can obtain the
tightly MU-SUF-CMA-C-secure signatures from RSA and Factoring assumption,
respectively.

Efficiency Evaluation. We provide the efficiency of SIG[IDOka]. First, we ex-
plain how to choose parameters for randomized Fischlin transformation. Here,
we recall the recent result by Chen and Lindell [6] for the original version since
their result is also valid for randomized Fischlin transformation. They proved
the correctness error probability, the expected number of hash computations,
and the signature size summarized below:

– Probability of correctness errors: β = 2−(2t−γ log ê+log ρ)T .

– Expected number of hash computations: #hash= ρ · 2γ/(1− β).

– Signature size (bits): |σ| = ρ · (|com|+ t+ |resp|).

Further, to achieve λ-bit security, the parameters must satisfy the following
conditions: ρ · γ = ω(λ) and t − γ = ω(λ). Also, Chen and Lindell suggest that
for any value of γ, for ρ ≤ 64 set t = γ + 5 and for ρ > 64 set t = γ + 6.
We then explain the choice of multiplicative group. To achieve 128-bit security,
our scheme can use NIST P-256 curve with log|G| = 256 bits since SIG[IDOka] is
tightly secure.

According to the parameter selections above, SIG[IDOka] has |resp| = 512 bits,
and the total signature size is ρ(512 + t) bits for 128-bit security. Note that we

https://orcid.org/0000-0002-2232-9443
https://orcid.org/0000-0002-4671-4485
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IGenOR(par)

1 : b←$ {0, 1}

2 : (pk0, sk0)← IGen(par)

3 : (pk1, sk1)← IGen(par)

4 : pk := (pk0, pk1); sk := (b, skb)

5 : return (pk, sk)

VOR(pk, com, ch, resp)

1 : ch1 := ch⊕ ch0

2 : if V(pk0, com0, ch0, resp0) = 0 then

3 : return 0

4 : if V(pk1, com1, ch1, resp1) = 0 then

5 : return 0

6 : return 1

POR,1(pk, sk)

1 : ch1−b ←$ {0, 1}ℓ

2 : (com1−b, resp1−b)← Sim(pk1−b, ch1−b)

3 : (comb, stb)← P1(pkb, skb)

4 : com := (com0, com1)

5 : st := (stb, ch1−b, resp1−b)

6 : return (com, st)

POR,2(st, ch)

1 : chb := ch⊕ ch1−b

2 : respb ← P2(chb, stb)

3 : resp := (ch0, resp0, resp1)

4 : return resp

Fig. 4: The parallel-OR identification scheme IDOR[ID] constructed from an iden-
tification scheme ID, where ISetupOR := ISetup.

can remove com from the signature because IDOka’s verifier algorithm can be
represented as follows. (See Section 3.1.)

V(pk, com, ch, (y1, y2)) = 1 ⇐⇒ com = fV
Oka(pk, ch, (y1, y2)) = gy1gy2

1 /pkch.

We give in Table 2 the efficiency estimations for SIG[IDOka] in 128-bit security
in each parameter. As observed, there is a trade-off between signature size and
signing time. Spending more computational cost on signature generation can
shorten the signature size.

4.2 Instantiation from Isogenies

We will show an isogeny-based tightly MU-SUF-CMA-C-secure signature derived
from our framework. We first show that the so-called parallel-OR identification
scheme meets the requirements of our framework. Then, we provide a concrete
instantiation of the parallel-OR identification scheme based on isogeny.

Parallel-OR Identification Scheme. We first explain the parallel-OR identi-
fication scheme [8]. Let ID = (ISetup, IGen,P,V) be a canonical identification
scheme with ℓ bits challenges and let Sim be a special honest verifier zero-
knowledge simulator of ID. Then the new identification scheme IDOR[ID] :=
(ISetupOR, IGenOR,POR,VOR) is constructed as shown in Figure 4.

For completeness, we show that IDOR has correctness, multiple secret keys,
perfect HVZK, strong special soundness, and 2nd key recovery resistance in the
multi-user setting. To this end, we recall the security notions for identification
schemes, which are required to prove this property of IDOR.
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Definition 12 (Key Recovery [16, Definition 2.3]). We say that ID is key
recovery resistant if for all PPTadversaries A, it holds that

AdvKRA,ID(λ) := Pr



(pk, sk∗) ∈ IGen(par)

∣

∣

∣

∣

∣

∣

par← ISetup(1λ),
(pk, sk)← IGen(par),
sk∗ ← A(par, pk)





≤ negl(λ).

Definition 13 (Random Self-Reducibility [16, Definition 2.5]). We say
that ID is random self-reducible if there is a PPT algorithm ReRand and a de-
terministic algorithm DeRand such that, for all (pk, sk) ∈ IGen(par):

– pk′ and pk′′ have the same distribution, where (pk′, td′)← ReRand(par, pk) is
the rerandomized public key and (pk′′, sk′′)← IGen(par) is a freshly-generated
key pair.

– For all (pk′, td′) ∈ ReRand(par, pk), for all (pk′, sk′) ∈ IGen(par), and sk∗ ←
DeRand(pk, pk′, sk′, td′), we have (pk, sk∗) ∈ IGen(par). That is, DeRand re-
turns a valid secret key sk∗ with respect to pk, given any valid secret key sk′

for pk′.

We now show IDOR[ID]’s properties.

Theorem 7. If ID is correct and it has κ-bits of commitment min-entropy, then
IDOR[ID] is correct and it has 2κ-bits of commitment min-entropy. Also, if ID

has a single secret key, ID has 2-multiple secret keys.

Proof. The correctness of IDOR[ID] is clear. The commitment of IDOR[ID] consists
of two independent commitments of ID. Thus, IDOR[ID] has 2κ-bits of commit-
ment min-entropy. Finally, since the underlying identification scheme ID has a
single secret key per public key, there are two secret keys (0, sk0) and (1, sk1) for
each pk of IDOR[ID]. Thus, IDOR[ID] has 2-multiple secret keys.

Theorem 8. If ID is strong special sound, IDOR[ID] is also strong special sound.
More precisely, if there exists an extractor ExtID such that, for any adversary A,
its advantage is at most AdvSSSID (λ), then there exists an extractor ExtIDOR[ID] such

that, for any adversary B, its advantage is at most AdvSSSIDOR[ID](λ) = AdvSSSID (λ).

Proof. Let ExtID be an extractor of ID. Consider the extractor ExtIDOR[ID] of
IDOR[ID] as follows. Given two valid transcripts

((com0, com1), ch, (ch0, resp0, resp1))

and
((com0, com1), ch

′, (ch′0, resp
′
0, resp

′
1))

with respect to pk = (pk0, pk1),

– if ch0 6= ch′0 or resp0 6= resp′0, ExtIDOR[ID] outputs

(0,ExtID(pk0, com0, ch0, resp0, ch
′
0, resp

′
0)).

https://orcid.org/0000-0002-2232-9443
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– Otherwise, ch1 6= ch′1 or resp1 6= resp′1 must hold, where ch1 := ch⊕ch0, ch
′
1 :=

ch′ ⊕ ch′0. In this case, ExtIDOR[ID] outputs

(1,ExtID(pk1, com1, ch1, resp1, ch
′
1, resp

′
1)).

