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Abstract. CROSS is a post-quantum secure digital signature scheme
submitted to NIST’s Call for Additional Signatures which was recently
selected for round 2. It features signature and key sizes in the range
of SLH-DSA while providing a substantially faster signing operation.
Within this work, we provide the first passive side-channel attack on
the scheme. The attack recovers the secret key from all except one pa-
rameter sets from a single power trace while requiring at maximum two
power traces for the R-SDP(G) 1 Fast instance. To successfully mount
the attack, we show how to recover the secret key from side-channel infor-
mation gained from the syndrome computation in CROSS’ identification
protocol. We furthermore show how the hypothesis space for the attack
can be restricted using information from the published signature.

Keywords: Post-Quantum Cryptography· Side-Channel· Horizontal At-
tack

1 Introduction

Given the possible insecurity of classic asymmetric cryptography in the pres-
ence of a quantum computer being capable of running Shore’s Algorithm [10],
the National Institute of Standardization (NIST) started a competition to find
quantum secure replacements in 2016 [7]. In July 2022, NIST selected the algo-
rithms Crystals-KYBER as Key Encapsulation Mechanism as well as Crystals-
Dilithium and Falcon as signature algorithms [3]. All of these algorithms, apart
from the already selected SPHINCS+/SLH-DSA [1] and a yet to be chosen Key
Encapsulation Mechanism, are based on structured lattices. This led to an addi-
tional call by NIST asking specifically for signature schemes based on different
mathematical problems. There are several advantages of having schemes based
on different problems available. On one hand, this allows for alternatives in case
there is a breakthrough in cryptanalysis for one of the problems being used and
on the other hand it allows for schemes with specific advantages, e.g. small sig-
natures or low computational requirements to be used for specific applications.
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Of the 40 submissions accepted by NIST in June 2023, they selected 14 to ad-
vance to round 2 [2]. One of these is the Codes and Restricted Objects Signature
Scheme (CROSS). It is a promising candidate as it offers reasonable signature
and key sizes which are in the range of SPHINCS+ but offers significantly faster
signing and key generations routines according to [2].

NIST also asked for research in side-channel resistance of the new schemes as
side-channel attacks are an eminent threat for cryptographic implementations,
especially on embedded devices. As there is to the best of our knowledge no
research on the passive side-channel resistance of CROSS so far, we propose the
first horizontal attack on this signature scheme requiring only a single power
trace for all except one of the parameter sets and at maximum two traces for
the R-SDP(G) 1 Fast parameter set.

Related Work While we are not aware of any passive attacks published on
CROSS, the attack strategy we follow is similar to the one used by introduced by
Clavier et al. in [8] and used by Bauer et al. in [5] for ECC implementations. Their
work was furthermore inspired by the work of Walter in [11]. We furthermore
rely on the concept of Correlation Power Analysis (CPA) as introduced by Brier
et al. in [6] and use Hamming Weights as our leakage model.

Contribution In this work, we present the first power side-channel attack on
CROSS which requires a trace of a single signature generation for all except
one of the parameter sets and at maximum two traces for the R-SDP(G) 1 Fast
parameter set. Our target is the latest reference implementation of the scheme
as available on the submission team’s webpage.3 The attack leads to full recov-
ery of a representation of the secret key which can be used to sign arbitrary
messages. Our attack target is the syndrome computation in each round of the
identification protocol underlying CROSS which is essentially a matrix-vector
multiplication. Instead of computing the full matrix vector product, part of the
multiplication where the upper vector entries are multiplied with an identity ma-
trix is implemented by priming the result vector with these values. This forces
us to implement our attack in several stages as we can build hypothesis on the
upper part of the vector before recovering the lower part. First, we target the
intermediate results of the multiplication with a horizontal correlation based at-
tack which allows us to recover most of the respective coefficients under attack.
Second, we target the intermediate results of the addition of the multiplication
results which we can now compute based on the first attack’s result to attack
the remaining coefficients. Additionally, we outline how to recover the secret key
of the scheme from the ephemeral secret sampled in each execution of the iden-
tification scheme using the information recovered with our attack. We also show
how to recombine the information gained in several rounds of the protocol. Fur-
thermore, we explain how to reduce the number of required key hypothesis based
on the special structure of the restricted syndrome decoding problem. Finally,

3 https://www.cross-crypto.com/CROSS_submission_package_v1.2.zip



A Horizontal Attack on CROSS 3

we show the practicality of our attack with traces measured on ChipWhisperer’s
CW308 platform using an STM32F303 microcontroller.

