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Abstract. The Module Learning with Errors (MLWE) problem is one
of the most commonly used hardness assumption in lattice-based cryp-
tography. In its standard version, a matrix A is sampled uniformly at
random over a quotient ring Rq, as well as noisy linear equations in the
form of As + e mod q, where s is the secret, sampled uniformly at ran-
dom over Rq, and e is the error, coming from a Gaussian distribution.
Many previous works have focused on variants of MLWE, where the se-
cret and/or the error are sampled from different distributions. Only few
works have focused on different distributions for the matrix A. One vari-
ant proposed in the literature is to consider matrix distributions, where
the low-order bits of a uniform A are deleted. This seems a natural
approach in order to save in bandwidth. We call it truncated MLWE.
In this work, we show that the hardness of standard MLWE implies the
hardness of truncated MLWE, both for search and decision versions.
Prior works only covered the search variant and relied on the (mod-
ule) NTRU assumption, limitations which we are able to overcome. Over-
all, we provide two approaches, offering different advantages. The first
uses a general Rényi divergence argument, applicable to a wide range of
secret/error distributions, but which only works for the search variants
of (truncated) MLWE. The second applies to the decision versions, by
going through an intermediate variant of MLWE, where additional hints
on the secret are given to the adversary. However, the reduction makes
use of discrete Gaussian distributions.
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1 Introduction

The Module Learning with Errors (MLWE) problem [LS15] is among the most
commonly used hardness assumptions in lattice-based cryptography. Besides its
strong connection to well-studied, worst-case, structured lattice problems, it also
comes with an easy-to-work-with shape in the language of linear algebra. It has
shown to be very versatile in its possible applications in cryptography. Infor-
mally, MLWE can be seen as noisy linear equations over the quotient Rq := R/qR
for some ring R and positive integer q. More formally, a sample of MLWE can
be described as follows. Sample a matrix A from a distribution Dmat over Rq, a



secret vector s from a distribution Dsec over Rq and an error vector e from a dis-
tribution Derr over R. Then, compute b = As + e mod q and output (A, b). The
search variant of MLWE asks to find the secret s, whereas the decision variant
asks to distinguish an MLWE sample from an instance of the uniform distribu-
tion of matrices and vectors over Rq. Originally, the problem was studied over
the special ring R = Z, and termed Learning with Errors (LWE) [Reg05,Reg09].
Later, the problem was generalized to the ring of integers of number fields of
higher degrees [LS15]. The original formulation of MLWE, which is connected by
a worst-case to average-case reduction to well-studied module lattice problems,
sets Dmat and Dsec as the uniform distributions over Rq and Derr as a rounded
or discrete Gaussian distribution [Reg05,LS15]. The reduction first made use of
quantum algorithms, but was later made classical [Pei09,BLP+13,BJRW20].

Since then, different lines of work studied the hardness of MLWE for differ-
ent distributions. Regarding variants for the secret distribution, an early result
showed that, with only a small loss in the row dimension of A, the secret dis-
tribution Dsec can be set the same as the error distribution Derr [ACPS09]. This
variant is commonly referred to as MLWE in its Hermite normal form. More-
over, the hardness of MLWE where the secret is sampled uniformly over a small
subset of Rq was established for the degree-1 case in [GKPV10,BLP+13,Mic18]
(focusing on the special subset {0, 1}). It was then generalized to rings of larger
degrees [BJRW20,BJRW23] and to any secret distribution with enough min-
entropy [BD20,BJRW22,LWZW24]. Regarding variants for the error distribu-
tion, different results have shown the hardness of MLWE if the error is sampled
uniformly over a small subset of Zq [DM13,MP13,BCD+16,BLR+18,STA20] and
for higher-degree rings Rq [BJRW23]. So far, only few works have studied the
hardness of MLWE when the matrix A does not follow the uniform distribution
over Rq. By a rather simple reduction, one can reduce standard MLWE with a
uniform matrix to a variant where A is composed of polynomials which only have
binary coefficients.3 The idea is to compute the bit-decomposition of every coeffi-
cient of each polynomial entry in the uniform A = bin(A) ·G, where G is the so-
called gadget matrix. A given MLWE instance (A, As+e) then automatically de-
fines an instance of MLWE with a binary matrix (bin(A), bin(A)s′+e), where s′ =
Gs. If A was originally an m × n matrix, bin(A) is now an m × (n · ⌈log q⌉)
matrix. Other works have used matrix distributions Dmat that are computa-
tionally [GKPV10,BD20], statistically [Reg05,GPV08], or Rényi [BLR+18] close
to the uniform distribution. In a recent work [JLS24], the study of plain LWE
with a sparse matrix was initiated, yielding improved computation and storage
efficiency.