Let B be an arbitrary algorithm that breaks strong special soundness of
IDOR[ID]. In order to estimate B’s advantage, consider AB that works as follows:
On input par, AB runs B and obtains B’s output (pk0, pk1), (com0, com1), ch,
(ch0, resp0, resp1), ch

′, (ch′0, resp
′
0, resp

′
1). If ch0 6= ch′0 or resp0 6= resp′0, AB out-

puts (pk0, com0, ch0, resp0, ch
′
0, resp

′
0), otherwise outputs (pk1, com1, ch1, resp1, ch

′
1, resp

′
1),

where ch1 := ch⊕ ch0, ch
′
1 := ch′ ⊕ ch′0.

From the assumption, for this AB, ExtID successfully extracts a valid secret
key with probability at least 1−AdvSSSID (λ). On the other hand, the distribution
of ExtID’s input come from AB is identical to the distribution of ExtID’s input
when ExtID is used as a subroutine of ExtIDOR[ID]. Therefore, ExtIDOR[ID] obtains a

valid sk0 or sk1 with probability at least 1 − AdvSSSID (λ). That is, B’s advantage
is at most AdvSSSID (λ).

Theorem 9. If ID is perfect special honest verifier zero-knowledge, IDOR[ID] is
also perfect special honest verifier zero-knowledge.

Proof. Let Sim be a simulator for ID. We can easily construct a simulator SimOR

for IDOR[ID] by using Sim as follows: SimOR’s input is pk = (pk0, pk1) and
ch ∈ {0, 1}ℓ. First, choose ch0 randomly from {0, 1}ℓ and set ch1 := ch ⊕ ch0.
Run (comb, respb) ← Sim(pkb, chb) for each b ∈ {0, 1}, and output com :=
(com0, com1), resp := (ch0, resp0, resp1). It is easy to see SimOR’s simulation is
perfect from the fact that ID is perfect special honest verifier zero-knowledge.

Theorem 10. Assuming that ID is key recovery resistant, random self-reducible,
and has a single secret key, IDOR[ID] is the 2nd key recovery resistant in the
multi-user setting. In particular, if there is an adversary A that breaks the second

key recovery resistance in time TA with success probability Adv2
ndKR

A,IDOR[ID](λ), then
there is an algorithm B breaking the key recovery resistance of ID in time TB =

TA +N · poly(λ) with probability AdvKRB,ID(λ) = Adv2
ndKR

A,IDOR[ID](λ).

Proof. Let A be an adversary that breaks the second key recovery resistance of
IDOR[ID]. We show a reduction B that breaks the key recovery resistance of ID
by using A. The description of B is as follows.

Upon receiving a parameter par and a public key pk, B generates (pki, ski)
for each i ∈ [N ] as follows:

1. Sample bi ←$ {0, 1}.

2. Generate (pki,bi , ski,bi)← IGen(par).

3. Generate (pki,1−bi
, tdi)← ReRand(par, pk).

4. Set pki := (pki,0, pki,1) and ski := (bi, ski,bi).
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Then, B executes A on input (par, {(pki, ski)}i∈[N ]) and receives (i∗, (b′, sk′i∗,b′))

from A. Then, B computes sk∗ ← DeRand(pk, pki∗,1−bi∗
, sk′i∗,b′ , tdi∗) and outputs

sk∗.
B perfectly simulates the second key recovery resistance game, since ran-

dom self-reducibility ensures that the randomized public key embedded in each
pki,1−bi

is distributed identically to the fresh public key. Moreover, if A breaks

the second key recovery resistance, its output (i∗, (b′, sk′i∗,b′)) must satisfy b′ =

1 − bi∗ and (pki∗,b′ , sk
′
i∗,b′) ∈ IGen(par) since IDOR[ID] has exactly two valid

secret keys. Therefore, B extracts the secret key of given pk, and we have

AdvKRB,ID(λ) = Adv2
ndKR

A,IDOR[ID](λ). The running time of B is TB = TA + N · poly(λ)
since B executes A once and prepares N key pairs.

Remark 4. Let ID be an identification scheme whose verifier algorithm is repre-
sented as in Eq.(2) using a function fV, and let define the function fV

OR as

fV
OR(pkOR, chOR, respOR) :=

(

fV(pk0, ch0, resp0), f
V(pk1, chOR ⊕ ch0, resp1)

)

,

where pkOR = (pk0, pk1), respOR = (ch0, resp0, resp1). Then, the verifier algorithm
of IDOR[ID] is also represented as in Eq.(2) by using fV

OR. It means that ~com can
be eliminated in the signature of SIG[IDOR[ID]].

Couveignes-Stolbunov Identification Scheme. To instantiate the parallel-
OR identification scheme from isogeny, we will use the Couveignes-Stolbunov
identification scheme IDCouSto [7,5,26], depicted in Figure 5. The details of group
action are provided in Appendix B. Let GAGen be an efficient algorithm that
generates a description of group action. The original protocol has 1 bit challenge.
To extend it to t bits challenges, we simply repeat the protocol t times.

For completeness, we show that IDCouSto has correctness, high commitment
entropy, single secret keys, perfect HVZK, strong special soundness, and second
key recovery resistance in the multi-user setting.

Theorem 11. IDCouSto is correct and it has t log|G|-bits of commitment min-
entropy. Also, it has a single secret key.

Proof. The correctness of IDCouSto is clear. The commitment of IDCouSto is com-
puted from random elements over G. Thus, IDCouSto has t log|G|-bits of commit-
ment min-entropy. Also, since the group action is regular, for each pk, there
exists a unique secret key sk. Thus, IDCouSto has a single secret key.

Theorem 12. IDCouSto is strong special sound. That is, AdvSSSA,IDOR[ID](λ) = 0 for
all (including unlimited bounded) adversaries A.

Proof. We define the extractor Ext as follows. On input (pk, com, ch, resp, ch′, resp′),
if ch = ch′, Ext outputs ⊥. If ch 6= ch′, there must exist an index I such that
the I’th bit of them are different, i.e., {chI , ch

′
I} = {0, 1}. For such an I, Ext

outputs (resp′I · (respI)
−1)chI−ch′I .

https://orcid.org/0000-0002-2232-9443
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ISetupCouSto(1
λ)

1 : (G, E , E0, ⋆)← GAGen(1λ)

2 : ChSet := {0, 1}t

3 : return par := (G, E , E0, ⋆)

IGenCouSto(par)

1 : a1 ←$ G

2 : sk := a1

3 : pk := E1 = a1 ⋆ E0

4 : return (pk, sk)

VCouSto(pk, com, ch, resp)

1 : if com = (respi ⋆ Echi)i∈[t] then

2 : return 1

3 : return 0

PCouSto,1(pk, sk)

1 : foreach i ∈ [t] do

2 : bi ←$ G

3 : Êi := bi ⋆ E0

4 : com := (Ê1, . . . , Êt)

5 : st := (sk, (b1, . . . , bt))

6 : return (com, st)

PCouSto,2(ch, st)

1 : (a1, (b1, . . . , bt)) := st

2 : a0 := 1G

3 : (ch1, . . . , cht) := ch

4 : foreach i ∈ [t] do

5 : ri := bi · a
−1
chi

6 : return resp := (r1, . . . , rt)

Fig. 5: The Couveignes-Stolbunov identification scheme IDCouSto.