Organization The remainder of this work is structured as follows: Within
chapter two, we outline CROSS with emphasis on the parts which are necessary
for the attack. In chapter three, we explain the necessary stages to mount a
successful attack on the algorithm. Finally, in chapter four, we show experimental
results from measurements on a microcontroller and demonstrate the feasibility
of the attack.

2 Introduction to CROSS

In the following, we provide an overview of CROSS according to the latest version
of their specification [4]. The scheme is based on the hardness of the Restricted
Syndrome Decoding Problem (R-SDP) which can be seen as a variant of the syn-
drome decoding problem. Additionally, it features a second variant based on the
Restricted Syndrome Decoding Problem in a Subgroup (R-SDP(G)). It is con-
structed using the Fiat-Shamir transform to make an interactive Zero-Knowledge
Identification protocol non interactive. The scheme has relatively small signa-
tures and keys, at least compared to other code-based schemes, while showing
competitive performance when it comes to computational complexity. On a high
level perspective, the scheme is constructed from a Zero-Knowledge Identification
protocol which is executed for t rounds and explained in the following section.

Table 1 shows the parameters for all instantiations of the scheme with p and
z being the moduli for the respective finite fields the coefficients in the scheme
are sampled from. The codewords of the random linear code used in the scheme
have length n and dimension k while the number of rounds is defined as t and
the fixed weight of the second challenge is w. In the next sections, we provide a
high level overview of the main functions of the scheme while omitting details
which are not relevant for this work.

Notation We here define the notation we use throughout this work. For any
uncovered notation we refer to [4] as we omit any notation used in the pseu-
docode of the signing operation in case it is irrelevant for the attack. Matrices
are represented by uppercase letters A while vectors are indicated as lowercase
letters v. The identity matrix of size m is denoted as Im. Any representations
of length n vectors in Fz are denoted by lowercase bold Greek letters, e.g. η.

2.1 The CROSS-ID protocol

The Zero-Knowledge protocol used in CROSS is built upon a 5-pass protocol,
typically consisting of a commitment sent by the prover to the verifier, and a pair
of a challenge and a response sent from the verifier to the prover and back which
is repeated twice with different messages. Depending on the values of the two
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Algorithm 1: Sign(pri, Msg)
Data: λ: security parameter,

g ∈ F∗
p: generator of a subgroup E of F∗

p with cardinality z
En: restricted subgroup
MG: m× n matrix of Zz elements, employed to generate vectors
η ∈ G ⊂ En

t: number of iterations of the ZKID protocol
Bt

w: set of all binary strings with length w and Hamming weight t
c: a fixed constant, equal to the number of nodes in the seed tree
dsc: a fixed constant, greater than t employed to obtain domain
separation

Input: pri: private key constituted of Seedsk ∈ {0, 1}2λ
Msg: message to be signed Msg ∈ {0, 1}∗

Output: Signature Signature

1 Begin

// Key material expansion
2 η, ζ,H,MG ← ExpandPrivateSeed(Seedsk)

η,H← ExpandPrivateSeed(Seedsk)

// Computation of commitments

3 Mseed
$←− {0, 1}λ, Salt $←− {0, 1}2λ

4 (Seed[0], . . . , Seed[t− 1])← SeedTreeLeaves(Mseed, Salt)
5 for i← 0 to t− 1 do
6 ζ′,u′

i ← CSPRNG (Seed[i]||Salt||i+ c, )
η′
i,u

′
i ← CSPRNG (Seed[i]||Salt||i+ c, ) δi ← ζ − ζ′ η′

i ← ζ′MG

σi ← η − η′
i

7 for j ← 0 to n− 1 do
8 v[j]← gσi[j]

9 end
10 u← v ⋆ u′

i // ⋆ is component-wise product
11 s̃← uH⊤

12 cmt0[i]← Hash(s̃||δi||Salt||i+ c+ dsc)
cmt0[i]← Hash(s̃||σi||Salt||i+ c+ dsc)