Truncated MLWE. In this work, we study the hardness of MLWE for a different
matrix distribution which has been considered in a recent result [JZW+23].4

3 Throughout this work, we use the so-called coefficient embedding to identify elements
in Rq with polynomials having coefficients in Zq.

4 In [JZW+23], a more general notion of MLWE with semiuniform matrices is intro-
duced. As we are not aware of any concrete applications of their more general notion,
we decided to keep the presentation of the problem as simple as possible in our work.



The formulation of the problem is rather simple. To sample the matrix, for some
small constant c, one samples some matrix U uniformly at random over Rq, then
deletes the c lowest-order bits of every coefficient of each entry in U. We say
that the matrix is truncated and write A = Trunc(U, c). As before, a sample is
given by (A, As + e) for some secret s and error e. Subsequently, we call the
variant the truncated MLWE problem. Intuitively, the motivation of this variant
is to save in bandwidth. Whenever we have to send an MLWE instance (A, b)
(in form of a public key or an encrypted message, for instance), the size of the
message to be sent is smaller if we delete the low-order bits of every entry of the
matrix. In [JZW+23], a reduction from the module variant of the NTRU problem
to the search variant of truncated MLWE (with entropic secret) was proven. As
the NTRU assumption [HPS98] and its module version [CPS+20] are seen as less
standard than MLWE and the search problem is not enough for many security
notions, like standard IND-CPA security of encryption schemes, we would ideally
like to show that the hardness of decision truncated MLWE can be reduced from
the hardness of standard MLWE. This leaves the following open problem stated
by [JZW+23], motivating our work:

Does the hardness of standard MLWE imply the hardness of search and
decision truncated MLWE?

Our Contributions. We answer this research question positively. We show two
approaches for how the hardness of standard MLWE implies the hardness of trun-
cated MLWE, both for the search and decision variants. Each of the approaches
comes with different advantages. We provide a detailed comparison between our
two proofs and the results of [JZW+23] in Section 6.

First Approach. In Section 4, we reduce the hardness of truncated MLWE from
standard MLWE using the Rényi divergence as a measure of distance. The
Rényi divergence has been used for tight reductions in lattice-based cryptog-
raphy since [BLL+15,BLR+18]. The high level idea of Theorem 2 is to view
a truncated matrix A = Trunc(U, c) as the difference of the original uniform
matrix U and the deleted low-order bits NU, i.e., A = U − NU. Then a
sample (Trunc(U, c), Trunc(U, c)s + e) can be viewed as an instance of stan-
dard MLWE given by (U, Us+e′), where e′ = −NUs+e. Note that e′ currently
depends on the secret s and might thus leak sensitive information about it. By
a standard Rényi argument, one can make the distribution of e′ independent
of NUs, as long as the error distribution is sufficiently large. The resulting loss
in advantage depends on the ring degree, the size of elements coming from the se-
cret distribution Dsec, the number of deleted bits c, the dimensions of the matrix,
as well as the error distribution Derr. The result generally applies to any secret
and noise distributions for which MLWE is believed to be hard, as long as we can
compute the relevant Rényi divergences, but is restricted to the corresponding
search variant of the problems. Recent results have for instance put forward the
use of Rényi divergence arguments in combination with sum of bounded uniform
distributions [dPKPR24]. In contrast to discrete Gaussian distributions, they are



easier to implement and to protect against side-channel attacks. As of today, the
only way to use Rényi divergence arguments for decision variants, is to make
use of the so-called public sampleability framework of [BLR+18]. However, as we
argue in Section 4.1, this framework only leads to a vacuous reduction in our
context, as the Rényi divergence between truncated and non-truncated matrices
is exponentially large in their dimensions.

Second Approach. To circumvent this issue, we propose an alternative approach
in Section 5, covering both the search and decision versions. The main idea is to
interpret the information NUs leaked about the secret s as approximate hints.
The presence of hints is defining another (already studied) variant of MLWE,
whose hardness can be derived from standard MLWE, both for the decision and
search variants [MKMS22,KLSS23]. Informally, the type of hints we are consid-
ering is Hs + f , for some hint matrix H known to the adversary and some noise
term f unknown to the adversary. In the truncated context, we can simply set H
to store the low-order bits of the matrix, i.e., H = NU. We recall the formal defi-
nition and (a generalized) hardness results of MLWE with hints in Section 3.2 and
then show a reduction from MLWE with hints to truncated MLWE in Theorem 3.
The advantage of now applying this result to the decision variant comes with the
drawback that the hardness results of MLWE with hints only apply to a limited
set of secret and noise distributions. More precisely, the existing reductions make
use of decomposition theorems for discrete Gaussian distributions.