It is sufficient to show that Ext can extract a1 when (ch, resp) 6= (ch′, resp′)
and both (pk, com, ch, resp) and (pk, com, ch′, resp′) are accepted by VCouSto. Fur-
ther, from the regularity of group action and the fact that com and ch uniquely
determine resp, we can assume ch 6= ch′.

When ch 6= ch′, define I as above. Since Eb = ab1 ⋆ E0 holds for both bit
b ∈ {0, 1}, we have comI = respI ⋆ EchI = (respI · a

chI
1 ) ⋆ E0 and comI =

(resp′I ·a
ch′I
1 )⋆E0. Thus, we have (resp′I ·(respI)

−1)chI−ch′I = (a
chI−ch′I
1 )chI−ch′I = a1.

Therefore, Ext succeeds in extracting a1 as desired.

Theorem 13. IDCouSto is perfect special honest verifier zero-knowledge.

Proof. Consider the following simulator: On input (pk = E1, ch), choose respi ←$

G, compute comi := respi ⋆ Echi for all i ∈ [t], and output

(com, resp) = ((com1, . . . , comt), (resp1, . . . , respt)).

It is easy to confirm that the simulator’s output has the same distribution
as the real transcript between an honest prover and an honest verifier.

Theorem 14. Under the GADL assumption, IDCouSto satisfies the key recovery
resistance. In particular, if there is an adversary A that breaks the key recov-
ery resistance in time TA with success probability AdvKRA,IDCouSto

(λ), then there
is an algorithm B solving GADL problems in time TB = TA with probability
AdvGADL

B,GAGen(λ) = AdvKRA,IDCouSto
(λ).
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Proof. Let A be an adversary that breaks the key recovery resistance. Consider
the following GADL solver B that uses A as a subroutine: Upon receiving a GADL

instance (G, E , E0, ⋆, E1), B sets par := (G, E , E0, ⋆) and pk := E1. B executes A
on input (par, pk) and receives sk ∈ G from A. B outputs sk as the solution of
the GADL instance.

We can verify that if A breaks the key recovery resistance, B solves the given
GADL instance since A’s output sk satisfies pk = sk ⋆ E0, meaning that sk is the
GADL of pk = E1 w.r.t. E0. Therefore, we have AdvGADL

B,GAGen(λ) = AdvKRA,IDCouSto
(λ).

Note that the running time of B is TB = TA since B executes A once.

Theorem 15. IDCouSto is random self-reducible.

Proof. ReRand and DeRand are defined as follows:

ReRand(par, pk): Let E1 := pk. Choose c1 ←$ G and output pk′ := c1 ⋆ E1 and
td′ := c1.

DeRand(pk, pk′, sk′, td′): Let a′1 := sk′ satisfying E′
1 = a′ ⋆ E0 and let c1 := td.

Output sk∗ := a′1 · (c1)
−1.

We have that, for all (pk, sk) ∈ IGen(par), pk′ is uniformly distributed and has
the same distribution as a freshly-generated key pair. Also, for all (pk′, td′) ←
ReRand(par, pk) and (pk′, sk′) = (E′

1, a
′
1) ∈ IGen(par), we have E′

1 = a′1 ⋆ E0

and E′
1 = c1 ⋆ E1. Thus, we have a′1 ⋆ E0 = c1 ⋆ E1 = (c1a1) ⋆ E0. Therefore,

sk∗ = a′1(c1)
−1 = a1.

By instantiating SIG[ID] with ID = IDOR[IDCouSto], we obtain a signature
scheme, SIG[IDOR[IDCouSto]], whose MU-SUF-CMA-C security is tightly implied
from the GADL assumption.

Corollary 2. Under the GADL assumption, SIG[IDOR[IDCouSto]] is MU-SUF-CMA-C
secure in the non-programmable random oracle model. In particular, for any ad-
versary A that breaks the MU-SUF-CMA-C security of SIG[IDOR[IDCouSto]] in time
TA with probability AdvMU-SUF-CMA-C

A,SIG[IDOR[IDCouSto]]
(λ), there is an algorithm B solving a

GADL problem in time TB = O(TA) with probability AdvGADL
B,GAGen(λ) such that

AdvMU-SUF-CMA-C
A,SIG[IDOR[IDCouSto]]

(λ)

≤ 2AdvGADL
B,GAGen(λ) +

QRO + 1

2ρt log|G|
+

T ·Qsig(QRO + T ·Qsig)

2ργ
,

Acknowledgements. This work was partially supported by JST CREST JP-
MJCR22M1, Japan.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part II. LNCS, vol. 12492, pp. 411–439. Springer, Cham (Dec 2020).
https://doi.org/10.1007/978-3-030-64834-3_14

https://orcid.org/0000-0002-2232-9443
https://orcid.org/0000-0002-4671-4485
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14


Signatures with Tight Adaptive Corruptions from Search Assumptions 21

2. Bader, C.: Efficient signatures with tight real world security in the
random-oracle model. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.G. (eds.)
CANS 14. LNCS, vol. 8813, pp. 370–383. Springer, Cham (Oct 2014).
https://doi.org/10.1007/978-3-319-12280-9_24

3. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authen-
ticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I.
LNCS, vol. 9014, pp. 629–658. Springer, Berlin, Heidelberg (Mar 2015).
https://doi.org/10.1007/978-3-662-46494-6_26

4. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryp-
tographic reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 273–304. Springer, Berlin, Heidelberg (May 2016).
https://doi.org/10.1007/978-3-662-49896-5_10

5. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Cham (Dec
2019). https://doi.org/10.1007/978-3-030-34578-5_9

6. Chen, Y.H., Lindell, Y.: Optimizing and implementing fischlin’s transform for
UC-secure zero knowledge. IACR Communications in Cryptology 1(2) (2024).
https://doi.org/10.62056/a66chey6b

7. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

8. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y. (ed.)
CRYPTO’94. LNCS, vol. 839, pp. 174–187. Springer, Berlin, Heidelberg (Aug
1994). https://doi.org/10.1007/3-540-48658-5_19

9. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital sig-
natures with tight multi-user security. In: Garay, J. (ed.) PKC 2021,
Part II. LNCS, vol. 12711, pp. 1–31. Springer, Cham (May 2021).
https://doi.org/10.1007/978-3-030-75248-4_1

10. Fischlin, M.: On the impossibility of constructing non-interactive statistically-
secret protocols from any trapdoor one-way function. In: Preneel [25], pp. 79–95.
https://doi.org/10.1007/3-540-45760-7_7

11. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with on-
line extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168.
Springer, Berlin, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218_10

12. Fischlin, M., Fischlin, R.: The representation problem based on factoring. In: Pre-
neel [25], pp. 96–113. https://doi.org/10.1007/3-540-45760-7_8

13. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (Aug 2018).
https://doi.org/10.1007/978-3-319-96881-0_4

14. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(Apr 1988)

15. Guillou, L.C., Quisquater, J.J.: A “paradoxical” indentity-based signa-
ture scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.)
CRYPTO’88. LNCS, vol. 403, pp. 216–231. Springer, New York (Aug 1990).
https://doi.org/10.1007/0-387-34799-2_16

16. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from
identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,

https://doi.org/10.1007/978-3-319-12280-9_24
https://doi.org/10.1007/978-3-319-12280-9_24
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.62056/a66chey6b
https://doi.org/10.62056/a66chey6b
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/3-540-45760-7_7
https://doi.org/10.1007/3-540-45760-7_7
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/3-540-45760-7_8
https://doi.org/10.1007/3-540-45760-7_8
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/0-387-34799-2_16
https://doi.org/10.1007/0-387-34799-2_16


