
Post-Quantum Online/Offline Signatures

Martin R. Albrecht, Nicolas Gama

, James Howe

, and Anand Kumar
Narayanan

SandboxAQ, Palo Alto, CA, USA,
{firstname.secondname}@sandboxaq.com

Abstract. Post-quantum signatures have high costs compared to RSA
and ECDSA, in particular for smart cards. A line of work originating
from Even, Goldreich, and Micali (CRYPTO’89) aimed to reduce digital
signature latency by splitting up signing into an online and offline phase.
The online/offline paradigm combines an ordinary long-term signature
scheme with a fast, generally one-time, signature scheme. We reconsider
this paradigm in the context of lattice-based post-quantum signatures in
the GPV framework, with an example instantiation based on Falcon.

1 Introduction

In July 2022, NIST [AAC+22] announced its first set of post-quantum cryptog-
raphy schemes intended for standardisation: the key encapsulation mechanism
(KEM) Kyber (aka ML-KEM in FIPS 203 [ML-23b]), and three digital signa-
ture schemes, Dilithium (aka ML-DSA in FIPS 204 [ML-23a]), SPHINCS+ (aka
SLH-DSA in FIPS 205 [SLH23]), and lastly Falcon (aka FN-DSA) [PFH+22].
While Kyber has computational costs similar to RSA and elliptic curves, all
three signature standards/standardisation candidates compare less favourably.

Online/offline signatures were formally introduced by Even, Goldreich and
Micali [EGM90,EGM96] as a way to speed-up the signing process in applications
with constrained computing resources or where signature latency is critical, such
as in smart cards. The construction relies on (fast) one-time digital signature
algorithms as well as standard (slower) digital signature algorithms.

The basic idea is to break-up signature generation into two parts, one of which
is a pre-computation (offline), independent of any message m to be signed. This
pre-computation can be executed during idle time and consists of the generation
of a one-time public-key and secret-key pair, where the one-time public-key is
signed using the long-term secret-key. This signing operation will be more com-
putationally expensive than the one-time signature scheme. The online phase
then depends on and signs m, using the one-time signature scheme with the
one-time keys as input.

Among the signature schemes selected, Falcon was selected by NIST for its
more compact signatures and fast verification: “due to its low bandwidth and
fast verification, Falcon may be a superior choice in some constrained proto-
col scenarios” [AAC+22]. However, for general-purpose constrained applications,
Falcon does not seem the appropriate choice, as the same report notes. This is in

https://orcid.org/0000-0001-7308-9171
https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-0106-030X

addition to its reliance on double-precision floating-point arithmetic for fast im-
plementation, which can potentially cause issues with signature correctness and
which adds an additional attack vector [KA21,GMRR22,ZLYW23,HW23,LTYZ24].

Falcon’s genealogy dates back to the earliest proposals for lattice-based sig-
natures, including GGH [GGH97] and NTRUSign [HHP+03]. The general idea
of these signatures is that the verification key consists of a description of a lattice
and the signing key consists of a trapdoor, allowing to sample short elements
in the lattice. This then allows to find vectors in the span of the lattice that
are close to some target vector produced by calling H(m), where H(·) is some
hash function, modelled as a Random Oracle. As noted in [NR06], care must
be taken that these close vectors do not leak information about the trapdoor.
Indeed, in [NR06] devastating attacks were presented against both GGH and
NTRUSign, recovering the secret trapdoor using statistical methods on the sig-
natures.

With the GPV framework [GPV08], a method was proposed to produce signa-
tures that are statistically close to being independent of the trapdoor, leading to a
signature scheme framework with provable guarantees. Later, NTRUSign was im-
proved [SS11] and also used to build an identity-based encryption scheme [DLP14].
With further improvements [DP16], the groundwork was laid for a practical and
secure hash-and-sign lattice-based signature scheme, producing Falcon. Propos-
als to improve upon Falcon were subsequently proposed [EFG+22,DPPvW22].

Carefully sampling from a distribution essentially independent of the trap-
door as in [GPV08] requires noticeable computational resources and typically
floating-point arithmetic, leading to the “downsides” noted above.

Given that the attacks from [NR06] mentioned above are statistical, it is nat-
ural to ask how many signatures are required to mount them. Put differently, in
an online/offline paradigm where we instantiate the one-time signature scheme
with (essentially) NTRUSign, how many signatures can be produced before se-
curity no longer holds?

To tackle this question, we rely on statistical tools introduced to the area of
lattice-based cryptography in [BLR+18]: the Rényi divergence.

1.1 Contributions

We revisit the idea of online/offline signatures for the post-quantum era and
propose a simple and efficient signature scheme, along the lines of GPV, which
is partially interoperable with Falcon.

We provide a security proof for the proposed signature scheme, quantifying
the security as a function of the number of online signatures furnished. This
means that our scheme guarantees security only if a tiny number of online sig-
natures allowed before refreshing in the offline phase. In particular, this implies
that statistical/geometric attacks such as [NR06,DN12] that broke NTRUSign
will not infer anything significant about the ephemeral secret key from seeing
these few online signatures. A key ingredient in our security proof is Rényi diver-
gence analysis as in [BLR+18]. En route, we present new bounds for the Rényi

divergence of a discrete spherical Gaussian and a discrete spherical Gaussian con-
volved (of possibly different mean and covariance) with a compact distribution.
This is implicit in the proof of Lemma 1 and may be of use in other cryptographic
contexts. We derive these new bounds from first principles since the standard
Rényi divergence bounds from [BLR+18] and its extensions do not quite apply.

We adapt our scheme to the Falcon setting and show that the scheme remains
secure, by quantifying the security in terms of the number of online signatures.
Design choices such as lattice dimension, modulus, etc. conform to Falcon-512,
enabling easy adoption. Further, key generation and signature verification re-
main unchanged from Falcon, except for an increase in the allowed verification
threshold norm of the signatures. This allows the long-term and few-time signa-
ture schemes to share modules, reducing footprint and benefiting implementa-
tions on constrained or embedded devices. The signature scheme can be used in
different environments, ranging from one-time use up to eight uses. We provide
performance expectations based on the security needs of the application within
these ranges. As expected, our implementation provides good performance in
the online phase when considering a floating point implementation. We consider
this permissible despite potential side-channel attack concerns because of the
low number of signing operations performed per key.

1.2 Organisation

In Section 2, we build up the required mathematical notation and briefly describe
the cryptographic definitions and primitives used. In Section 3, we present the
online/offline signature scheme based on GPV signatures and prove its security.
Parts of the proof are deferred to Section 4.1. In Section 4, we tailor our on-
line/offline signature scheme to Falcon and derive concrete security guarantees
in terms of the number of online signatures. In Section 4.1, we detail the imple-
mentation of our Falcon-based online/offline scheme and present benchmarks to
highlight its practicality.

2 Preliminaries

Lattices. We write vectors as columns vectors and use boldface latin alphabets,
such as u or v. The i-th coordinate of a vector u will be denote as ui. Matrices
will be written with boldface capital latin alphabets such as A,B. We write In for
the identity matrix in dimension n. In our context, a lattice is a discrete free Z-
submodule of a finite dimensional real vector space, endowed with the Euclidean
metric. The dimension of a lattice is its rank as a Z-module. Lattices we en-
counter will be explicitly presented in one of the following two ways. In ambient
dimension d, an ordered basis B := (b1,b2, . . . ,bn) ⊂ Rd of R-linearly indepen-
dent vectors defines the rank n lattice L(B) := {

∑n
i=1 zi · bi | z ∈ Zn} ⊂ Rd. The

basis B will also be thought of as the matrix B consisting of (b1,b2, . . . ,bn) as its
sequence of columns, and vice versa. Therefore, L(B) is the Z-module generated
by the columns of B. The second way lattices are presented as sets. For example,

the dual of a lattice Λ ⊂ Rd is defined as Λ∗ :=
{
u ∈ Rd | 〈u,x〉 ∈ Z, ∀x ∈ Λ

}
⊂

Rd where 〈, 〉 is the inner product in Rd. In either case, lattices are embedded in
some real space Rd, which endows them with the Euclidean metric.

For a positive odd integer q, let Zq denote the ring Z/qZ of residues modulo
q and we choose {−b q2c, . . . , 0, . . . , b

q
2c} ⊂ Z as a preferred set of representatives.

For a vector x ∈ Zd with integer coordinates, let x mod q ∈ Zd
q denote the

reduction of each coordinate modulo q.

Babai’s Rounding. Babai’s rounding algorithm [Bab86] is an algorithm to
find a lattice point close to a given target point . This is efficient to compute
given a “good” basis G for a lattice and a target vector c, where c is in the
column R-span of G. The algorithm proceeds by computing G · bG−1 · ce. In
essence, writing the target c =

∑d
i=1 αi · gi as a real linear combination of the

columns of G, the Babai rounding G · bG−1 · ce =
∑d

i=1[αi] · gi is the lattice
vector obtained by rounding the real coordinates to the nearest integers [αi].