Choice of Rings. All of our results are proven for the class of power-of-two
cyclotomic rings. This restriction is mainly due to tighter reductions, as we have
a good control over the norm growth after multiplying two elements (interpreted
as polynomials) in such rings. It is possible to generalize everything to other
fields and rings, incurring some additional reduction losses due to the so-called
expansion factor [LM06,RSW18]. As power-of-two cyclotomic rings are the most
popular choice, both in theory and in practice, we opted for directly showing the
tighter results.

Trivial Setup. We would like to mention that there is a setup of truncated MLWE
which makes it trivially easy to solve. Let c be the number of bits we are truncat-
ing away from the matrix, i.e, A = Trunc(U, c) = U−NU. If 2c is a factor of the
modulus q, we know that (As mod q) mod 2c = 0 for every MLWE secret s. If
additionally the noise e has infinity norm less than 2c, it would be easy to solve
the truncated MLWE instance. On input (A, b) with b = As + e mod q, we can
simply compute b mod 2c to recover e. We highlight that our reductions do not
allow for this trivial setup. The reduction of Theorem 2 in Section 4 requires the
resulting error distribution of truncated MLWE to be significantly larger than the
shift (that is, NUs) it is trying to hide. This shift is (among other parameters)
determined by 2c, so the error distribution cannot have infinity norm below 2c.
Similarly, the reduction of Theorem 1 in Section 5 requires the resulting error
distribution to be significantly (among other parameters) larger than the infinity
bound on the hint matrix NU, which is bounded by 2c.



2 Preliminaries

2.1 Notations

For any positive integer q, we denote by Zq := Z/qZ the quotient integer ring.
Elements in Z can be reduced mod q and possess a unique representative in the
set {0, . . . , q − 1}. Column vectors are written in bold lowercase letters b and
matrices in bold uppercase letters A. The transpose operator over vectors and
matrices is denoted by bT and AT . The determinant of a matrix A is denoted
by det(A). For any vector b, we denote by ∥b∥ its ℓ2-norm and by ∥b∥∞ its
infinity norm. For any matrix A, we denote by ∥A∥∞ the maximum of the in-
finity norms of its column vectors. For any real number r ∈ R, the operation ⌊r⌉
denotes rounding it to the nearest integer (with 0.5 being rounded up). The op-
eration ⌈r⌉ denotes rounding it up to the next integer. We can component-wise
extend rounding to vectors and matrices. All logarithms are base 2. By negl(λ)
we denote a negligible function in λ, thus it decreases faster towards 0 than the
inverse of any polynomial function. The abbreviation PPT stands for probabilis-
tic polynomial-time.

We define a truncation function Trunc which takes as input an element x
in Zq and a positive integer c, computes and outputs an element in Zq:

Trunc(x, c) = x− (x mod 2c). (1)

Informally, during truncation the c lowest bits of x ∈ Rq are set to 0. We
can naturally extend the truncation function to vectors and matrices over Z
by applying them coefficient-wise and entry-wise, respectively.

Let n be a positive integer. An n × n symmetric real matrix M is said
to be positive semidefinite if xT Mx ≥ 0 for all x ∈ Rn. Moreover, an n × n
matrix M = (mij)i,j∈{1,...,n} is called diagonally dominant if |mii| ≥

∑
j ̸=i|mij |

for all i ∈ {1, . . . , n}. A symmetric diagonally dominant matrix with real non-
negative diagonal entries is positive semidefinite.

2.2 Number Theory

A number field K = Q(ζ) of degree d is a finite field extension of the rationals Q
obtained by adjoining an algebraic number ζ. We denote its ring of integers by R.
We call K a ν-th cyclotomic number field if ζ is a ν-th primitive root of unity.
Its degree is given by d = φ(ν), where φ is Euler’s totient function. We say R is a
power-of-two cyclotomic, if it is the ring of integers of the ν-th cyclotomic field,
where ν can be written as 2k+1 for some positive integer k. In that case, d = 2k.