22 Keitaro Hashimoto , Wakaha Ogata , and Yusuke Sakai

Part II. LNCS, vol. 9815, pp. 33–61. Springer, Berlin, Heidelberg (Aug 2016).
https://doi.org/10.1007/978-3-662-53008-5_2

17. Kondi, Y., shelat, a.: Improved straight-line extraction in the random oracle model
with applications to signature aggregation. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part II. LNCS, vol. 13792, pp. 279–309. Springer, Cham (Dec
2022). https://doi.org/10.1007/978-3-031-22966-4_10

18. Kondi, Y., shelat, a.: Improved straight-line extraction in the random oracle model
with applications to signature aggregation. Cryptology ePrint Archive, Report
2022/393 (2022), https://eprint.iacr.org/2022/393

19. Lai, Y.F.: Capybara and tsubaki: Verifiable random functions from group ac-
tions and isogenies. IACR Communications in Cryptology (CiC) 1(3), 1 (2024).
https://doi.org/10.62056/avr-11zn4

20. Lee, Y., Park, J.H., Lee, K., Lee, D.H.: Tight security for the
generic construction of identity-based signature (in the multi-
instance setting). Theoretical Computer Science 847, 122–133 (2020).
https://doi.org/https://doi.org/10.1016/j.tcs.2020.09.044

21. Okamoto, T.: Provably secure and practical identification schemes and
corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92.
LNCS, vol. 740, pp. 31–53. Springer, Berlin, Heidelberg (Aug 1993).
https://doi.org/10.1007/3-540-48071-4_3

22. Pan, J., Qian, C., Ringerud, M.: Signed Diffie-Hellman key exchange with tight
security. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 201–226.
Springer, Cham (May 2021). https://doi.org/10.1007/978-3-030-75539-3_9

23. Pan, J., Ringerud, M.: Signatures with tight multi-user security from search
assumptions. In: Chen, L., Li, N., Liang, K., Schneider, S.A. (eds.) ES-
ORICS 2020, Part II. LNCS, vol. 12309, pp. 485–504. Springer, Cham (Sep 2020).
https://doi.org/10.1007/978-3-030-59013-0_24

24. Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions
and more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022,
Part II. LNCS, vol. 13178, pp. 347–378. Springer, Cham (Mar 2022).
https://doi.org/10.1007/978-3-030-97131-1_12

25. Preneel, B. (ed.): CT-RSA 2002, LNCS, vol. 2271. Springer, Berlin, Heidelberg
(Feb 2002)

26. Stolbunov, A.: Cryptographic Schemes Based on Isogenies. Ph.D.
thesis, Norwegian University of Science and Technology (2012),
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/262577

27. Wu, G., Lai, J.C., Guo, F.C., Susilo, W., Zhang, F.T.: Tightly se-
cure public-key cryptographic schemes from one-more assumptions.
Journal of Computer Science and Technology 34, 1366–1379 (2019).
https://doi.org/10.1007/s11390-019-1980-2

28. Yoshioka, H., Ogata, W., Hashimoto, K.: Towards a tightly secure signature in
multi-user setting with corruptions based on search assumptions. Cryptology ePrint
Archive, Report 2024/1286 (2024), https://eprint.iacr.org/2024/1286

A Proof of Theorem 2

Proof. Let A be a PPT adversary against the MU-SUF-CMA-C security of SIG[ID]
and C be a challenger managing the security game. To prove the theorem, we
consider the following sequence of games.

https://orcid.org/0000-0002-2232-9443
https://orcid.org/0000-0002-4671-4485
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://eprint.iacr.org/2022/393
https://doi.org/10.62056/avr-11zn4
https://doi.org/10.62056/avr-11zn4
https://doi.org/https://doi.org/10.1016/j.tcs.2020.09.044
https://doi.org/https://doi.org/10.1016/j.tcs.2020.09.044
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-030-59013-0_24
https://doi.org/10.1007/978-3-030-59013-0_24
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-030-97131-1_12
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/262577
https://doi.org/10.1007/s11390-019-1980-2
https://doi.org/10.1007/s11390-019-1980-2
https://eprint.iacr.org/2024/1286


Signatures with Tight Adaptive Corruptions from Search Assumptions 23

Game0. This is the original MU-SUF-CMA-C game. By definition, we have

Pr[Game0 ⇒ 1] = AdvMU-SUF-CMA-C
A,SIG[ID] (λ).

In the following, for a query (pk,m, ~com, j, ch, resp) to the RO, we call (pk,
m, ~com) a prefix of the query. If V(pk, comj , ch, resp) = 1, the query is called a
“valid transcript”, otherwise, it is called an “invalid transcript”.

Game1. In this game, C simulates RO using three lists Lvalid
RO , Linvalid

RO , Lignore
RO , and

simulates OSign(i,m) as in Figure 6 (without boxed lines). In the simulation of
OSign, C computes the responses and the hash values for all j and ch instead of
computing them individually.

On the other hand, C simulates RO(pk,m, ~com, j, ch, resp) as follows: C first
checks if the same query has already been issued based on LRO := Lvalid

RO ∪

Linvalid
RO ∪ Lignore

RO . If so, C returns the consistent value. Otherwise, chooses h ←$

{0, 1}γ , adds a query-answer tuple (pk,m, ~com, j, ch, resp, h) to one of three lists
according to the following conditions, and returns h as the hash value.

– If the query is issued by A: if it is a valid transcript, the tuple (pk,m, ~com, j,
ch, resp, h) is added to Lvalid

RO . Otherwise, if it is an invalid transcript, the
tuple is added to Linvalid

RO .
– If the query (pki,m, ~com, j, ch, resp) is issued internally in the simulation of

OSign(i,m) :
• if ~com and (comj , j, ch, resp) are used in the signature, then the tuple

(pki,m, ~com, j, ch, resp, h) is added to Lvalid
RO ,

• if ~com is used in the signature, but (comj , j, ch, resp) is not, then the

tuple is added to Lignore
RO ,

• if ~com is not used in the signature, 2t queries (pfx, j, ch′, resp′, h′) with
the same (pfx, j) must be asked. From these queries, one query and its
answer, chosen at random in Line 29, is added to Lvalid, and the rest are
added to Lignore

RO .
– When C verifies the forged signature, we consider A makes hash queries

(pki∗ ,m
∗, ~com∗, j, ch∗j , resp

∗
j ) for all j. Lvalid

RO or Linvalid
RO are updated depending

on V(pki∗ , com
∗
j , ch

∗
j , resp

∗
j ) = 1 or not.

The function UpdateLists (Figure 7) specifies the concrete way to update Lvalid
RO

and Lignore
RO . Note that the way chτ,j is determined depends on τ = τ̂ or not. From

this process, for any (pki,m, ~com, j), at most one tuple (pki,m, ~com, j, ∗, ∗, ∗) is
added to Lvalid

RO in the process of OSign.
This change does not affect A’s view. Therefore, we have

Pr[Game1 ⇒ 1] = Pr[Game0 ⇒ 1].