Babai’s Nearest Plane. As before, consider a good basis G and a target
vector c ∈ Rd in the column R-span of G. Babai’s nearest plane algorithm
[Bab86] starts at the d-th dimension and asks for a lattice vector vd, which by
addition shifts the real hyperplane Hd−1

G generated by first d − 1 columns of
G closest to c. To find vd, write the target c =

∑d
i=1 αi · g∗

i as a real linear
combination of the Gram-Schmidt orthogonalisation vectors g∗

i of the columns
of G and set vd ← [αd] ·gd, where [αd] is the nearest integer to αd. The solution
for the nearest plane algorithm is

∑d
i=1 vi, where one solves for vd−1 recursively,

as follows. Forget the last column of G and consider the same problem, now in
one fewer dimension with the new target

∑d−1
i=1 αi ·g∗

i +[αd] ·g∗
d− [αd] ·gd. Here,∑d−1

i=1 αi · g∗
i + [αd] · g∗

d is the orthogonal projection of c onto [αd] · gd +Hd−1
G .

The closeness guarantee of the output to the target is better for the nearest
planes compared to rounding. There are also randomised versions of the nearest
plane algorithm, including fast versions applicable to special lattices [DP16]. But
rounding is much faster, in comparison with both the plain and the specialised
randomised versions.

NTRU Lattices. Let n = 2a denote a positive power of 2. The NTRU lattices
underlying Falcon are certain rank 2 modules over the ring of integers On

∼=
Z(X)/〈Xn + 1〉 of the 2n-th cyclotomic field Q(X)/〈Xn + 1〉, embedded in an
inner product space over R(X)/〈Xn+1〉, generated as follows. Let q be a prime
number that splits in the extension On/Z. That is, q = 1 mod φ(n), where
φ(n) = 2a − 2a−1 is the Euler’s totient. Start with a secret key consisting of
f, g, F,G ∈ ON such that f · G − g · F = q, f modulo qOn is a unit and
integer vectors corresponding to the representations of f, g, F,G are short. Short
enough means that the matrix B :=

[
g −f
G −F

]t
has Gram-Schmidt norm at most

a constant times √q, and is the secret trapdoor basis. When instantiating using

Falcon parameters, this constant will be 1.17. The NTRU lattice associated with
the secret key f, g, F,G is the rank 2 On-module generated by B. The public
key is then set as the unique h ∈ On satisfying h = g · f−1 mod qOn. Then
the same NTRU lattice is also generated by

[
1 h
0 q

]t, except, this public basis of
the same lattice is not short by design. The public and private bases can both
be represented succinctly as elements in the ring On, which can be thought of
as polynomials. In fact, Falcon represents the trapdoor in the Fourier basis as
detailed Section 2.5, facilitating fast signing times. We will build our signature
scheme in the language of lattices over Z, and then specialize to NTRU lattices.
Therefore, it is conceptually helpful to also think of the NTRU lattices, which are
On-modules as lattices over Z. To this end, associate with −f , the n×n integer
matrix whose i-th row is the integer vector corresponding to −f ·Xi mod Xn+1.
Likewise, for the other elements g,−F,G and h. Under this correspondence, the
NTRU lattice may also be viewed as a rank 2n-lattice over Z.

Distributions. For c ∈ Rd and a positive s ∈ R, let ρc,s : Rd −→ R taking
x 7−→ exp

(
−π‖x− c‖2/s2

)
denote the Gaussian function with parameter s and

centred at c . For a lattice Λ ⊂ Rd, positive s ∈ R and vector c ∈ Rd, let DΛ,s,c

denote the spherical discrete Gaussian probability mass function with support
Λ and mass proportional to DΛ,s,c(x) ∼ ρ(c, s), ∀x ∈ Λ. That is,

DΛ,s,c(x) =
ρc,s(s)∑

x∈Λ ρc,s(x)
, ∀x ∈ Λ.

When the discrete Gaussian is centered at the origin, we sometimes suppress
the last subscript, that is, DΛ,s := DΛ,s,0. For a lattice Λ and a positive real ϵ,
the smoothing parameter ηϵ(Λ) is the smallest positive real number s such that∑

s∈Λ\0 ρ(s, 1/s) ≥ ϵ [MR04].

Rényi Divergence. Following [BLR+18], the order a ∈ (1,∞] Rényi divergence
of a pair (P,Q) of discrete distributions with Supp(P) ⊆ Supp(Q) is defined as

Ra(P||Q) :=

 ∑
x∈Supp(P)

P(x)a

Q(x)a−1

 1
a−1

. (1)

We use the following two properties of Rényi divergence in our security proofs.
– Probability preservation: For every event E ⊆ Supp(P) and a ∈ (1,∞]

Q(E) ≥ P(E)
a

a−1

Ra (P||Q)
. (2)

– Multiplicativity: The Rényi divergence of a pair of product distributions is
the product of the Rényi divergences, that is,

Ra

(∏
i

Pi||
∏
i

Qi

)
=
∏
i

Ra(Pi||Qi). (3)

2.1 Digital Signatures

Definition 1 (Signature Scheme). A signature scheme Σ consists of three
PPT algorithms (KeyGen, Sign,Verify) such that:

KeyGen The key generation algorithm is a randomised algorithm that takes as
input a security parameter 1λ and outputs a pair (vk, sk), the verification key
and signing key, respectively. We write (vk, sk)← KeyGen(1λ).

Sign The signing algorithm takes as input a signing key sk and a message µ and
outputs a signature σ. We write this as σ ← Sign(sk, µ). The signing algorithm
may be randomised or deterministic. We may write σ ← Sign(sk, µ; r) to
unearth the used randomness explicitly.

Verify The verification algorithm takes as input a verification key vk, a signature
σ and a message µ and outputs a bit b, with b = 1 meaning the signature
is valid and b = 0 meaning the signature is invalid. Verify is a deterministic
algorithm. We write b← Verify(vk, σ, µ).

We require that except with negligible probability over (vk, sk) ← KeyGen(1λ), it
holds that Verify(vk, Sign(sk, µ), µ) = 1 for all µ.

We rely on the standard notion of existential unforgeability under chosen
message attacks:

Definition 2 (EUF-CMA). We define

Adveuf-cma
A,Σ (λ) := Pr[EUF-CMAA

Σ (λ)⇒ 1]

for EUF-CMAA
Σ (λ) as in Figure 1 (with Q > poly(λ)) and say a signature

scheme Σ is EUF-CMA secure if no PPT/BQP adversary A has non-negligible
advantage Adveuf-cma

A,Σ (λ).

2.2 Few-Times Signatures

We will rely on “few-times signature” schemes, which are signature schemes that
promise unforgeability in the presence of a signing oracle supporting up to Q
signatures.

Definition 3 (EUF-CMAQ). We define

Adveuf-cma
A,Σ,Q (λ) := Pr[EUF-CMAA

Σ,Q(λ)⇒ 1]

for EUF-CMAA
Σ,Q(λ) as in Figure 1 and say a signature scheme Σ is EUF-CMA

secure for Q queries if no PPT/BQP adversary A has non-negligible advantage
Adveuf-cma

A,Σ,Q (λ).

EUF-CMAA
Σ,Q(λ)

Q, c← ∅, 0
vk, sk← Σ.KeyGen(1λ)

(µ⋆, σ⋆)← ASIGN(vk)

return (µ⋆, ·) /∈ Q ∧ Verify(vk, σ⋆, µ⋆)

SIGN(µ)

if c ≥ Q then abort

σ ← Σ.Sign(sk, µ)

c← c+ 1

Q ← Q∪ {(µ, σ)}
return σ

Fig. 1. Existential Unforgeability under Chosen Message Attacks Few Times Signature
Schemes (EUF-CMAQ). EUF-CMA is recovered by setting Q > poly(λ).

2.3 Online/Offline Signatures

The notion of online/offline signatures was first proposed by Even, Goldreich, and
Micali in [EGM90,MGE91], and improved upon in later works [EGM96,ST01].
The online/offline paradigm aims to offload significant amounts of computation
to a pre-computation (or offline) phase that does not depend on the message
and can thus be precomputed.

Definition 4 (Online/Offline Signature Scheme). An online-offline sig-
nature scheme Σ consists of four PPT algorithms (KeyGen,PreSign, Sign,Verify)
such that:

KeyGen The key generation algorithm is a randomised algorithm that takes as
input a security parameter 1λ and outputs a pair (vk, sk), the verification key
and signing key, respectively. We write (vk, sk)← KeyGen(1λ).

PreSign The pre-signing algorithm takes as input the signing key sk and outputs a
pre-signing state ρ. The presigning algorithm is randomised. We write this as
ρ← PreSign(sk). The signing algorithm may be randomised or deterministic.
We may write ρ← PreSign(sk; r) to unearth the used randomness explicitly.

Sign The signing algorithm takes as input a signing key sk, a pre–signing
stage ρ and a message µ and outputs a signature σ. We write this as
σ ← Sign(sk, ρ, µ). The signing algorithm may be randomised or determin-
istic. We may write σ ← Sign(sk, ρ, µ; r) to unearth the used randomness
explicitly.

Verify The verification algorithm takes as input a verification key vk, a signature
σ and a message µ and outputs a bit b, with b = 1 meaning the signature
is valid and b = 0 meaning the signature is invalid. Verify is a deterministic
algorithm. We write b← Verify(vk, σ, µ).

We require that except with negligible probability over (vk, sk)← KeyGen(1λ) and
over ρ← PreSign(sk), it holds that Verify(vk, Sign(sk, ρ, µ), µ) = 1 for all µ.