13 cmt1[i]← Hash(Seed[i]||Salt||i+ c+ dsc)

14 end
15 d0 ←MerkleRoot(cmt0[0], . . . , cmt0[t− 1])
16 d1 ← Hash(cmt1[0] || . . . || cmt1[t− 1])
17 d01 ← Hash(d0 || d1)
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18
// First challenge vector extraction

19 dm ← Hash(Msg)
20 dβ ← Hash(dm||d01||Salt)
21 beta← CSPRNG

(
dβ , (F∗

p)
t
)

// Computation of first round of responses
22 for i← 0 to t− 1 do
23 for j ← 0 to n− 1 do
24 e′

i[j]← gη
′
i[j]

25 end
26 yi ← u′

i + beta[i]e′
i

27 end

// Second challenge vector extraction
28 db ← Hash(y0|| . . . ||yt−1||dβ)
29 b← CSPRNG

(
db,Bt

(w)

)
// Computation of second round of responses

30 MerkleProofs←MerkleProof((cmt0[0], . . . , cmt0[t− 1]),b)
31 SeedPath← SeedTreePaths(Mseed,b)

// Signature composition

32 rsp0 ← (Fn
p × Fm

z )t−w rsp0 ← (Fn
p × Fn

z )
t−w

33 rsp1 ← ({0, 1}2λ)t−w // empty array
34 j ← 0
35 for i← 0 to t− 1 do
36 if (b[i] = 0) then

// cmt0[i] is recomputed by the verifier, cmt1[i] must be
sent

37 rsp0[j]← (yi, δi) rsp0[j]← (yi,σi)

38 rsp1[j]← cmt1[i]
39 j ← j + 1

40 end
41 end

42 Signature← Salt || d01 || db || MerkleProofs || SeedPath || rsp0 || rsp1
// all Signature components are encoded as binary strings

43 return Signature

44 end
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Table 1: Parameter choices, keypair and signature sizes recommended for both
CROSS-R-SDP and CROSS-R-SDP(G), assuming NIST security categories 1, 3,
and 5, respectively.
Algorithm and Optim.

p z n k m t w
Pri. Key Pub. Key Signature

Security Category Corner Size (B) Size (B) Size (B)

CROSS-R-SDP 1
fast 127 7 127 76 - 163 85 32 77 19152
balanced 127 7 127 76 - 252 212 32 77 12912
small 127 7 127 76 - 960 938 32 77 10080

CROSS-R-SDP 3
fast 127 7 187 111 - 245 127 48 115 42682
balanced 127 7 187 111 - 398 340 48 115 28222
small 127 7 187 111 - 945 907 48 115 23642

CROSS-R-SDP 5
fast 127 7 251 150 - 327 169 64 153 76298
balanced 127 7 251 150 - 507 427 64 153 51056
small 127 7 251 150 - 968 912 64 153 43592

CROSS-R-SDP(G) 1
fast 509 127 55 36 25 153 79 32 54 12472
balanced 509 127 55 36 25 243 206 32 54 9236
small 509 127 55 36 25 871 850 32 54 7956

CROSS-R-SDP(G) 3
fast 509 127 79 48 40 230 123 48 83 27404
balanced 509 127 79 48 40 255 176 48 83 23380
small 509 127 79 48 40 949 914 48 83 18188

CROSS-R-SDP(G) 5
fast 509 127 106 69 48 306 157 64 106 48938
balanced 509 127 106 69 48 356 257 64 106 40134
small 509 127 106 69 48 996 945 64 106 32742

challenges, the prover provides different responses in order to prove its knowledge
of the secret error vector η (resp. ζ for R-SDP(G)) without actually revealing it.
Within this work, we however only focus on the computation of the commitment
which depends on the secret key and on a subset of rounds, namely on those
where second binary challenge is 1. In order to compute the commitments one
first needs to sample an ephemeral secret η′ as well as a vector u′ uniform in Fp.
These can then be used to compute the transformation σ in Fz which maps η′ to
η and can similarly be used to map u′ to u. With u, one can then compute the
syndrome s̃. Next, a hash of the syndrome s̃ and the map σ on one hand as well as
of the Seed used to sample η′ and u′ on the other hand is published. Depending
on the challenges provided by the verifier one then computes a response based
on the syndrome and the first challenge and finally reveals either the seed used
to sample η′ and u′ in case the second binary challenge is 1 or a computed value
y and the map σ which maps η′ to η and u′ to u.