Game2. In this game, the simulation of OSign is further changed as follows. After
setting pfxτ in line 9 of Figure 6, C browses the list Lvalid

RO to find a tuple whose
prefix is pfxτ . If such a tuple exists, skip Lines 11–31, i.e., move on to the next
τ . Otherwise, C proceeds the signing process as in Game1.
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OSign(i,m)

1 : if i ∈ Lcorr then

2 : return ⊥

3 : endif

4 : foreach τ ∈ [T ] do

5 : foreach j ∈ [ρ] do

6 : (comτ,j , stτ,j)← P1(par, pki, ski)

7 : endfor

8 : ~comτ := (comτ,1, . . . , comτ,ρ)

9 : pfxτ := (pki,m, ~comτ )

10 : if (pfxτ , ∗, ∗, ∗) /∈ Lvalid
RO then // Check if pfxτ was not generated before

11 : foreach j ∈ [ρ] do

12 : foreach ch ∈ {0, 1}t do

13 : respτ,j,ch ← P2(ch, stτ,j)

14 : hτ,j,ch ← H(pfxτ , j, ch, respτ,j,ch)

15 : endfor

16 : endfor

17 : if ∀j ∃ch : hτ,j,ch = 0γ then

18 : foreach j ∈ [ρ] do

19 : let π be a random permutation over {0, 1}t

20 : k := π

(

min
k∈{0,1}t

{k | hτ,j,π(k) = 0γ}

)

21 : chτ,j := k

22 : UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch∈{0,1}t , chτ,j)

23 : endfor

24 : τ̂ := τ

25 : σ := (comτ̂ ,j , chτ̂ ,j , respτ̂ ,j,chτ̂,j
)j∈[ρ]

26 : break

27 : else

28 : foreach j ∈ [ρ] do

29 : chτ,j ←$ {0, 1}t

30 : UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch∈{0,1}t , chτ,j)

31 : endif

32 : endif

33 : if τ = T then σ := ⊥

34 : endfor

35 : Lsig := Lsig ∪ {(i,m, σ)}

36 : return σ

Fig. 6: The sign oracle in Game1 (without boxed lines) and Game2 (with boxed
lines).
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UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch∈{0,1}t , chτ,j)

1 : foreach ch ∈ {0, 1}t

2 : if ch = chτ,j then

3 : add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Lvalid
RO

4 : else

5 : add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Lignore
RO

6 : endif

7 : endfor

Fig. 7: Function UpdateLists used in OSign.

Because honestly generated commitments ~com has ρκ min-entropy and the
number of varieties of ~com in Lvalid

RO is at most QRO + T · QSIG, the difference
between Game1 and Game2 is upper bounded by T ·QSIG× (QRO+T ·QSIG)/2

ρκ.
Therefore,

|Pr[Game2 ⇒ 1]− Pr[Game1 ⇒ 1]| ≤ T ·QSIG(QRO + T ·QSIG)2
−ρκ.

Game3. In this game, we introduce a flag Ffind which is initialized as Ffind := false.
The simulation of RO is changed as follows: When (pki,m, ~com, j, ch, resp, h) is
added to Lvalid

RO as the response of A’s query and i /∈ Lcorr and Ffind = false hold,
C browses the list Lvalid

RO and finds a tuple (pki,m, ~com, j, ch′, resp′, h′) such that
(ch′, resp′) 6= (ch, resp). If such a tuple exists, C sets

pair := (pki, comj , ch, resp, ch
′, resp′),

Ffind := true.

Further, we add a condition “Ffind = true” to the requirements that the game
outputs 1.

Because A cannot see Ffind and pair , the change of RO simulation does
not affect A’s view. Thus, |Pr[Game3 ⇒ 1]− Pr[Game2 ⇒ 1]| is bounded by the
probability that A’s final outputs is valid and Ffind = false at the end of Game2.
Let Lucky be the event that both of these two conditions hold. We will evaluate
Pr[Lucky] in the following three cases. Let σ∗ = (com∗

j , ch
∗
j , resp

∗
j )j∈[ρ] be A’s

forged signature, and pfx∗ := (pki∗ ,m
∗, ~com∗).

– (1) pfx∗ was used in OSign and the oracle returned a signature including it.
– (2) pfx∗ was used in OSign but the oracle returned a signature that does not

include pfx∗.
– (3) pfx∗ was not used in OSign.

Due to the condition that Ffind is set to true and the fact that Lvalid
RO includes

all transcripts in the signatures returned from OSign and one transcript per
each j whose prefix was considered in OSign but discarded, in cases (1) and (2),
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query-answer tuples (pfx∗, j, ch∗j , resp
∗
j , hj) for all j should have been added in

the process of OSign. In case (1), if all transcripts in σ∗ are valid and Ffind =
false, then (i∗,m∗, σ∗) ∈ LSIG holds. Therefore, Pr[Lucky] = 0. In case (2), if all
transcripts in σ∗ are valid and Ffind = false, then there should exist j such that
hj = H(pfx∗, j, ch∗j , resp

∗
j ) 6= 0γ . Therefore, Pr[Lucky] = 0.

On the other hand, in case (3), the event Lucky occurs only if A obtains valid
transcripts (com∗

j , chj , respj) such that hj = H(pki∗ ,m
∗, ~com∗, j, chj , respj) = 0γ

for all j ∈ [ρ] with a single hash computation. Since hash values are chosen
independently and uniformly at random from {0, 1}γ , the probability hj = 0γ is
2−γ for each j ∈ [ρ]. Thus, for a fixed (pki∗ ,m

∗, ~com∗), the probability hj = 0γ

for all j ∈ [ρ] is bounded by 2−ργ . Since A issues QRO RO queries with any
prefix (pk,m, ~com) and finally outputs (pki∗ ,m

∗, ~com∗) as a part of the forged
signature, Pr[Lucky] is bounded by (QRO + 1)/2ργ , and we have

|Pr[Game3 ⇒ 1]− Pr[Game2 ⇒ 1]| ≤ (QRO + 1)2−ργ .

In the following, let î be the index of the first element of pair = (pkî, . . .).

Game4. In this game, C computes the following when Ffind is set to true.

sk∗ ← Ext(pair) = Ext(pkî, comj , chj , respj , ch
′
j , resp

′
j).

Further, we add a condition “VerKey(par, pkî, sk
∗) = 1” to the requirements that

the game outputs 1. (Note that if Ffind = false, the game outputs 0.)
|Pr[Game4 ⇒ 1]− Pr[Game3 ⇒ 1]| is bounded by the probability that pair is

assigned but the extractor Ext fails to find a valid secret key. We will eval-
uate this probability of failure. From the condition of setting Ffind, pair =
(pkî, comj , chj , respj , ch

′
j , resp

′
j) satisfies

V(pkî, comj , chj , respj) = V(pkî, comj , ch
′
j , resp

′
j) = 1

and
(chj , respj) 6= (ch′j , resp

′
j).

Therefore, the probability of this failure is at most AdvSSSB1,ID
(λ) for some algo-

rithm B1. Formally, we can construct an adversary B1 that breaks the strong
special soundness by using A as follows: Upon receiving a parameter par, B1
simulates Game2 against A. If B1 obtains pair , it outputs pair . We can see B1
breaks the strong special soundness when Ext fails extraction. Thus, we have

|Pr[Game4 ⇒ 1]− Pr[Game3 ⇒ 1]| ≤ AdvSSSB1,ID
(λ).