Online-offline signature schemes can be constructed generically by composing
two signature schemes. A regular long-term signature scheme, for the offline
phase, and a one-time or few-time signature scheme, for both online and offline

KeyGen(1λ)

vk, sk← Σ.KeyGen(1λ)

return vk, sk

PreSign(sk)

vkQ, skQ ← ΣQ.KeyGen(1
λ)

σ ← Σ.Sign(sk, vkQ)

c← 0

return ρ := (vkQ, skQ, σ, c)

Sign(sk, ρ, µ)

assert ρ.c < Q

σQ ← ΣQ.Sign(ρ.skQ, µ)

ρ.c← ρ.c+ 1

return σ := (ρ.vkQ, ρ.σ, σQ)

Verify(vk, σ, µ)

return Σ.Verify(vk, σ, vkQ) ∧ ΣQ.Verify(vkQ, σQ, µ)

Fig. 2. A generic online/offline signature scheme construction.

phases. We will denote the former by Σ and the latter by ΣQ. We give the generic
construction in Figure 2.

The security notion for online-offline signature schemes is identical to the
EUF-CMA notion for general signature schemes except for semantic changes.
In particular, the adversary has oracle access to both Sign and PreSign and its
advantage is bounded as follows.

Proposition 1. Let Σ′ be the online-offline construction in Figure 2. Then for
any PPT A, we have 2 ·Adveuf-cma

A,Σ′ (λ) ≤ Adveuf-cma
B,Σ (λ)+Q′ ·Adveuf-cma

C,ΣQ,Q (λ), where
B and C are PPT adversaries against Σ and ΣQ respectively and where Q′ is the
total number of queries made by A.

Proof (Sketch). The verification algorithm checks Σ.Verify(vk, σ, vkQ) and also
ΣQ.Verify(vkQ, σQ, µ), so to win an adversary either produced a forgery for Σ
or for some ΣQ. The factor Q′ is an artefact of the reduction guessing which
instance of ΣQ the adversary will produces a forgery on; there are at most Q′

many of these.

Performance. As discussed above, the appeal of the online-offline approach and
the generic construction given in Figure 2 is to reduce latency when signing
messages by pre-computing expensive steps. This comes at a cost of bandwidth
(one verification key and two signatures are output by the signing algorithm)
and at a cost for verification (two signatures need to be checked). We note that
the bandwidth cost can be amortised in some settings.

2.4 GPV Signatures

The framework proposed by Gentry, Peikert, and Vaikuntanathan [GPV08], com-
monly known as the GPV framework, provides a generic and provably secure
hash-and-sign framework based on trapdoor sampling and the Random Oracle
Model, see Figure 3. It can be seen as a provable “fix” for the GGH signature
scheme. The key ingredient here is a sampling algorithm that outputs signatures
s whose distribution is statistically close to being independent of the trapdoor

td. Let (TrapGen, SampD, SampPre) be PPT algorithms with the following syntax
and properties [GPV08,MP12,GM18]:

– (A, td)← TrapGen(1n, 1m, q) takes dimensions n,m ∈ N, a modulus q ∈ N. It
generates a matrix A ∈ Zn×m

q and a trapdoor td. For any n ∈ poly(λ) and
m ≥ 5n log q, the distribution of A is within negl(λ) statistical distance to
the uniform distribution on Zn×m

q .
– u ← SampD(1n, 1m, s) with m ≥ 5n log q outputs an element in u ←$ DZm,s.

We have that v := A · u mod q is within negl(λ) statistical distance to the
uniform distribution on Zn

q if s ≥ ηε(Λ
⊥
q (A)) for some ε ∈ negl(λ).

– u′ ← SampPre(td,v, s) with m ≥ 5n log q takes a trapdoor td, a vector v ∈
Zn
q and a parameter s. It samples u′ ∈ Zm satisfying A · u′ ≡ v mod q.

Furthermore, u′ is within negl(λ) statistical distance to u← SampD(1n, 1m, s)
conditioned on v ≡ A · u mod q.

KeyGen(1λ)

A, td← TrapGen(1n, 1m, q)

return vk = A, sk = td

Sign(µ, sk)

r←$ {0, 1}λ; y← SampPre(td, H(µ, r), s)

return (y, r)

Verify(vk, σ, µ)

return ∥y∥
?

≤ β′ ∧H(µ, r)
?≡ A · y

Fig. 3. GPV Signatures

2.5 The Falcon Signature Scheme

Falcon [PFH+22] is a signature scheme based on the GPV framework and essen-
tially makes two optimisations, these being the use of NTRU lattices [SS11] and
the use of fast Fourier sampling [DP16]. Specialization to NTRU lattices neces-
sitates assuming the hardness of lattice problems restricted to NTRU lattices.
Since NTRU lattices are modules over cyclotomic rings, cryptanalysts have alge-
braic structure to try and exploit. A vulnerability resulting from the restriction
to NTRU lattices is known in the “overstretched” regime, where the modulus
q is large in comparison to the dimension n. These regimes are well studied
[ABD16,KF17,DvW21] and are to be avoided. Despite the apparent structure,
lattice problems over NTRU lattices have persevered and there is reason to
believe they remain hard [LS15]. Fast Fourier sampling on the other hand is
an algorithmic speed up that does not affect the security assumptions. Recall
NTRU lattice notation from Section 2. In particular, n is a power of 2, q is a
prime number such that q = 1 mod φ(n), and On

∼= Z(X)/〈Xn + 1〉 is the ring
of integers of the 2n-th cyclotomic field Q(X)/〈Xn + 1〉. Falcon key generation,

signature generation, and signature verification are shown in Figure 4. We note
that for consistency with [PFH+22], we present Falcon in Figure 4 such that
vectors are row vectors instead of column vectors in contrast to the rest of this
work. Throughout, we let � denote multiplication in the Fourier domain which
extends coordinate-wise to vectors and matrices.

Key Generation. The KeyGen procedure of Falcon consists of two main steps:

– Solving an NTRU equation involves generating polynomials for the
secret-key f and g with small integer coefficients, as well as generating of
F,G ∈ On such that f ·G− g · F = q, using NTRUGen.

– Trapdoor generation is roughly equivalent to the TrapGen procedure in
GPV. It uses the generated polynomials, f, g, F,G ∈ Z[X]/(Xn+1), and with
some processing, makes them more compact. The matrix formed of these
negacyclic coefficient blocks, B←

[
g −f
G −F

]t
, is expressed in FFT domain as

B̂, and is then used to create Ĝ ← B̂∗ · B̂, which we then use to finally
generate a compact trapdoor T ← ffLDL∗(Ĝ). Superscripts ˆ and ∗ refer
to FFT and complex conjugation, respectively. The procedure then returns
sk := (B̂,T) and vk = h, where h← g · f−1 mod q.

Signature Generation. The Sign procedure of Falcon contains three main com-
ponents:

– Hashing the message returns a random vector in Zn
q (in the Random

Oracle Model). Using SHAKE, some random salt and the message are hashed
to produce a polynomial c ∈ Zq[X] of degree n.

– Trapdoor sampling computes the signature without leaking the secret
key. Falcon employs a fast Fourier sampler called ffSampling, which takes as
input t, which is a preimage of c, and T, which is a Falcon tree apart of
the secret key and is pre-processed in key generation. The resulting vector
z is an element of the kernel lattice close to t. The uncompressed signature
becomes s = B̂� (t− z).

– Compression takes the inverse FFT of s, denoted (s0, s1), satisfying s0 +
s1 · h = c mod q and returns s1, encoded as a bitstring.

Signature Verification. The Verify procedure of Falcon mainly contains recon-
structions and bound checks:

– Reconstructions. The target c is computed from the message and salt, as
is s1 using the Decompress procedure. There also exists sufficient information
to reconstruct s0 = c− s1 · h mod q.

– Bound checks. The reconstructed signature pair (s0, s1) are finally ac-
cepted so long as they are small enough, i.e. ||(s0, s1)||2 ≤

⌊
β2
⌋
.

KeyGen(ϕ, q)

f, g, F,G← NTRUGen(ϕ, q)

B← [g,−f ;G,−F]

B̂← FFT(B)

Ĝ← B̂∗ · B̂
T← ffLDL∗(Ĝ)

for each leaf of T
leaf.value← σ/

√
leaf.value

h← g · f−1 mod q

return (sk := (B̂,T), vk := h)

Sign(sk, µ,
⌊
β2

⌋
)

r←$ {0, 1}320

c← HashToPoint(r∥µ, q, n)
t← (− 1

q
FFT(c)⊙ FFT(F),− 1

q
FFT(c)⊙ FFT(f))

do

do

z← ffSamplingn(t,T); s = (t− z)⊙ B̂

while ∥s∥2 >
⌊
β2

⌋
(s0, s1)← invFFT(s)

s← Compress(s1, 8 · sbytelen− 328)

while s = ⊥
return σ := (r, s)

Verify(vk, σ, µ)

c← HashToPoint(r∥µ, q, n); s1 ← Decompress(s, 8 · sbytelen− 328)

if (s1 = ⊥) then 0

s0 ← c− s1 · h mod q; if ∥(s0, s1)∥2 ≤
⌊
β2

⌋
then 1 else 0

Fig. 4. The Falcon signature scheme [PFH+22].

3 GPV-like Few-Time Signatures

The online/offline paradigm relies on a one-time signature scheme for the online
signing part. In previous iterations of the paradigm this has been achieved via
a Merkle one-time signatures [EGM90,EGM96] or by utilising trapdoor hash
functions [ST01].

In our construction, we base our one-time signature scheme on GGH signa-
tures in “GPV-style”, by which we mean instantiating GPV signatures without
trapdoor sampling that ensures the outputs are independent of the trapdoor td.
Since we are only using the trapdoor a few times, we can bound the leakage
and thus security loss. We give our construction in Figure 5. The only difference
is that we precompute Q preimages xpre,i in key generation, that we “mix in”
these preimages during signing that we call SampPre≫ instead of SampPre when
signing.