2.2 Key Generation

The key generation has a keypair consisting of a public and a secret key as
output. The secret key consists of a seed used to sample the error vector η (resp.
ζ). The public key contains a seed used to sample the parity check matrix H
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as well as the syndrome s of η computed through H. To reduce the key sizes,
neither η nor H are saved directly but both are only stored as their respective
seeds. For R-SDP(G) the error vector η is computed from ζ using the generator
matrix MG which is also part of the public key. We refer to [4] for a more detailed
description as well as for the corresponding pseudocode.

2.3 Signature Generation

Within the signature generation algorithm, the secret key and the message to be
signed are taken as input to compute the respective signature. Please note that
the public key can be recomputed from the secret key as the public key’s seed is
derived from the private key’s seed. After expanding the matrix H as well as the
error vector η, a seed and a salt is drawn from the system’s TRNG and expanded
for each round using a binary tree structure. These seeds are then used in the
CROSS-ID protocol described above and finally the responses to be published are
packed to form the actual signature. The pseudocode of the signature generation
is shown in Algorithm 1 where line 2 refers to the expansion of the key material,
the commitments are computed and packed in lines 3-17 and the challenges and
responses are calculated in 18-31. The signature is finally packed in lines 32-42.

2.4 Signature Verification

In the signature verification, one of the two following actions is executed based
on the corresponding value of the second challenge. Either the values η′ and u′

are sampled based on the published seed or the map σ is used to recompute s̃ in
combination with y. Finally it is checked whether these values match the ones
computed during signature generation via hash comparison and subsequently a
decision about the correctness of the signature is made.

3 Attack Strategy

As discussed above, the secret key of CROSS consists only of a seed of 2λ length.
Within this work we do not target that seed directly but instead the error vector
η (resp. ζ in the case of R-SDP((G))) which is the only secret material sampled
from the seed and therefore corresponds to full secret key recovery. As visible in
Algorithm 1, the only operation in the algorithm where η is used directly is to
compute the map σ in line 7. This line represents the transformation between
the longterm secret η and the ephemeral secret η′ which is sampled uniform at
random in Fn

z for every round of the zero-knowledge protocol. Depending on the
corresponding bit of the second challenge, either the seed used to sample η′ (and
u′) or the map σ is published. For this attack, we focus on the w of t fraction
of rounds where the seed gets published and we can therefore obtain u′ and η′.
One can furthermore notice that the correspondence between u and u′ is derived
from the same map as the transformation between η and η′. A recovery of a
pair of u and u′ can therefore be used to recover η from η′.



8 J. Schupp and G. Sigl

Recovering ηi from a pair of values ui and u′
i Given a pair of ui and

u′
i this can be achieved by recovering the map vi from the pair, looking up the

precomputed value of σi for the corresponding entry in v based on a Look-Up
Table and recomputing ηi from the map σi and η′i as visible on the following
lines.

v = (u · u′−1) mod p

σ ⇐ v

η = (η′ · σ) mod z

Component-wise transformation It is furthermore worth noticing that the
transformation σ and therefore also v is defined component-wise, allowing us to
recover η element by element from any pair of u and u′. This allows us to gain
information on a limited number of coefficients of u per round and to combine
this information later on to learn the longterm secret η. In the case of R-SDP(G)
we can then use η to recover ζ directly as η ← ζM(G) which allows us to recover
ζ directly as part of η.

ζ = [ηn−m; ...; ηn]

Reducing the hypothesis space Another aspect that simplifies the attack
here is the way the coefficients of u are computed. We recall here that u′ is
sampled uniform at random from Fn

p while the map v is a representation of the
map σ ∈ Fn

z . Therefore σ can take only |z| possible values for each entry and
which leads to the same limitation for v and thus requires us to consider only
|z| hypotheses for each entry in u. These can be computed by taking all possible
values of each entry in v into account and computing the resulting values u given
that u′ is published as part of the signature.