We also evaluate the running time of B1. It executes A once and answers oracle
queries from A. Since each oracle query can be answered in the time of poly(λ),
the running time of B1 is TB1

= TA + (QRO + Qsig + Qcorr) · poly(λ), where
QRO, Qsig, Qcorr denote the maximum number of each oracle query A makes.
Since QRO, Qsig, Qcorr are about O(TA), we conclude that TB1

= O(TA).

Game5. This game outputs 1 if (Ffind = true) ∧ (VerKey(par, pkî, sk
∗) = 1) holds

regardless of whether the forgery was successful or not.
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Since the conditions (Ffind = true) and (VerKey(par, pkî, sk
∗) = 1) are already

included in the requirements that Game3 outputs 1, clearly,

Pr[Game5 ⇒ 1] ≥ Pr[Game4 ⇒ 1]

holds.

Game5′ . We add a condition sk∗ 6= skî to the requirements that the game outputs
1.

Intuitively, from the perfect HVZK of ID, A cannot know which secret key C
has among K secret keys corresponding pki. Therefore, we hope

Pr[Game5′ ⇒ 1] ≈
K − 1

K
Pr[Game5 ⇒ 1].

Actually, we can prove the following lemma.

Lemma 1. If ID is perfect HVZK,

Pr[Game5′ ⇒ 1] =
K − 1

K
Pr[Game5 ⇒ 1].

Before proving Lemma 1, we will upper-bound Pr[Game5′ ⇒ 1] and conclude
the proof. We can construct an adversary B2 against the second key recov-
ery resistance of ID using A. B2 receives a public parameter par and key pairs
of ID {(pki, ski)}i∈[N ]. It sets (svki, sski) := (pki, (pki, ski)), initializes the lists

Lvalid
RO , Linvalid

RO , Lignore
RO , Lcorr and Lsig and executes A on input (par, {svki}i∈[N ])

and answers A’s oracle queries as in Game5′ . If B2 obtains a pkî’s valid secret

key sk∗( 6= skî), B2 outputs (̂i, sk∗).
We can verify that B2 perfectly simulates Game5′ against A. In addition, due

to the modifications we made in the previous games, Game5′ outputs 1 only if
Ffind = true and sk∗ is a valid secret key w.r.t. pkî that is different from skî.
Thus, B2 breaks the second key recovery resistance in the multi-user setting of
ID. Therefore, we have

Pr[Game5′ ⇒ 1] ≤ Adv2
ndKR

B2,ID
(λ).

We also evaluate the running time of B2. It executes A once and answers oracle
queries from A. Since each oracle query can be answered in the time of poly(λ),
the running time of B2 is TB2

= TA + (QRO + Qsig + Qcorr) · poly(λ), where
QRO, Qsig, Qcorr denote the maximum number of each oracle query A made. Since
QRO, Qsig, Qcorr are about O(TA), we conclude that TB2

= O(TA).
Combining everything, we have

AdvMU-SUF-CMA-C
A,SIG[ID] (λ) ≤ AdvSSSB1,ID

(λ) +
K

K − 1
Adv2

ndKR
B2,ID

(λ)

+
(QRO + 1)

2ρκ
+

T ·Qsig(QRO + T ·Qsig)

2ργ
.
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Our remaining task is proving Lemma 1. To do so, we use two game sequences
started at Game5 and Game5′ . In the following, GameX′ is exactly the same as
GameX except the condition sk∗ 6= skî is added to the requirements that the
game outputs 1.

Game6 and Game6′ . These games are the same as Game5 and Game5′ expect
that line 13 and 14 in Figure 6 are replaced with

hτ,j,ch ←$ {0, 1}γ

and the following lines are inserted before line 3 and line 5 in Figure 7:

respτ,j,ch ← P2(ch, stτ,j)

H(pfxτ , j, ch, respτ,j,ch) := hτ,j,ch // program RO

This is a conceptual change. Thus, we have

Pr[Game6 ⇒ 1] = Pr[Game5 ⇒ 1],

Pr[Game6′ ⇒ 1] = Pr[Game5′ ⇒ 1].

Game7 and Game7′ . In this game, we introduce another list, Ltmp. We delete
the line before line 5 that was added in Game6, and replace line 5 in Figure 7
with the next one.

add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Ltmp

Further, if OCorr(i) is queried, for each tuple (pki,m, ~com, j, ch, resp, h) ∈ Ltmp,
C programs the RO as H(pki,m, ~com, j, ch, resp) := h and moves the tuple to
Lignore
RO . That is, C programs only one hash value for each (pfxτ , j) at the time of

OSign simulation, and others will be programmed when ski is revealed.
A’s views in Game6 and Game7 (resp. Game6′ and Game7′) are exactly the

same until A makes a query whose hash value is programmed in Game6 (resp.
Game6′) but not in Game7 (resp. Game7′). Let (pfx, j, ch′, resp′) be such a query.
Then, there must exist a pair (ch′′, resp′′) such that (pfx, j, ch′′, resp′′) has been
programmed and added to Lvalid

RO , and ch′′ 6= ch′. This means that when A issues
such a query for the first time, Ffind is set to true and pair and sk∗ are assigned
values. Therefore, the probability that (Ffind = true) ∧ (VerKey(pki, sk

∗) = 1)
holds is the same in Game6 (resp. Game6′) and Game7 (resp. Game7′). Thus, we
have

Pr[Game7 ⇒ 1] = Pr[Game6 ⇒ 1],

Pr[Game7′ ⇒ 1] = Pr[Game6′ ⇒ 1].

Game8 and Game8′ . In this game, line 21 in Figure 6 is replaced with

chτ,j ←$ {0, 1}t

swap(hτ,j,k, hτ,j,chτ,j )
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where swap(a, b) exchanges the values of variables a and b.
The modification changes how the values of (hτ,j,ch)ch∈{0,1}t and chτ̂ ,j are de-

termined. However, we can prove that the distribution of ((hτ,j,ch)ch∈{0,1}t , chτ̂ ,j)
is not changed. It is enough to show the distributions of ((hk)k∈{0,1}t , ch) in Ex-
periment A and B defined below are identical.

Experiment A:

h = (hk)k∈{0,1}t ←$ ({0, 1}γ)2
t

if hk 6= 0γ for all k ∈ {0, 1}t

return ⊥
ch←$ {k ∈ {0, 1}t | hk = 0γ}
output (h, ch)

Experiment B:

h
′ = (h′

k)k∈{0,1}t ←$ ({0, 1}γ)2
t

if h′
k 6= 0γ for all k ∈ {0, 1}t

return ⊥
ch′ ←$ {k ∈ {0, 1}t | h′

k = 0γ}
ch←$ {0, 1}t

define h = (hk)k∈{0,1}t as

hk =











h′
ch if k = ch′

h′
ch′ if k = ch

h′
k otherwise

output (h, ch)

In the following, if hk = 0γ for some k ∈ {0, 1}t, we say “h is good”, and
define W (h) := |{k ∈ {0, 1}t | hk = 0γ}|. Then, we have the following facts:

– The probability that good h is chosen in Experient A and that good h
′ is

chosen in Experiment B are the same.
– For any good ĥ, the probability that h = ĥ holds in Experiment A and that

h
′ = ĥ holds in Experiment B are constant, say p.