Unlike SampPre, which is used in Falcon, we can be instead instantiate a more
efficient procedure, SampPre≫, that is indifferent to the output distribution,
beyond that the outputs are short. This grants us the freedom to instantiate
SampPre≫ with fast pre-image generating algorithms, without any randomness
requirements. We give an example in Figure 7 based on Babai rounding. By “mix
in” we mean taking the sum of xpre,c and x in Sign, which masks xpre,c. We use
the homomorphic properties on the images and pre-images to assure the mixing
works.

Two natural candidates for SampPre≫ are Babai’s rounding and Nearest
plane algorithms. The latter, while slower should allow for more online signatures
without refreshing the key. We chose the former in our implementation for its
speed, facilitating for rapid online signatures.

KeyGen(1λ, Q)

A, td← TrapGen(1n, 1m, q); c← 0

for 0 ≤ i < Q: xpre,i ← SampD(1n, 1m, s)

return vk = A, sk = (td, {xpre,i}0≤i<Q, c)

Verify(vk, σ, µ)

return ∥y∥
?

≤ β′ ∧H(µ, r)
?≡ A · y

Sign(µ, sk)

r←$ {0, 1}λ

t′ ← A · sk.xpre,c; t← H(µ, r)

x← SampPre≫(sk.td, t− t′)

y← xpre,c + x

sk.c← sk.c+ 1

return (y, r)

Fig. 5. Few-Times GPV-style Signatures

3.1 Unforgeability in the ROM

We prove the following theorem to establish the EUF-CMAQ security of our few
time signatures construction in the ROM.

Theorem 1 (Unforgeability). The advantage Adveuf-cma
A,Σ,Q (λ) of any Q-query

bounded adversary A playing the EUF-CMAQ security in the ROM game pictured
in Figure 6 successfully forges is bounded as

Adveuf-cma
A,Σ,Q (λ) ≤ Q · negl(λ) · 2

Q·
(
log2

(
1+

2π∥x∥2max
s2

)
+

log2 e
2

)
· Advsis√

2m·s(λ)

when s2sim
2π = s2

2π + Ex

(
‖x‖2

)
and

Adveuf-cma
A,Σ,Q (λ) ≤ Q · negl(λ) · 2

Q·
(
log2

(
1+

2πEx(∥x∥2)
s2

)
+

∥x∥2max log2 e

2Ex(∥x∥2)

)
· Advsis√

2m·s(λ)

when s2sim
2π := s2

2π + ‖x‖2max and where,

– Advsis√
2m·s(λ) is advantage of any PPT adversary against the Short Integer

Solutions problem with norm bound
√
2m · s.

– s is the parameter of the spherical discrete Gaussian xpre,
– ssim is the parameter of a simulated spherical discrete Gaussian, and
– ‖x‖2max is the maximum ‖x‖2 over x ∼ SampPre≫(td,U(Zn

q)), and
– λ is the security parameter.

EUF-CMAA
Σ,Q(λ)

Q, c← ∅, 0
vk, sk← Σ.KeyGen(1λ){
ρi ← Σ.PreSign(sk)

}
1≤i≤Q

(µ⋆, σ⋆)← ASIGN(vk)

return (µ⋆, ·) /∈ Q ∧ Verify(vk, σ⋆, µ⋆)

SIGN(µ)

if c ≥ Q then abort

σ ← Σ.Sign(sk, ρc, µ)

c← c+ 1

Q ← Q∪ {(µ, σ)}
return σ

RO(x)

if x /∈ H then

H[x]←$ Zn
q

return H[x]

Fig. 6. EUF-CMAQ in the ROM.

We prove Theorem 1 using a series of game hops in Appendix A, following the
standard GPV proof pattern. We next outline the hops, deferring the details to
Appendix A. Game1 programs the random oracle to answer hash queries as the
syndrome of a discrete Gaussian sampler with a possibly larger parameter. Game2
ensures message-salt pairs are not repeated. Game3 simulates signatures as pre-
images of targets obtained from calling the random oracle on salted messages.
Justifying the hop from Game2 to Game3 is the non-trivial part of the proof,
captured by the following lemma 1. Game4 forgets the trapdoor basis matrix
and in its place draws one at random. The proof is completed by transforming
an adversary that wins Game4 into an SIS solver.

Lemma 1 (Query bounded advantage playing Game3 over Game2). For
every adversary AQ playing Game2 or Game3, making at most Q signature queries
before presenting the forgery, and every a ∈ (1,∞),

Pr
[
AGame2

Q (vk) = 1
]

Pr
[
AGame3

Q (vk) = 1
] a−1

a

≤
(
s2sim
s2

)Q

· (1 + ϵ)Q · exp

 (a− 1) · π · ‖x‖2maxQ(
a · (s

2
sim

s2 − 1) + 1
)
· s2

(4)

where,

– s is the parameter of the spherical discrete Gaussian in Game2 xpre,
– ssim is the parameter of the simulator spherical discrete Gaussian in Game3,
– ‖x‖2max is the maximum ‖x‖2 over x ∼ SampPre≫(td,U(Zn

q)).
– and ϵ is a negligible function in the security parameter with ssim ≥ s and

ssim ≥
√
ln(2m(1 + 1/ϵ)/π) ·

√
(a((s2sim/s

2)− 1) + 1).

Proof. Consider an adversaryAQ playing Game2 (Figure 9) or Game3 (Figure 10).
Without loss of generality, assume that the adversary AQ makes exactly Q sig-
nature queries before presenting the forgery. Let (y1,y2, . . . ,yQ) denote the sig-
natures seen by AQ while playing Game 2, that is, if the queries were answered
by the signing algorithm. Let D1 denote the join distribution of such a sequence
(y1,y2, . . . ,yQ). Let (ysim

1 ,ysim
2 , . . . ,ysim

Q) denote the sequence of signature query
answers seen by AQ while playing Game 3, that is, if the simulator Sim answers
the signature queries. Let D2 denote the joint distribution of such a sequence

(ysim
1 ,ysim

2 , . . . ,ysim
Q). Let E be the event of a successful adversary forgery at the

end. Then D1(E) = Pr
[
AGame2

Q (vk) = 1
]

and D2(E) = Pr
[
AGame3

Q (vk) = 1
]

are the probability that the adversary succeeds in Game 2 and Game 3 respec-
tively. From the probability preservation of Rényi entropy (Equation (2)), for
a ∈ (1,∞)

D1(E) ≤ [D2(E)Ra (D1||D2)]
a−1
a . (5)

Therefore, to claim the bound in the lemma, it suffices to bound Ra(D1‖D2).
We begin by decomposing D1 and D2 into distributions indexed by the signature
queries. Regardless of the if Game 2 or Game 3 is played, the signatures generated
are mutually independent across queries. Therefore, both distributions factor
into products D1 =

∏Q
j=1D1,j and D2 =

∏Q
j=1D2,j , where D1,j and D2,j are

respectively the distributions followed by yj and ysim
j . By the multiplicativity of

Rényi divergence, for a ∈ [1,∞],

Ra

 Q∏
j=1

D1,j

∥∥∥∥∥
Q∏

j=1

D2,j

 =

Q∏
j=1

Ra(D1,j‖D2,j). (6)

Further, D1,j , 1 ≤ j ≤ Q are all identical, whose distribution we next determine.
Since the signature vector y ← x + xpre in Game2 is the sum of independent
vectors x and xpre, its distribution is the convolution

DZm,s ◦ SampPre≫(td,U(Zn
q)),

of the distributions of x and xpre. Written explicitly, the signature y follows the
distribution w ∈ Zm 7−→ Pr[y = w] mapping

w 7−→
Ex

[
exp(−π||w − x||2/s2)

]∑
w∈Zm Ex exp(−π||w − x||2/s2)

,

where the expectation is taken over the pre-images x ∼ SampPre≫(td,U(Zn
q))

induced by uniform images U(Zn
q). We denote this distribution as Ex (DZm,s,−x).

In particular, Ex (DZm,s,−x) has mean zero vector and covariance s2 ·In+Var(x).
Likewise, D1,j , 1 ≤ j ≤ Q are all identical, being DZm,ssim by construction.

Substituting for D1,j and D2,j in Equation (6), for a ∈ [1,∞],

Ra

 Q∏
j=1

D1,j

∥∥∥∥∥
Q∏

j=1

D2,j

 = Ra(Ex (DZm,s,−x) ‖DZm,ssim)
Q. (7)

Therefore, it suffices to upper bound Ra(Ex (DZm,s,−x) ‖DZm,ssim). From the def-
inition of Rényi divergence (Equation (1)),

Ra(Ex (DZm,s,−x) ‖DZm,ssim)
a−1

=

[∑
w∈Zm exp(−π‖w‖2/s2sim)

]a−1[∑
w∈Zm Ex exp(−π‖w − x‖2/s2)

]a ∑
w∈Zm

[
Ex exp(−π‖w − x‖2/s2)

]a
exp(−π(a− 1)‖w‖2/s2sim)

.

For each w ∈ Zm, by Jensen’s inequality[
Ex exp(−π‖w − x‖2/s2)

]a ≤ Ex exp(−a · π‖w − x‖2/s2),

since raising the positive random variable exp(−π · ‖w − x‖2/s2) to the a-th
power is convex for a ≥ 1. Therefore,

Ra(Ex (DZm,s,−x) ‖DZm,ssim)
a−1

≤
[∑

w∈Zm exp(−π · ‖w‖2/s2sim)
]a−1[∑

w∈Zm Ex exp(−π · ‖w − x‖2/s2)
]a ∑

w∈Zm

Ex exp(−a · π · ‖w − x‖2/s2)
exp(−π · (a− 1) · ‖w‖2/s2sim)

.