With this approach, we only need an exploitable operation in the code to
recover a coefficient of u in a round where u′ is published as part of the signature.
Such a spot exists via the syndrome computation where u gets multiplied with
the parity check matrix H which is part of the public key to obtain the syndrome
y. While the (restricted) syndrome decoding problem itself is computationally
hard, its intermediate results can still be used in an implementation attack in
case they are accessible via a side-channel. Within the next sections, we outline
how we can extract the entire secret key representation η from this syndrome
computation using only a single trace for all parameter sets except one and at
maximum two traces for R-SDP(G) 1 Fast.

3.1 Prerequisites

The operation we target with our attack is essentially a matrix vector multipli-
cation in Fp with p = 127 for R-SDP and p = 509 for R-SDP(G). While the
operands in this multiplication are actually of that size and bitwidth, we want
to recall here that our hypothesis space is limited by the way the values of the
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u2 unuk uk+1

n

k n-k

... ... .

v1,1 v1,2 v1,n-k...

0

vk,1

0 1

vk,2 vk,n-k

...

... ... ...

...

n-k

k

1 0 0...

... ... ... n-k

u1

v2,1 v2,2 v2,n-k...

u2un ukuk+1

kn-k

...... .
v1,1 v1,2 v1,n-k...

vk,1 vk,2 vk,n-k

... ... ...

...

n-k

k
u1

v2,1 v2,2 v2,n-k...

+

Fig. 1: Illustration of the matrix-vector multiplication used in the syndrome com-
putation and how the multiplication with the identity matrix is substituted

vector are sampled which leaves us only z = 7 hypothesis per entry in u for
the R-SDP parameter sets and z = 127 hypothesis per entry for the R-SDP(G)
instances. As the systematic part of the parity check matrix H is just an identity
matrix of dimension (n− k)× (n− k), this part of the multiplication is usually
omitted and replaced by copying the corresponding (n − k) values of u as ini-
tialization values into the result vector s̃ before the multiplication results are
accumulated as sketched in Equation (1). This leaves us with the pseudocode as
shown in Algorithm 2 which we also visualize in Figure 1. Here one can see that
after copying the upper part of u to s̃ we are left with (n−k)×k multiplications,
subsequent additions to the corresponding entry in s̃ and finally reductions which
form the entire matrix vector multiplication. To mount our attack, we need to
capture each of these operations for a single matrix-vector multiplication as the
vector u changes for each multiplication.

s̃ = uH⊤ (1)

s̃ = u [VtrI]⊤ (2)

(s1, ..., sn−k) = (u1, ..., un)



vtr,1,1 ... vtr,1,n−k

vtr,2,1 ... vtr,2,n−k

... ... ...
vtr,k,1 ... vtr,k,n−k

1 ... 0
0 ... 0
... ... ...
0 ... 1


(3)

(s1, ..., sn−k) = (uk+1, ..., un) + (u1, ..., uk)


vtr,1,1 ... vtr,1,n−k

vtr,2,1 ... vtr,2,n−k

... ... ...
vtr,k,1 ... vtr,k,n−k

 (4)



10 J. Schupp and G. Sigl

Algorithm 2: Syndrome Computation
1 for i← 1 to n− k do
2 s̃i = uk+i

3 end
4 for i← 1 to k do
5 for j ← 1 to n− k do
6 si = (si + ui · vtr,i,j) mod p
7 end
8 end

u2un ukuk+1

kn-k

...... .
v1,1 v1,2 v1,n-k...

vk,1 vk,2 vk,n-k

... ... ...

...

n-k

k
u1

v2,1 v2,2 v2,n-k...

+

Fig. 2: Illustration of the attack path for the CPA-Style attack on the lower k
entries of u resp. η
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3.2 CPA on the Syndrome Computation to Recover the Lower k
Entries of u