– In Experiment A, for any good ĥ and any ĉh ∈ {0, 1}t, it holds that

Pr[(h, ch) = (ĥ, ĉh)] =

{

p

W (ĥ)
if ĥ

ĉh
= 0γ

0 otherwise.

– For any good ĥ and any ĉh, ĉh
′
∈ {0, 1}t, define ĥ(ĉh⇔ ĉh

′
) as

ĥ(ĉh⇔ ĉh
′
)k =











ĥ
ĉh

if k = ĉh
′

ĥ
ĉh

′ if k = ĉh

ĥk otherwise

Then, in Experiment B, we have

Pr[(h, ch) = (ĥ, ĉh)]

=
∑

ĉh
′

∈{0,1}t

Pr[h′ = ĥ(ĉh⇔ ĉh
′
) ∧ ch′ = ĉh

′
]× Pr[ch = ĉh].

The first probability on the right side is estimated as above:

Pr[h′ = ĥ(ĉh⇔ ĉh
′
) ∧ ch′ = ĉh

′
] =

{

p

W (ĥ)
if ĥ

ĉh
= 0γ

0 otherwise,
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since W (ĥ(ĉh⇔ ĉh
′
)) = W (ĥ) holds. On the other hand, the second proba-

bility on the right side is Pr[ch = ĉh] = 1
2t . Thus,

Pr[(h, ch) = (ĥ, ĉh)] =

{

∑

ĉh
′

∈{0,1}t

p

W (ĥ)
× 1

2t if ĥ
ĉh

= 0γ
∑

ĉh
′

∈{0,1}t 0×
1
2t otherwise

=

{

p

W (ĥ)
if ĥ

ĉh
= 0γ

0 otherwise,

which is the same as in Experiment A.

Therefore, we have

Pr[Game8 ⇒ 1] = Pr[Game7 ⇒ 1],

Pr[Game8′ ⇒ 1] = Pr[Game7′ ⇒ 1].

Now, chτ,j is chosen randomly and uniformly independent from the choice of
hτ,j,ch and the value of τ̂ .

Game9 and Game9′ . In this game, OSign and UpdateLists are further modified
as in Figure 8 and Figure 9, respectively. The difference is that the challenge
chτ,j is chosen and respτ,j,ch for ch = chτ,j is calculated immediately after comτ,j

is computed.
This change is completely conceptual. Thus, we have

Pr[Game9 ⇒ 1] = Pr[Game8 ⇒ 1],

Pr[Game9′ ⇒ 1] = Pr[Game8′ ⇒ 1].

Game10 and Game10′ . Now, let consider the following (possibly inefficient) func-
tion ReSim.

– ReSim takes a valid key pair (pk, sk) and a valid transcript (com, ch, resp) ∈
Tran(pk, sk, ch) as input,

– chooses r ←$ {r | (com, ch, resp)← Tran(pk, sk, ch; r)}, where r is the random
coins used to compute P1 in Tran algorithm,

– regenerates (com, st)← P1(pk, sk; r),
– computes resp′ch′ ← P2(st, ch

′) for all ch′ ∈ {0, 1}t \ {ch}, and
– outputs a list (resp′ch′)ch′∈{0,1}t\{ch}.

If the identification scheme is perfect HVZK, there exists r such that (com, ch, resp)
← Tran(pk, sk, ch; r) for any transcript (com, ch, resp) simulated by Sim and for
any valid sk. Thus, ReSim can generate the response resp′ that would be com-
puted by an honest prover having the specified secret key sk as the response to
the different challenge ch′.

In games Game10 and Game10′ , lines 6 to 8 in Figure 8 are replaced with the
following.

chτ,j ←$ {0, 1}t

(comτ,j , respτ,j,chτ,j )← Sim(pki, chτ,j)
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OSign(i,m)

1 : if i ∈ Lcorr then

2 : return ⊥

3 : endif

4 : foreach τ ∈ [T ] do

5 : foreach j ∈ [ρ] do

6 : (comτ,j , stτ,j)← P1(par, pki, ski)

7 : chτ,j ←$ {0, 1}t

8 : respτ,j,chτ,j ← P2(chτ,j , stτ,j)

9 : endfor

10 : ~comτ := (comτ,1, . . . , comτ,ρ)

11 : pfxτ := (pki,m, ~comτ )

12 : if (pfxτ , ∗, ∗, ∗) /∈ Lvalid
RO then // Check if pfxτ was not generated before

13 : foreach j ∈ [ρ] do

14 : foreach ch ∈ {0, 1}t do

15 : hτ,j,ch ←$ {0, 1}γ

16 : endfor

17 : endfor

18 : if ∀j ∃ch : hτ,j,ch = 0γ then

19 : foreach j ∈ [ρ] do

20 : let π be a random permutation over {0, 1}t

21 : k := π

(

min
k∈{0,1}t

{k | hτ,j,π(k) = 0γ}

)

22 : swap(hτ,j,k, hτ,j,chτ,j )

23 : UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch, chτ,j)

24 : endfor

25 : τ̂ := τ

26 : σ := (comτ̂ ,j , chτ̂ ,j , respτ̂ ,j,chτ̂,j
)j∈[ρ]

27 : break

28 : else

29 : foreach j ∈ [ρ] do

30 : UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch, chτ,j)

31 : endif

32 : endif

33 : if τ = T then σ := ⊥

34 : endfor

35 : Lsig := Lsig ∪ {(i,m, σ)}

36 : return σ

Fig. 8: The sign oracle in Game9 and Game9′ .
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UpdateLists(pfxτ , j, {respτ,j,ch, hτ,j,ch}ch, chτ,j)

1 : foreach ch ∈ {0, 1}t

2 : if ch = chτ,j then

3 : H(pfxτ , j, ch, respτ,j,ch) := hτ,j,ch // program RO

4 : add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Lvalid
RO

5 : else

6 : respτ,j,ch ← P2(ch, stτ,j)

7 : add (pfxτ , j, ch, respτ,j,ch, hτ,j,ch) to Ltmp

8 : endif

9 : endfor

Fig. 9: Function UpdateLists used in Game9.

Further, insert the next line

{resp′ch}ch∈{0,1}t\{chτ,j} ← ReSim(pki, ski, comτ,j , chτ,j , respτ,j,chτ,j )

at the beginning of Figure 9, and line 6 is replaced with

respτ,j,ch := resp
′
ch

If the identification scheme is perfect HVZK, A’s view does not change from
the definition of ReSim. Thus,

Pr[Game10 ⇒ 1] = Pr[Game9 ⇒ 1],

Pr[Game10′ ⇒ 1] = Pr[Game9′ ⇒ 1].

In Game10 and Game10′ , ski is used only in UpdateLists to compute resp′, and
the tuple including resp′ is added to Ltmp which is perfectly hidden to A until
i is corrupted. From the definition of î, by the time Ffind is set true and pair is
assigned, î has not been corrupted and A has no information about skî. Thus
we have

Pr[Game10′ ⇒ 1] = Pr[Ffind = true ∧ VerKey(par, pkî, sk
∗) = 1 ∧ skî 6= sk∗]

= Pr[Ffind = true ∧ VerKey(par, pkî, sk
∗) = 1]

× Pr[skî 6= sk∗ | Ffind = true ∧ VerKey(par, pkî, sk
∗) = 1]

= Pr[Game10 ⇒ 1]×
K − 1

K
.