First, let us estimate the normalisation factor. Since Zm has m R−linearly inde-
pendent vectors of length one, by [MR04][Lemma 3.3] the smoothing parameter
ηϵ(Zm) ≤

√
ln(2m(1 + 1/ϵ)/π) and for ssim ≥

√
ln(2m(1 + 1/ϵ)/π) we have,∑

w∈Zm

exp(−π · ‖w‖2/s2sim) ≤ ssim(1 + ϵ).

By the linearity of expectation:1∑
w∈Zm

Ex exp(−π · ‖w − x‖2/s2) = Ex

∑
w∈Zm

exp(−π · ‖w − x‖2/s2) ≥ s.

Therefore,

Ra(Ex (DZm,s,−x) ‖DZm,ssim)
a−1 ≤

sa−1
sim (1 + ϵ)a−1

sa

∑
w∈Zm

[
Ex exp(−a · π · ‖w − x‖2/s2)

]
exp(−π · (a− 1) · ‖w‖2/s2sim)

.

By the linearity of expectation, the right hand side equals

sa−1
sim (1 + ϵ)a−1

sa

∑
w∈Zm

Ex

[
exp(−a · π · ‖w − x‖2/s2)

exp(−π · (a− 1) · ‖w‖2/s2sim)

]

=
sa−1
sim (1 + ϵ)a−1

sa

∑
w∈Zm

Ex exp

(
−π ·

(
a · ‖w − x‖2

s2
− (a− 1) · ‖w‖2

s2sim

))
.

Setting r := s2sim/s
2 and completing the squares in the exponent, we get,

ra−1(1 + ϵ)a−1

s

∑
w∈Zm

Ex exp

(
−π
s2sim
·
{
(a · (r − 1) + 1) · ‖w − a · r

a · (r − 1) + 1
x‖

2

− a · r
(

a · r
a · (r − 1) + 1

− 1

)
‖x‖2

})
,

1 There are no convergence issues here, or later in the proof, when we exchange infinite
summations by claiming linearity of expectation, as the summands are not negative.

which by the linearity of expectation,

=
ra−1(1 + ϵ)a−1

s
· Ex

[
exp

(
π · a
s2

(
a · r

a · (r − 1) + 1
− 1

)
‖x‖2

)
·
∑

w∈Zm

exp

(
−π(a(r − 1) + 1)

s2sim
‖w − a · r

a · (r − 1) + 1
x‖

2
)]

.

As before, by [MR04][Lemma 3.3],∑
w∈Zm

exp

(
−π(a(r − 1) + 1)

s2sim
‖w − ar

a(r − 1) + 1
x‖

2
)
≤ ssim(1 + ϵ)√

(a(r − 1) + 1)
,

since ssim ≥
√

ln(2m(1 + 1/ϵ)/π) ·
√

(a((s2sim/s
2)− 1) + 1). In summary,

Ra(Ex (DZm,s,−x) ‖DZm,ssim)
a−1

≤ ra(1 + ϵ)a√
(a · (r − 1) + 1)

Ex

[
exp

(
πa

s2

(
a− 1

a · (r − 1) + 1

)
‖x‖2

)]
≤ ra(1 + ϵ)a√

(a · (r − 1) + 1)
· exp

(
π · a
s2

(
a− 1

a(r − 1) + 1

)
‖x‖2max

)
.

Therefore,

Ra(Ex (DZm,s,−x) ‖DZm,ssim)
a−1
a

≤

(
ra(1 + ϵ)a√

(a · (r − 1) + 1)

) 1
a

· exp
(
πβ

s2

(
a− 1

a · (r − 1) + 1

)
· ‖x‖2max

)

≤ r · (1 + ϵ) · exp

(
π · (a− 1) · ‖x‖2max

(a · (r − 1) + 1) · s2

)
.

By the probability preservation (Equation (5)) and multiplicativity (Equation (7))
of Rényi entropy,

Pr
[
AGame2

Q (vk) = 1
]

Pr
[
AGame3

Q (vk) = 1
] a−1

a

≤
(
s2sim
s2

)Q

· (1 + ϵ)Q · exp

 (a− 1) · π · ‖x‖2maxQ(
a · (s

2
sim

s2 − 1) + 1
)
· s2

(8)

which is exactly as claimed in the lemma. ut

We restrict the Renyi divergence parameter a in the lemma to a > 1, allowing
calculations with a − 1 in denominators. While applying the lemma in security
arguments, we may optimise over a. Therefore, excluding a = 1 is not an issue.

The constraint ssim ≥
√
ln(2m(1 + 1/ϵ)/π) ·

√
(a((s2sim/s

2)− 1) + 1) in the
lemma appears too restrictive to apply for large a. This is pessimistic and an

artifact of our proof where we used the same ϵ in both applications of the smooth-
ing parameter argument [MR04][Lemma 3.3]. The second application only con-
tributes a multiplicative factor (1+ ϵ)Q/a to the bound. A more refined analysis
with two ϵ parameters is possible, which we exclude for ease of exposition. For
many choices of a, the constraint ssim ≥

√
ln(2m(1 + 1/ϵ)/π) might suffice.

Remark 1. As a sanity check, we may consider the parallelepiped attack [NR06]
on NTRU signatures (and its extensions [DN12]). These attack may try to learn
the ephemeral trapdoor basis from the online signatures. Lemma 1 implies that
(for well chosen parameters) from only a few online signatures Q this will fail. As
the number of signatures Q increases, our bound becomes meaningless, but this
does not immediately imply an attack, i.e. it is not a priori clear our bound is
tight. We leave to future work to establish tighter bounds, allowing potentially
larger Q.

4 A Falcon-based Online-Offline Signature Scheme

In this section we specialise and analyse the few-times signatures from GPV
developed in Section 3 to the Falcon-512 setting, by restricting to the NTRU
lattice underlying Falcon-512 with lattice dimension m = 2 · 512, image space
dimension n = 512 and modulus q = 12, 289. Our Falcon-inspired few-times
signature scheme is presented in Figure 7, again following the notation in Falcon
(as described in Section 2.5), as opposed to GPV.

Remark 2. Many of the elements in Figure 7 are similar or the same as in Fal-
con, with a few exceptions. PreSign offloads some of the FFT conversions on
the secret key needed during Falcon’s signature generation procedure. In this
part we also add the offline generation of two Gaussian vectors. ComputeTarget
reuses operations required in Falcon’s verification procedure. Sign reuses the ini-
tial salting and hashing from Falcon, as well as the final compression. However
the remaining operations are bespoke, including a faster algorithm for sampling
pre-images, SampPre≫, and the algebra used to mask these pre-images. In Fig-
ure 7, SampPre≫ is instantiated with the Babai method, using rounding. PreSign
is computed offline, with ComputeTarget, and the remaining operations are com-
puted online.

In our implementation, the short pre-image function SampPre≫ is imple-
mented using Babai rounding. We observed empirically that pre-image lengths
have expectation Ex‖x‖2 = 5584.61 and standard deviation = 303.67. Further,
the pre-image lengths appear to be sub-Gaussian in practice, suggesting that
except for a probability of 0.03%, the pre-image lengths do not exceed length
5584.61+ 3 · 303.67 = 6495.62. Guided by this empirical observation, we assume
in the analysis that the maximum allowed pre-image length ‖x‖max := 6495.62.
In one desires the analysis to strictly conform to the implementation, it is easy
to add a rejection sampling step to SampPre≫, rejecting pre-images larger than
‖x‖max.

PreSign(sk)

B← [g,−f ;G,−F]

B̂← FFT(B)

u0, u1 ← D2
σ

cpre ← ComputeTarget(h, u0, u1)

return (ρ := u0, u1, cpre)

Sign(sk, ρ, µ)

r←$ {0, 1}320

c′ ← HashToPoint(r∥µ, q, n)
c← c′ + cpre

s′0, s
′
1 ← SampPre≫(c, B̂)

s0 ← s′0 − u0

s1 ← s′1 − u1

s← Compress(s1)

return σ := (r, s)

ComputeTarget(h, u0, u1)

û1 ← NTT(u1)

t̂← h⊙ û1

t← invNTT(t̂) + u0

return t

SampPre≫(c, B̂)

ĉ← FFT(c)

// t̂ = (FFT(c), FFT(0)) · B̂−1

t̂←
(
− 1

q
· ĉ⊙ FFT(F),− 1

q
· ĉ⊙ FFT(f)

)
t← invFFT(t̂); t← round(t); t̂← FFT(t)

ŝ← (FFT(c),FFT(0))− t̂⊙ B̂

s← invFFT(ŝ)

return s

Fig. 7. Few-Times Falcon-style signature generation.

We note that GPV security proof does not apply to Falcon, because it as-
sumes n = Θ(λ), q = λO(1), and m = Θ(n log q) whereas Falcon has m = Θ(n).
Thus, like Falcon our scheme has no formal proof of security that reduces some
known problem to forgeries. As is standard, we establish parameters using cost
estimates for known cryptanalytic attacks. In our case, we rely on the “lattice
estimator” from [APS15].