To mount the attack, we can now compute hypotheses on the intermediate results
of the multiplications in line 6 of Algorithm 2 and run a CPA-style attack on the
corresponding n−k samples per coefficient in u. We illustrate this attack strategy
in Figure 2 where we try to attack the red value via the intermediate results of its
multiplications with the yellow elements of the public matrix. As discussed above,
this leaves us with z possible values for an entry in u and, as Vtr is part of the
public key, we can compute hypotheses on the (unreduced) multiplication results
using a Hamming Weight Leakage Model. The necessary samples here all belong
to one iteration of the outer loop in Algorithm 2 and consist of one full execution
of the inner loop, meaning that we need the first n−k subtraces to attack the first
coefficient in u. Please note that the number of attack points here is relatively
limited as e.g. for RSDP-1 we only have 51 samples per coefficient and e.g. for
RSDP(G)-1 we even only have 19 samples. Under the assumption of Hamming
Weight Leakage, we can not expected to obtain unique results per coefficient
here as there is usually more than one possible hypothesis leading to the same
sequence of hamming weights. However, we can discard non-unique samples or
putting it differently, samples where more than one coefficient correlates within
a certain threshold of the most likely hypothesis. As we also got more than
one chance to recover each entry in u as there are w (which is at minimum 79
for RSDP(G)-1) rounds where u′ gets published, we can safely discard these
ambiguous results and can still recover most of the entries in u successfully as
shown below. As we essentially have w attack results per coefficient in u, though
we discard those which are not distinct, we also apply a majority voting based
strategy to further reduce the number of incorrectly recovered coefficients. To
summarize this leaves us with a horizontal DPA for each of the k first coefficients
of u for w rounds. In the case of R-SDP, a recovery of the k entries in different
vectors u equal to a recovery of this part of the secret key error vector η. In the
case of R-SDP(G), we need the upper m entries of η which form the secret key
ζ. This attack result is nevertheless necessary as it is prerequisite to attack the
upper part of η.

3.3 CPA on the Syndrome Computation to Recover the Upper
n − k Entries of u

In order to successfully attack the second part of the coefficients in u one first
needs to recover a significant part of u successfully using the strategy described
in Section 3.2. Once this is done, one can now compute new hypotheses along the
other axis of the parity check matrix respectively the calculations corresponding
to this dimension. We illustrate our approach in Figure 3 where we attack the
red value via hypotheses we compute on the reduced addition results. We can
compute these hypothesis because we can calculate the multiplication results of
the yellow column of the matrix with the vector u based on the results of the
first attack stage. Putting it differently, to attack the entry uk+1 we need the
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u2un ukuk+1

kn-k

...... .
v1,1 v1,2 v1,n-k...

vk,1 vk,2 vk,n-k

... ... ...

...

n-k

k
u1

v2,1 v2,2 v2,n-k...

+

Fig. 3: Illustration of the attack path for the CPA-Style attack on the upper n−k
entries of u resp. η

traces 1, (n− k)+ 1, 2 · (n− k)+ 1, ..., k ∗ (n− k)+ 1. This yields k subtraces per
coefficient to be attacked in u and therefore, as k > (n−k) for all parameter sets,
a more reliable attack, simply due to the larger number traces available. As we
compute our hypotheses here based on the results of the addition as described
in line 6 Algorithm 2, we need to know the first k entries in u to precompute the
results of the respective multiplications successfully such that the only unknown
input is the entry of u copied into the respective position in s̃ in the first place
and accumulated in all subsequent iterations.

4 Results

To assess the feasibility and efficiency of the attacks described above, we first
evaluate them on simulated traces before performing the attack on an actual im-
plementation on an ARM Cortex-M4 based microcontroller as described below.
Please note that throughout the results section, we usually talk about recovery
of values in η which always refer to an attack on the corresponding value in u
and subsequent recovery via u′ and η′.

Results based on simulated Hamming Weight Leakages In this stage,
we compute upon the following expectations which can be assumed to be ap-
plicable to a microcontroller implementation in general. First, we expect noisy
Hamming Weight Leakage from all results which are written back into a register
at some point during the execution of the algorithm. This is e.g. experimentally
confirmed for load and store operations in [9]. As we first only want to assess
the theoretical feasibility of the attack, we assume this leakage to be noise free
as we try to reproduce our results with real measurements anyways. More con-
cretely, we therefore expect leakage from the following (intermediate) results of
the syndrome computation:
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– The unreduced result of one multiplication ui · vtr,i,j
– The reduced result of one addition (si + ui · vtr,i,j) mod p

We discuss below how well these expectations match reality, for now, we assume
them to correct.