This completes the proof of Lemma 1.
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B Cryptographic Group Actions

Here, we recall cryptographic group actions.

Definition 14 (Group Action). A group G is said to act on a set E if there
is a map ⋆ : G × E → E that satisfies the following two properties:

1. Identity: If 1G is the identity element of G, then for all E ∈ E, we have
1G ⋆ E = E.

2. Compatibility: For any g, h ∈ G and any E ∈ E, we have (gh)⋆E = g⋆(h⋆E).

We may denote a group action by using the abbreviated notation (G, E , ⋆).
For cryptographic purposes, we need the following propositions.

Definition 15. A group action (G, E , ⋆) is said to be

1. transitive if, for every E1, E2 ∈ E, there exists a unique g ∈ G such that
E2 = g ⋆ E1,

2. free if, for all E ∈ E, E = g ⋆ E implies g = 1G.

If a group action is transitive and free, it is said to be regular.

Note that if a group action is regular, then for any E ∈ E , the map fE : g →
g ⋆ E defines a bijection between G and E ; especially if G or E is finite, then we
must have |G| = |E|.

To construct feasible cryptographic primitives from a group action, we require
some efficient PPT algorithms. We recall the effective group action framework
introduced in [1].

Definition 16 (Effective Group Action [1]). A group action (G, E , E0, ⋆) is
effective if the following properties are satisfied:

1. The group G is finite, and there exist PPT algorithms for (1) the membership
testing, (2) equality testing, (3) group operations, (4) element inversions,
and (5) random sampling over G. The sampling method is required to be
statistically indistinguishable from the uniform distribution over G.

2. The set E is finite, and there exist PPT algorithms for (1) the membership
testing and (2) generating a unique bit-string representation for every ele-
ment in E.

3. There exists a distinguished element E0 ∈ E and its bit-string representation
is publicly known.

4. There exists a PPT algorithm that given any (g,E) ∈ G × E outputs g ⋆ E.

An effective group action is denoted using the abbreviated notation (G, E , E0, ⋆).
Let GAGen be a PPT algorithm that takes 1λ as input and outputs a description
of an effective group action (G, E , E0, ⋆). The next hardness assumption of group
actions is often used.
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Definition 17 (Group Action Discrete Logarithm (GADL) Assump-
tion [19, Definition 16]). We say that GADL assumption holds for GAGen if
for all PPT adversaries A, it holds that

AdvGADL
A,GAGen(λ) := Pr



α ⋆ E0 = E

∣

∣

∣

∣

∣

∣

(G, E , E0, ⋆)← GAGen(1λ),
E ←$ E ,

α← A(G, E , E0, ⋆, E)



 ≤ negl(λ).

C Note on Zero-Knowledge of Randomized Fischlin

Transformation

In [18, Theorem 6.4] (the full version of [17]), Kondi and shelat showed that the
randomized Fischlin transformation preserves the zero-knowledge property of the
underlying Sigma protocol. Especially their proof only depends on the existence
of a perfect ZK simulator and the property that the entropy of commitments is
λ, which is large enough. Here, we will show a flaw in the proof.

In their proof of ZK, they construct a simulator and show that simulated
proofs and real proofs are indistinguishable using a sequence of hybrid experi-
ments. Starting from the real proof, the change to Hybrid H1 is merely syntactic.
Each transcript in H1 is generated using the prover’s algorithm, i.e., the prover
searches a “good” challenge by asking many transcripts to the random oracle,
and the random oracle honestly answers a random value to each query. In Hybrid
H2, a “good” challenge is no longer searched; instead, the first chosen challenge is
made a good one by programming the random oracle. Thus, in this experiment,
the prover asks only ρ queries to the random oracle. Concretely, the random
oracle H is implemented as follows:

1. The first ρ queries by the prover Q1, . . . , Qρ will receives 0 as a response.

2. Emulate H as a random oracle honestly for every other query.

To show the difference between H1 and H2 is negligibly small, the authors first
claimed that each “good” challenge ei appeared in the proof is distributed uni-
formly in {0, 1}t in both H1 and H2. Next, they said “the only distinguishing
event corresponds to the programming of H, i.e., if the adversary is able to query
H on some index that H2 subsequently programs to a different value.” “this dis-
tinguishing event happens with probability no greater than |Q|/2λ, where |Q| is
the number of queries made by the adversary to the random oracle.”

It is true that each ei is distributed uniformly in {0, 1}t in both H1 and
H2. However, even if the above-mentioned distinguishing event never occurs,
the random oracle simulation in H2 is not perfect, as shown below.

We give a tiny example in which t = 1 (i.e., the challenge is 0 or 1), the
hash length is 1 (i.e., hash values are 0 or 1), ρ = 1 (i.e., the proof includes
only one transcript). Let tr0 and tr1 be the potential transcripts corresponding
to challenge 0 and 1, respectively, and h0 := H(tr0), h1 := H(tr1) be their hash
values chosen by the random oracle (or simulated values).
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Let c be the challenge first chosen to search for a “good” one, e be the “good”
challenge actually put in the proof in H1. Then, the following 8 cases occur with
equal probability in H1.

– (h0, h1, c, e) = (0, 0, 0, 0).
– (h0, h1, c, e) = (0, 0, 1, 1).
– (h0, h1, c, e) = (0, 1, 0, 0).
– (h0, h1, c, e) = (0, 1, 1, 0).
– (h0, h1, c, e) = (1, 0, 0, 1).
– (h0, h1, c, e) = (1, 0, 1, 1).
– (h0, h1, c, e) = (1, 1, 0,⊥).
– (h0, h1, c, e) = (1, 1, 1,⊥).

Ignoring the last two cases, indeed, e is 0 or 1 with the same probability.
On the other hand, in H2, e is first chosen randomly, and fix he = 0, while

the hash value h1−e is chosen randomly. Then, the following 4 cases occur with
probability 1/4.

– (h0, h1, c, e) = (0, 0,−, 0).
– (h0, h1, c, e) = (0, 1,−, 0).
– (h0, h1, c, e) = (0, 0,−, 1).
– (h0, h1, c, e) = (1, 0,−, 1).

Now assume e = 0. Then, PrH1
[h1 = 0 | e = 0] = 1/3,PrH1

[h1 = 1 | e = 0] =
2/3 hold in H1, while PrH2

[h1 = 0 | e = 0] = PrH2
[h1 = 1 | e = 0] = 1/2 hold in

H2. This means that there exists a possibility that the adversary distinguishes
H1 and H2 even if the adversary does not ask for h0 in advance.

We note that using a biased coin rather than a fair coin to decide the value
h1−e = H(tr1−e) cannot solve the above problem. This is because tr1−e may
depend on the witness and random coins the prover used. E.g., the transcript
corresponding to challenge 1−e is tr if w is used as a witness, but the transcript
corresponding to challenge 1− e is tr′( 6= tr) if w′( 6= w) is used. In such cases, it
is impossible to emulate a random oracle in a way that correctly matches both
witnesses.

We can solve this problem by using the property of the underlying sigma
protocol, strong 2-special soundness. The property ensures that any polynomial-
time algorithms A cannot find two valid transcripts, and thus the adversary does
not query tr1−e (except negligible probability AdvSSSA,Σ(λ)) even if the adversary
knows one valid transcript tre. So, we can estimate the difference between H1

and H2 as |Q|/2λ + AdvSSSA,Σ(λ).
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