By matching the simulator and signature variance, we tabulate the security
guarantee from Equation (11). The column “Zero” signature bit security is the bit
security assured by the lattice estimator associated with solving SIS with length√
(m · s2sim)/(2π). The choice of parameters we implemented is highlighted in the

table as “Implemented”.

4.1 Practical Performance

Our implementation is publicly available2 and reuses parts of the publicly avail-
able implementation of Falcon [Por19]. Our main changes, as shown in Figure 7,
are the way in which the target is computed and the calculation of the short
pre-image are reworked. At the same time, many of the typical modules, such
2 https://github.com/jameshoweee/online-offline-sigs/

https://github.com/jameshoweee/online-offline-sigs/

Table 1. Falcon-inspired few-times signature scheme security levels, with security level deterioration
by key reuse, for a variety of pre-image and noise parameters.

Pre-image length,
Noise std. dev.*

Simulator
length†

“Zero” sig bit
security‡

Bit security
deficit per sig§

4 sig bit
security

8 sig bit
security

Small noise 1
(5 584.61, 16)

5 608.03 148.3 17.87 76.82 5.34

Small noise 2
(5 584.61, 32)

5 677.71 147.7 15.87 84.22 20.74

Small noise 3
(5 584.61, 64)

5 948.29 145.8 13.87 90.32 34.84

Small noise 4
(5 584.61, 128)

6 925.68 139.7 11.87 92.22 44.74

Matching lengths¶
(5 584.61, 174.51)

7 897.62 135.1 10.97 91.22 47.34

Implemented∥

(5 584.61, 215)
8 861.28 130.9 10.38 89.38 47.86

Small noise 4
(5 584.61, 256)

9 914.47 127.4 9.87 87.92 48.44

Medium noise#
(5 584.61, 987.23)

32 081.14 98.0 6.02 73.94 49.84

High noise∗∗
(5 584.61, 5 584.61)

178 794.00 71.8 1.98 63.89 55.99

∗ Describing the (length, noise) as (Ex∥x∥, s√
2π

), † Using
√

ms2sim
2π

:=
√

ms2

2π
+ (Ex∥x∥)2

‡ Using the lattice estimator with length
√

(ms2sim)/(2π), § Using Equation (11)
∥ The parameters used in the implementation in Section 4.1, ¶ Where Ex∥x∥ = s

√
m√
2π

Where Ex∥x∥ = sm1/4
√

2π
, ∗∗ Where Ex∥x∥ = s√

2π

as the FFT multiplications, hash functions, and pseudorandomness generation
remain as in Falcon. We also adopt the same parameters from the latest version
of Falcon except for those which we use for discrete Gaussian sampling.

The discrete Gaussian sampler we require has significantly larger standard
deviation than those used in Falcon. In Table 1 we describe security levels for
different standard deviation values, which also defines the value we use in our
proof-of-concept implementation, σ = 215. Since the standard deviation we use
is larger, adapting the same naïve table-based sampler used in Falcon would
be too slow, consume too much memory, and overall be too inefficient. Previous
research [GLP12,BBE+19] dealt with this issue by adopting Peikert’s convolution
lemma [Pei10], which meant two Gaussian samplers from much smaller standard
deviations could be combined to produce one Gaussian sample from a much
larger distribution. This technique was also used in GALACTICS [BBE+19],
which provides a secure, constant-time design for their Gaussian sampler. Overall,
this ensures the clock cycle consumption remains low, which is important despite
this being apart of the offline phase.

We give benchmarks in Table 3. All these benchmarks were run using a
Raspberry Pi 3 Model B, Revision 1.2, equipped with an ARM Cortex-A53
CPU. The system is configured for AArch32 (32-bit), using the latest version
of the Raspberry Pi OS (Bullseye), which is based on Debian 11. We employed

Table 2. Key and signature sizes (in bytes) of our Falcon-based online-offline signature
scheme alongside Dilithium and Ed25519.

Signature Scheme Pubic Key Secret Key Signature
Falcon-512 897 7,553 666
This work, uncompressed 897 15, 106 + τ · 1, 024 897+666+1,024
This work, orig. compressed 897 15, 106 + τ · 845 897+666+845
This work, alt. compressed 897 15, 106 + τ · 780 897+666+780
Dilithium2 1,312 2,528 2,420
Ed25519 32 32 64

We are assuming an online τ -times signature scheme. Orig. compression uses the
same format at Falcon, alt. compression uses different parameters that optimise for
our larger parameters.

Table 3. Benchmark results of comparable signature schemes on an ARM Cortex A53.

Clock Cycles Runtime (ms)
Signature Scheme KeyGen Sign Verify KeyGen Sign Verify
Falcon-512-EMU [PFH+22] 153M 35M 172K 255.09 58.65 0.28
This work (EMU, offline) 153M 6M - 255.09 9.45 -
This work (EMU, online) - 10M 172K - 16.16 0.28
Falcon-512-FPU [PFH+22] 87M 3M 171K 144.93 4.73 0.28
This work (FPU, offline) 87M 1M - 144.93 1.59 -
This work (FPU, online) - 0.8M 171K - 1.29 0.28
Dilithium2 [LDK+22] 1.6M 12.5M 1.7M 2.67 20.87 2.82
Ed25519 [Pet17] 0.5M 0.5M 1.4M 0.81 0.84 2.36

GCC version 10.2.1-6+rpi1 for compilation, targeting the ARMv7l (AArch32)
architecture. We run the benchmarks on the slowest possible clock speed and
only use a single core. The benchmarks are run over 25,000 repetitions and
incorporate sleep states where necessary. Overall, these settings all ensure the
most fair and accurate results on the embedded device.

For Falcon and our construction we also present benchmarks for both single-
precision and double-precision floating-point operations, the former emulates
the 53 bits of floating-point precision required, and the latter does this natively
by utilising the double precision FPU. One of the particular reasons we chose
the ARM Cortex A53 was to observe the contrast between native and emulated
floating-point operations. Since previous research on similar low-cost devices like
the ARM Cortex M7 have shown non-constant runtimes for Falcon [HW23], thus
we decided to run on the ARM Cortex A53 instead.

In order to fairly compare benchmarks, we also include performance results
for Dilithium and Falcon (both using the latest version of their reference imple-
mentations) as well as Ed25519 (taken from [Pet17]).

We present our benchmarks using cycle counts as well as runtime (in millisec-
onds). In Table 3 we present the benchmarks for each of the signature primitives

Table 4. Categorising ARM Cortex A53 benchmarks for offline/online computations.

Clock Cycles Runtime (ms)Signature Scheme Offline Online Offline Online
Falcon-512-EMU [PFH+22] 153 048 368 35 362 439 255.09 58.94
This work, EMU 158 718 728 10 042 709 264.53 16.73
Falcon-512-FPU [PFH+22] 86 957 688 2 991 232 144.93 5.01
This work, FPU 87 916 636 1 118 903 146.53 1.86
Dilithium2 [LDK+22] 1 604 583 14 216 595 2.67 23.69
Ed25519 [Pet17] 483 962 1 920 361 0.81 3.20

and in Table 4, we present these results using the offline and online separations,
all of these are presented for our construction alongside Dilithium2, Falcon-512,
and Ed25519, for comparison.

The overall design of this work aims to improve the online cost in comparison
to current PQC signature schemes and potentially classical schemes in use to-
day. With respect to offline costs, our construction uses the same key generation
procedure and offloads 5.6m cycles from its signature generation to the offline
part, thus increasing the clock cycles required offline by less than 1–4%3. These
extra offline costs mainly contain FFT transformations of four polynomials, dis-
crete Gaussian sampling of two polynomials, and an NTT calculation of a target
polynomial. Thus, there is only a small performance difference between Falcon
and our offline costs. When compared to Dilithium and Ed25519 it is orders of
magnitude slower, but this is likely going to be the case on every platform and
thus is due to the algorithms themselves.

Our online costs still consist of FFT conversions, in particular those needed
when computing the short preimage, but the module overall is significantly less
involved than the preimage computation in Falcon. The remaining operations
required in Sign-Online are some randomness generation, hashing of the message,
and the compression of the signature. These remaining operations utilise the
same functions used in Falcon.

Considering that this proof-of-concept implementation is not highly opti-
mised, the results are promising in comparison to the NIST PQC standards and
to current classical standards like Ed25519.

When comparing the online versions of these signature schemes, the reader
is reminded that for our scheme (and any scheme that utilises the online/offline
paradigm [EGM90,EGM96]) it requires one few-time signature generation and
two verifications (one of the long-term signature and one of the few-time signa-
ture); the regular signature schemes’ costs are simply the cost of one signature
generation and one signature verification.

In comparison to the signature generation costs, our construction requires
3.6x less clock cycles compared to Falcon, which reduces to 3.5x when the full
online costs are considered with the additional signature verification. We also
see that our construction requires fewer clock cycles than Dilithium2, using both
3 Depending on whether the floating-point arithmetic is emulated or uses the FPU.

0 20m 40m 60m 80m 100m 120m 140m 160m
Ed25519

Dilithium2

Falcon-512-FPU

This work, FPU

Falcon-512-EMU

This work, EMU

Clock Cycles

KeyGen Sign-Offline

0 5m 10m 15m 20m 25m 30m 35m

This work, FPU

Ed25519

Falcon-512-FPU

This work, EMU

Dilithium2

Falcon-512-EMU

Clock Cycles

Sign-Online Verify

Fig. 8. Key generation, signature generation (offline and online), and verify bench-
marks on ARM Cortex A53. Top graph consists of total offline cost, key generation +
sign offline cycles. Bottom graph consists of total online cost, signature generation and
verification cycles.

native and emulated floating-point arithmetic, and even competes with Ed25519
when using native floats.