Results based on measurements We perform our attack on a ChipWhis-
perer CW308 board as platform with an 32-bit STM32F303RCT7 microcon-
troller running at 10MHz. As measurement oscilloscope we use a Picoscope
6402D with a sampling rate of 2.5Gs/s measuring the power consumption of
our device via a shunt resistor and a DC-Block with 20MHz cutoff frequency.
We use arm-none-eabi-gcc in version 13.2.1 for all experiments in this work.
On the implementation side, we had to make some adaptions to the reference
implementation due to the limited SRAM size of the victim board. Our targeted
implementation therefore currently only contains the side-channel relevant func-
tions as well as the functions necessary to compute its inputs. Regarding the
expected leakage points above, we can confirm that we can exploit leakage from
all mentioned intermediate results though the practicability heavily depends on
the chosen parameter set. Concretely, there is less leakage for R-SDP(G) which
we mainly attribute to the lower number of subtraces per attack and the larger
coefficients as p = 509. To get distinct results for R-SDP(G) we therefore also
have to narrow down which part of the trace we were actually attacking. For
R-SDP we take the trace of all operations within a loop iteration while for
R-SDP(G) we undertake some further refinement steps. Here, we use a Signal-
to-Noise calculation to determine where information about the public matrix
entries is visible in the trace. In a second step, we then only use the intervals fol-
lowing the points where information about these entries is present as the public
matrix entries are one operand of the multiplication, indicating that the desired
value should be computed at some point afterwards.

4.1 Result of a single CPA

The smallest unit of the attack strategy described above is one CPA with a
Hamming Weight based hypothesis on either the multiplication or subsequent
addition result along either a row or a column of the public matrix with an
element of the vector under attack. In the simulated setting, we get distinct
results in between 20% and 70% of the attacks depending on the parameter set.
We show a sample of the to be expected correlation coefficients in Figure 4 for
R-SDP 1 Fast as well as in Figure 5 for R-SDP(G) 1 Fast. Both plots show
an example for a coefficient where we get a distinct result, i.e. there is exactly
one maximum correlation, as well as a sample were more than one hypothesis
yields a similarly high correlation, as mentioned above, we discard such samples.
We furthermore choose a threshold of 80% of the maximum correlation which
needs to be the maximum magnitude for the second highest value to consider
the highest one distinct. This threshold is visualized by the red lines in the above
mentioned figures. While this threshold was initially chosen based on simulated
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results, we observed that it seems to also work well for real traces of the R-
SDP parameter sets. For the R-SDP(G) parameter sets, we had to increase
the threshold to 95% for the first attack stage described below as the limited
number of attack traces per CPA does not yield such high differences in the
correlation coefficient. Please note that this approach discards several correct
but not sufficiently distinct results but leaves us with an acceptable ratio of
correct choices for the subsequent attack steps.
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Fig. 4: Simulated and measured correlation coefficient for two coefficients in η for
the R-SDP 1 Fast instance of which one yields a distinct and one a not distinct
result. The decision boundary of 80% of the maximum magnitude is marked as
red line
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Fig. 5: Simulated and measured correlation coefficient for two coefficients in η
for the R-SDP(G) 1 Fast instance of which one yields a distinct and one a not
distinct result. The decision boundary of 80% of the maximum magnitude is
marked as red line

4.2 Attack on the first k entries of η

After obtaining distinct results of several CPAs for each of the lower k from sev-
eral rounds of CROSS’ identification protocol, we now employ a majority voting
based strategy the recover a single coefficient from a set of distinct CPA results.
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Here we first calculate the corresponding entry in η for a result as discussed in
Section 3 and then accumulate these results for each possible value for this entry
in η which leaves us with a distinct result for this entry. We also choose here
to only consider results which are at least recovered twice to further reduce the
number of errors in the result. To visualize this approach, we plotted the number
of recovered entries in η as well as the number of distinct CPA results against
the number of attacked rounds from a single signature generation in Figure 6
for R-SDP 1 Fast and in Figure 7 for R-SDP(G) 1 Fast. As visible in Figure 6,
we recover all k lower entries for R-SDP 1 Fast within less than 30 attackable
rounds thus leaving 55 rounds headroom to either decrease the necessary mea-
surement length within one signature generation or to recover results in a noisier
setting from a single signing operation. We furthermore want to point out that
the attacks work despite a significant number of incorrect distinct results which
are indicated by the dashed lines. In the case of R-SDP(G) 1 Fast, as shown in
Figure 7 we fail to recover all lower k values in η in the measured setting while
this should in theory be feasible as illustrated by the dotted red line reaching
k = 36 within the rounds contained in one signature. This result is partially
due to the fact that we only have 19 subtraces per CPA as well as larger values
as p = 509 in this case. Here we need additional results from further signing
operations to successfully recover all lower k entries. To give an overview over
all results for this first attack stage, we refer to Table 2 where we summarize the
number of distinct hypothesis we gain per round of the ID-Protocol, the fraction
of correct hypothesis of those, as well as the resulting number of rounds of the
ID-Protocol required to recover the lower k entries of η.
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Fig. 6: Number of coefficients in η recovered per round of the ID-Protocol for
R-SDP 1 Fast
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Fig. 7: Number of coefficients in η recovered per round of the ID-Protocol for
R-SDP(G) 1 Fast