When compared to Ed25519 for overall online costs, Falcon’s fast verification
means we gain advantages when considering total signature and verification costs
with Ed25519 requiring just under 2m clock cycles and our construction requiring
just over 1m cycles, overall reducing cycles needed by 58%.

References
AAC+22. Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,

John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta,
et al. NIST IR 8413: Status report on the third round of the NIST post-
quantum cryptography standardization process. US Department of Com-
merce, NIST, 2022. 1

ABD16. Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on
overstretched NTRU assumptions - cryptanalysis of some FHE and graded

encoding schemes. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 153–178. Springer,
Berlin, Heidelberg, August 2016. 2.5

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of Learning with Errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015. 4, A

Bab86. László Babai. On lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica, 6:1–13, 1986. 2, 2

BBE+19. Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque,
Mélissa Rossi, and Mehdi Tibouchi. GALACTICS: Gaussian sampling for
lattice-based constant- time implementation of cryptographic signatures,
revisited. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 2147–2164. ACM Press,
November 2019. 4.1

BLR+18. Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien
Stehlé, and Ron Steinfeld. Improved security proofs in lattice-based cryp-
tography: Using the Rényi divergence rather than the statistical distance.
Journal of Cryptology, 31(2):610–640, April 2018. 1, 1.1, 2

DLP14. Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-
based encryption over NTRU lattices. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 22–41.
Springer, Berlin, Heidelberg, December 2014. 1

DN12. Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Crypt-
analysis of NTRUSign countermeasures. In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 433–450.
Springer, Berlin, Heidelberg, December 2012. 1.1, 1

DP16. Léo Ducas and Thomas Prest. Fast Fourier Orthogonalization. In Proceed-
ings of the ACM on International Symposium on Symbolic and Algebraic
Computation, pages 191–198, 2016. 1, 2, 2.5

DPPvW22. Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel P. J.
van Woerden. Hawk: Module LIP makes lattice signatures fast, com-
pact and simple. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part IV, volume 13794 of LNCS, pages 65–94. Springer,
Cham, December 2022. 1

DvW21. Léo Ducas and Wessel P. J. van Woerden. NTRU fatigue: How stretched
is overstretched? In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part IV, volume 13093 of LNCS, pages 3–32. Springer,
Cham, December 2021. 2.5

EFG+22. Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi,
Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mi-
taka: A simpler, parallelizable, maskable variant of falcon. In Orr Dunkel-
man and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, vol-
ume 13277 of LNCS, pages 222–253. Springer, Cham, May / June 2022.
1

EGM90. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital
schemes. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 263–275. Springer, New York, August 1990. 1, 2.3, 3, 4.1

EGM96. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital
signatures. Journal of Cryptology, 9(1):35–67, March 1996. 1, 2.3, 3, 4.1

GGH97. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosys-
tems from lattice reduction problems. In Burton S. Kaliski, Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 112–131. Springer, Berlin, Hei-
delberg, August 1997. 1

GLP12. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume
7428 of LNCS, pages 530–547. Springer, Berlin, Heidelberg, September
2012. 4.1

GM18. Nicholas Genise and Daniele Micciancio. Faster Gaussian sampling for
trapdoor lattices with arbitrary modulus. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of
LNCS, pages 174–203. Springer, Cham, April / May 2018. 2.4

GMRR22. Morgane Guerreau, Ange Martinelli, Thomas Ricosset, and Mélissa Rossi.
The hidden parallelepiped is back again: Power analysis attacks on falcon.
IACR TCHES, 2022(3):141–164, 2022. 1

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press,
May 2008. 1, 2.4, A

HHP+03. Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silver-
man, and William Whyte. NTRUSIGN: Digital signatures using the
NTRU lattice. In Marc Joye, editor, CT-RSA 2003, volume 2612 of LNCS,
pages 122–140. Springer, Berlin, Heidelberg, April 2003. 1

HW23. James Howe and Bas Westerbaan. Benchmarking and analysing the
NIST PQC lattice-based signature schemes standards on the ARM Cor-
tex M7. In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, edi-
tors, AFRICACRYPT 23, volume 14064 of LNCS, pages 442–462. Springer,
Cham, July 2023. 1, 4.1

KA21. Emre Karabulut and Aydin Aysu. FALCON down: Breaking FALCON
post-quantum signature scheme through side-channel attacks. In 58th
ACM/IEEE Design Automation Conference, DAC 2021, San Francisco,
CA, USA, December 5-9, 2021, pages 691–696. IEEE, 2021. 1

KF17. Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on over-
stretched NTRU parameters. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages
3–26. Springer, Cham, April / May 2017. 2.5

LDK+22. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Pe-
ter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022. 3, 4

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reduc-
tions for module lattices. DCC, 75(3):565–599, 2015. 2.5

LTYZ24. Xiuhan Lin, Mehdi Tibouchi, Yang Yu, and Shiduo Zhang. Do not disturb
a sleeping falcon: Floating-point error sensitivity of the falcon sampler and
its consequences. Cryptology ePrint Archive, Paper 2024/1709, 2024. 1

MGE91. Silvio Micali, Oded Goldreich, and Shimon Even. On-line/off-line digital
signing. U.S. Patent #5,016,274, May 1991. https://patents.google.
com/patent/US5016274A/en. 2.3

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://patents.google.com/patent/US5016274A/en
https://patents.google.com/patent/US5016274A/en

ML-23a. FIPS 204 (Initial Public Draft): Module-Lattice-Based Digital Signature
Standard. National Institute of Standards and Technology, NIST FIPS
PUB 204, U.S. Department of Commerce, August 2023. 1

ML-23b. FIPS 203 (Initial Public Draft): Module-Lattice-Based Key-Encapsulation
Mechanism Standard. National Institute of Standards and Technology,
NIST FIPS PUB 203, U.S. Department of Commerce, August 2023. 1

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
Berlin, Heidelberg, April 2012. 2.4

MR04. Daniele Micciancio and Oded Regev. Worst-case to average-case reduc-
tions based on Gaussian measures. In 45th FOCS, pages 372–381. IEEE
Computer Society Press, October 2004. 2, 3.1, 3.1

NR06. Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Crypt-
analysis of GGH and NTRU signatures. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 271–288. Springer, Berlin,
Heidelberg, May / June 2006. 1, 1.1, 1

Pei10. Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 80–97.
Springer, Berlin, Heidelberg, August 2010. 4.1

Pet17. Orson Peters. Ed25519. https://github.com/orlp/ed25519, 2017. com-
mit: b1f19fab4aebe607805620d25a5e42566ce46a0e. 3, 4.1, 4

PFH+22. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical re-
port, National Institute of Standards and Technology, 2022. available
at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022. 1, 2.5, 4, 3, 4

Por19. Thomas Pornin. New efficient, constant-time implementations of Falcon.
Cryptology ePrint Archive, Report 2019/893, 2019. 4.1

SLH23. FIPS 205 (Initial Public Draft): Stateless Hash-Based Digital Signature
Standard. National Institute of Standards and Technology, NIST FIPS
PUB 205, U.S. Department of Commerce, August 2023. 1

SS11. Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-
case problems over ideal lattices. In Kenneth G. Paterson, editor, EU-
ROCRYPT 2011, volume 6632 of LNCS, pages 27–47. Springer, Berlin,
Heidelberg, May 2011. 1, 2.5

ST01. Adi Shamir and Yael Tauman. Improved online/offline signature schemes.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 355–
367. Springer, Berlin, Heidelberg, August 2001. 2.3, 3

ZLYW23. Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang. Improved power
analysis attacks on falcon. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part IV, volume 14007 of LNCS, pages 565–595.
Springer, Cham, April 2023. 1

A Proof of Theorem 1

Proof. We start the game hop proof with the EUF-CMA game specialised to the
GPV-Online/Offline signatures in the ROM as Game 0, illustrated in Figure 9.

https://github.com/orlp/ed25519
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

To ease notation, we leave the bookkeeping of the number of queries implicit in
the games that follow, i.e. we restrict to adversaries that only submit up to Q
queries.

Game1: Programming the random oracle. In the first hop, we program the ran-
dom oracle to answer hash queries as follows. Given a (µ, r) hash query, look
up if (µ, r) was previously queried. If so, answer as before. Otherwise, sam-
ple y ∼ DZm,ssim , using a discrete Gaussian sampler SampD(1n, 1m, ssim) where
s2sim = r · s2, for some positive real parameter r ≥ 1, store y(s) in a pre-
image list as P(µ, r) ← y, and programme the random oracle RO at (µ, r) as
RO(µ, r)← A ·y mod q. For ssim exceeding the smoothing parameter ηϵ(Λ∗(A)),
by [GPV08, Lem 5.2], the syndrome A · y mod q is within statistical distance
2ϵ of the uniform distribution in Zn

q . Therefore, Game0 and Game1 distributions
are statistically close and hence indistinguishable. Therefore the adversary’s suc-
cess probability may only increase by a negligible amount, accounted for in the
Q · negl(λ) term in the statement of the theorem.

Game2: checking message-salt pair repeated queries. The next game hop incor-
porates a check to ensure that during a signature query, the salt drawn by the
signing algorithm is not a repetition of a salt that was queried before along with
the same message. We justify this hop from Game1 to Game2 by invoking the
fundamental lemma of game playing, which assures that Pr[repeat] ≤ |Q|/2λ/2,
so the distance in this hop is again accounted for in the the Q · negl(λ) term.

Game3: simulating signatures. We answer the signature query as depicted in
Figure 10. In particular, the random oracle is called on the input message and
the randomly drawn salt, and the returned pre-image y is appended with the salt
and set as the signature. We prove that the probability that a Q-query adversary
wins Game2 is at most the probability of winning Game3, up to the multiplicative
factor on the right side of Lemma 1.

Game4: forget the trapdoor. The final game hop forgets the trapdoor and in place
of the matrix A associated with the trapdoor, draws a random A ←$ Zn×m

q .
Since the trapdoor generation algorithm generates A which are pseudorandom,
the distribution of Game3 and Game4 are indistinguishable.

Constructing a SIS adversary. An adversary that wins Game4 can be translated
into one that solves the SIS problem as follows. To win Game4, the adversary has
to output a (µ⋆, (y⋆, r⋆)) such that H(µ⋆, r⋆) = A · y and ‖y⋆‖2 ≤ β. Without
querying for H(µ⋆, r⋆), the adversary does not know the nearly uniformly ran-
dom target, and therefore can succeed in guessing with a negligible probability
1/qn. Therefore, we may assume that adversary indeed queried for t := H(µ⋆, r⋆).
The randomness of y from the pre-image sampling algorithm ensures that with
high probability y 6= y⋆. Therefore, the non-zero short vector y − y⋆ is in the
dual of the lattice generated by A, since A · y = A · y⋆ = H(µ⋆, r⋆) mod q ⇒
A ·(y−y⋆) = 0 mod q. Further, it is a short lattice vector, since ‖y−y⋆‖2 ≤ 2β.

Game0

Q,H, c← ∅, ∅, 0
(A, td)← TrapGen(1n, 1m, q){
(xi

pre, t
i
pre)← Σ.PreSign(td)}1≤i≤Q

(µ⋆, (y⋆, r⋆))← ASIGN,RO
Q (A)

b0 := (µ⋆, ·) /∈ Q
b1 := ∥y⋆∥ ≤ β

b2 := H[µ, r] = A · y⋆

return b0 ∧ b1 ∧ b2

SIGN(µ)

if c ≥ Q then abort

r←$ {0, 1}λ

t← RO(µ, r)

x← SampPre≫(td, t− tcpre)

y← x+ xc
pre

σ ← (y, r)

c← c+ 1

Q ← Q∪ {(µ, σ)}
return σ

RO(µ, r)

if (µ, r) /∈ H then

H[µ, r]←$ Zn
q

return H[µ, r]

Game1

Q,H,P, c← ∅, ∅, ∅, 0
(A, td)← TrapGen(1n, 1m, q){
(xi

pre, t
i
pre)← Σ.PreSign(td)}1≤i≤Q

(µ⋆, (y⋆, r⋆))← ASIGN,RO
Q (A)

b0 := (µ⋆, ·) /∈ Q
b1 := ∥y⋆∥ ≤ β

b2 := H[µ, r] = A · y⋆

return b0 ∧ b1 ∧ b2

SIGN(µ)

if c ≥ Q then abort

r←$ {0, 1}λ

t← RO(µ, r)

x← SampPre≫(td, t− tcpre)

y← x+ xc
pre

σ ← (y, r)

c← c+ 1

Q ← Q∪ {(µ, σ)}
return σ

RO(µ, r)

if (µ, r) /∈ H then

y←$ SampD(1n, 1m, ssim)

t := A · y mod q

H(µ, r)← t

P(µ, r)← y

return H[µ, r]

Game2

Q,H,P, c← ∅, ∅, ∅, 0
repeat← false

(A, td)← TrapGen(1n, 1m, q){
(xi

pre, t
i
pre)← Σ.PreSign(td)}1≤i≤Q

(µ⋆, (y⋆, r⋆))← ASIGN,RO
Q (A)

b0 := (µ⋆, ·) /∈ Q
b1 := ∥y⋆∥ ≤ β

b2 := H[µ, r] = A · y⋆

return b0 ∧ b1 ∧ b2

SIGN(µ)

if c ≥ Q then abort

r←$ {0, 1}λ

if (µ, r) ∈ H
repeat← true

abort

t← RO(µ, r)

x← SampPre≫(td, t− tcpre)

y← x+ xc
pre

σ ← (y, r)

c← c+ 1

Q ← Q∪ {(µ, σ)}
return σ

RO(µ, r)

if (µ, r) /∈ H then

y←$ SampD(1n, 1m, ssim)

t := A · y mod q

H(µ, r)← t

P(µ, r)← y

return H[µ, r]

Fig. 9. Game0 to Game2

The only hop that contributes non negligibly to the bit security claimed in
the theorem is the jump from Game2 to Game3, which Lemma 1 bounds as

Pr
[
AGame2

Q (vk) = 1
]

Pr
[
AGame3

Q (vk) = 1
] a−1

a

≤ 2

log2

(
s2sim
s2

)
+

(a−1)π∥x∥2max log2 e(
a(

s2
sim
s2

−1)+1

)
s2

Q

. (9)

Here, we ignored the (1 + ϵ)Q by choosing a small enough parameter ϵ = 2−128.
We have the two parameters a and r to optimize this bound. We will pick a
to be big enough to ensure (a − 1)/a is close to one. By choosing the largest a
satisfying the constraint ssim ≥

√
ln(2m(1 + 1/ϵ)/π) ·

√
(a((s2sim/s

2)− 1) + 1) of
Lemma 1, we may approximate (a−1)/a ≈ 1 and (a−1)/(a(s2sim/s

2−1))+1) ≈
1/(s2sim/s

2 − 1). Hence, Equation (9) simplifies to

− log2

(
Pr
[
AGame2

Q (vk) = 1
])
≤

− log2

(
Pr
[
AGame3

Q (vk) = 1
])
−

log2

(
s2sim
s2

)
+

π‖x‖2max log2 e(
s2sim
s2 − 1

)
s2

Q. (10)

We bound log2

(
Pr
[
AGame4

Q (vk) = 1
])

empirically using the lattice estimator
[APS15], which considers the best known cryptanalytic algorithms for forgery
by solving SIS. This estimate depends on the choice of the simulator Gaussian
parameter ssim. We can choose the s2sim/s

2 to balance the two terms on Equa-
tion (10). One simple choice (which may not be asymptotically optimal) is to
match the simulator and signature variances by setting s2sim

2π = s2

2π + Ex

(
‖x‖2

)
,

resulting in the right-most term in Equation (10) beinglog2

1 +
2πEx

(
‖x‖2

)
s2

+
‖x‖2max log2 e

2Ex

(
‖x‖2

)
 ·Q. (11)

Another choice is the higher value s2sim
2π := s2

2π+‖x‖
2
max, resulting in the right-most

term in Equation (10) being(
log2

(
1 +

2π‖x‖2max

s2

)
+

log2 e

2

)
·Q, (12)

which is smaller than Equation (11). Substituting, Equation (11) and Equa-
tion (12) into Equation (10), proves the bound. ut

Game3

Q,H,P, c← ∅, ∅, ∅, 0
repeat← false

(A, td)← TrapGen(1n, 1m, q){
(xi

pre, t
i
pre)← Σ.PreSign(td)}1≤i≤Q

(µ⋆, (y⋆, r⋆))← ASIGN,RO
Q (A)

b0 := (µ⋆, ·) /∈ Q
b1 := ∥y⋆∥ ≤ β

b2 := H[µ, r] = A · y⋆

return b0 ∧ b1 ∧ b2

SIGN(µ)

if c ≥ Q then abort

r←$ {0, 1}λ

if (µ, r) ∈ H
repeat← true

abort

RO(µ, r)

y← P[µ, r]
σ ← (y, r)

c← c+ 1

Q ← Q∪ {(µ, σ)}
return σ

RO(µ, r)

if (µ, r) /∈ H then

y←$ SampD(1n, 1m, ssim)

t := A · y mod q

H(µ, r)← t

P(µ, r)← y

return H[µ, r]

Game4

Q,H,P, c← ∅, ∅, ∅, 0
repeated← false

A←$ Zn×m
q

(µ⋆, (y⋆, r⋆))← ASIGN,RO
Q (A){

(xi
pre, t

i
pre)← Σ.PreSign(td)}1≤i≤Q

b0 := (µ⋆, ·) /∈ Q
b1 := ∥y⋆∥ ≤ β

b2 := H[µ, r] = A · y⋆

return b0 ∧ b1 ∧ b2

SIGN(µ)

if c ≥ Q then abort

r←$ {0, 1}λ

if (µ, r) ∈ H
repeat← true

abort

RO(µ, r)

y← P[µ, r]
σ ← (y, r)

c← c+ 1

Q ← Q∪ {(µ, σ)}
return σ

RO(µ, r)

if (µ, r) /∈ H then

y←$ SampD(1n, 1m, ssim)

t := A · y mod q

H(µ, r)← t

P(µ, r)← y

return H[µ, r]

Fig. 10. Game3 and Game4

	Post-Quantum Online/Offline Signatures
	Introduction
	Contributions
	Organisation

	Preliminaries
	Digital Signatures
	Few-Times Signatures
	Online/Offline Signatures
	GPV Signatures
	The Falcon Signature Scheme

	GPV-like Few-Time Signatures
	Unforgeability in the ROM

	A Falcon-based Online-Offline Signature Scheme
	Practical Performance

	Proof of Theorem 1