Table 2: Number of Rounds of the ID-Protocol necessary to recover the lower k
entries in η as well as number of distinct CPA results and correctness rates of
these results

Algorithm and Distinct CPA Frac. of correct # rounds for
Security Category results/round CPA results lower k rec.

CROSS-R-SDP 1 23 74% 27

CROSS-R-SDP 3 31 81% 59

CROSS-R-SDP 5 42 83% 76

CROSS-R-SDP(G) 1 27 13% 158

CROSS-R-SDP(G) 3 32 29% 123

CROSS-R-SDP(G) 5 31 43% 157

4.3 Attack on the upper n − k entries of η

As discussed in Section 3, we rely on the lower k entries of η to successfully
compute hypotheses on the upper part, requiring us to successfully recover the
lower part of η first. We refer to Table 3 for the measured results for this attack
stage, leading to successful recovery of the upper n− k entries in η in all cases.
Please note that the results here are significantly better than they were for the
first attack stage allowing us to recover most of the upper n − k values in a
single attack round. In order to ensure that each value is actually recovered
correctly, we utilize a second and a third round leading us to distinct results in
our majority voting approach. Please note that one can easily use the remaining
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Table 3: Number of Rounds of the ID-Protocol necessary to recover the upper
n−k entries in η as well as number of distinct CPA results and correctness rates
of these results

Algorithm and Distinct CPA Frac. of correct # rounds for
Security Category results/round CPA results upper n− k rec.

CROSS-R-SDP 1 50 99% 3

CROSS-R-SDP 3 74 99.8% 3

CROSS-R-SDP 5 99 99.9% 3

CROSS-R-SDP(G) 1 9.8 79% 3

CROSS-R-SDP(G) 3 18 80% 3

CROSS-R-SDP(G) 5 25 82% 3

rounds from one signature generation to boost the results significance as they
had to be measured for the second stage of the attack anyways. In the case of
R-SDP(G), our target value ζ is equal to the upper m entries in η, meaning that
a full recovery of η is also a full recovery of ζ.

4.4 Result Summary

As discussed above, we can recover all entries in η in the case of R-SDP using a
limited number of rounds of the identification protocol from a single signature
generation. In the case of R-SDP(G), we need at maximum two signature gen-
erations for RSDP(G) 1 Fast and also only a single signature generation for all
other parameter sets to recover all entries in ζ.

5 Conclusion

In this work we present the first horizontal side-channel attack on CROSS. The
attack is built upon the well established concept of horizontal attacks and ex-
ploits leakage from the syndrome computation inside CROSS’ identification pro-
tocol which is executed several times in one signature generation allowing us to
mount a separate attack on each computation. Only a single trace of a signature
generation is required for a successful attack on all except one of the parameter
sets of CROSS while we require at maximum two traces for a successful attack
on the R-SDP(G) 1 Fast instance. The next natural step for this work is to
consider different countermeasures usable to prevent this approach which for ex-
ample include shuffling of the execution order of operations during a syndrome
computation as well as masking of the syndrome computation’s inputs. Another
approach interesting for future work might be to improve the attack further as
we currently discard a significant amount of samples because we rather focus on
keeping the number of incorrect recoveries low but also leave the information of
all discarded attack results unused.
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