We can identify K = Q[X]/⟨Φ(X)⟩, where Φ(X) is the minimal polyno-
mial of ζ. Every element x ∈ K can then by written with respect to the ba-
sis
{

1, ζ, . . . , ζd−1}, thus x =
∑d−1

i=0 xiζ
i with xi ∈ Q. The isomorphism τ : K →

Qd which maps x to its coefficient vector τ(x) = (x0, . . . , xd−1)T is called the co-
efficient embedding. By restricting τ to R, we obtain an isomorphism between R
and Zd. By associating the norm of an element x in R with the norm of its



corresponding τ(x) ∈ Zd, it is possible to equip R with a geometry. With this
geometry at hand, we can define norms of vectors and matrices over R, as well
as round and truncate elements in R coefficient-wise.

Every product of two ring elements x · y = z ∈ R can be represented as a
matrix vector product over Z, such that Rot(x)·τ(y) = τ(z) ∈ Zd. We call Rot(x)
the rotation matrix associated to x in the coefficient embedding. The exact shape
of Rot(x) depends on the number field (and associated ring of integers) we are
considering. Throughout the paper, we make use of the fact that for power-of-two
cyclotomics, Rot(x) is nega-cyclic and that ∥Rot(x)∥∞ = ∥x∥∞. One could move
to different fields and rings, at the expenses of the norm of the rotation matrix
being larger than the norm of the underlying ring element. The multiplicative
factor is sometimes also called expansion factor of K [LM06,RSW18].

2.3 Lattices

Let d be a positive integer. A (full-rank) Euclidean lattice Λ is a discrete sub-
group of Rd and can be represented by some basis vectors {b1, . . . , bd} ∈ Rd

s.t. Λ =
{∑d

i=1 zibi | zi ∈ Z
}

. Let B = (bi)i∈{1,...,d} be the matrix composed
of the basis column vectors. The determinant of a lattice is defined as det(Λ) =
det(B). We further define the span of a lattice as Span(Λ) =

{∑d
i=1 ribi | ri ∈ R

}
and its dual by Λ∗ =

{
x ∈ Span(Λ) | xT y ∈ Z ∀y ∈ Λ

}
. Every ring of integers R

defines a lattice Λ = {τ(x) | x ∈ R}, using the coefficient embedding.

2.4 Probability Measures

For a finite set S, we denote by x ← S the process of sampling x uniformly
at random over S. For d, and k1 ≤ k2 positive integers, let Uk1,k2 denote the
uniform distribution over {k1, . . . , k2 − 1}d, i.e., Prx←Uk1,k2

[x = y] = (1/(k2 −
k1))d for every y ∈ {k1, . . . , k2 − 1}d. By using the coefficient embedding τ : R→
Zd, this can be seen as a distribution over R.

Definition 1. Let B, δ > 0 and R be a degree d ring of integers. A distribution D
over R is (B, δ)-bounded if

Pr
x←D

[∥τ(x)∥∞ > B] ≤ δ,

where τ is the coefficient embedding of R into Zd.

Continuous, Rounded and Discrete Gaussian Distributions.

Definition 2 (One-dimensional Gaussian Distribution). Probability dis-
tribution Dµ,σ2 with mean µ ∈ R and variance σ2 ∈ R samples value x ∈ R with
probability distribution function

Dµ,σ2(x) := 1
σ
√

2π
exp(−(x− µ)2/(2σ2)).



Definition 3 (Multivariate Gaussian Distribution). Probability distribu-
tion Dµµµ,ΣΣΣ with mean µµµ ∈ Rd and covariance matrix ΣΣΣ ∈ Rd×d samples vec-
tor x ∈ Rd with probability distribution function

Dµµµ,ΣΣΣ(x) := 1√
(2π)d det(ΣΣΣ)

exp(−(x−µµµ)TΣΣΣ−1(x−µµµ)T /2).

If ΣΣΣ = σ2 · Id, we call the distribution spherical and simply write Dµµµ,σ2 .
For µµµ = 0, we might omit it from the notation and simply write DΣΣΣ .

We further define the rounded Gaussian distribution ⌊Dµµµ,ΣΣΣ⌉ over Zd, where
the instance sampled from the continuous Gaussian distribution over Rd is rounded
to the nearest integer.

Definition 4 (Discrete Gaussian Distribution for Lattices). Probability
distribution DΛ,µµµ,ΣΣΣ over a lattice Λ ⊆ Rd with mean µµµ ∈ Rd and covariance
matrix ΣΣΣ ∈ Rd×d samples vector x ∈ Λ ⊆ Rd in lattice Λ with probability
distribution function

DΛ,µµµ,ΣΣΣ(x) := Dµµµ,ΣΣΣ(x)/
∑
y∈Λ

Dµµµ,ΣΣΣ(y).

As for the continuous case, if ΣΣΣ = σ2 ·Id, we simply write DΛ,µµµ,σ2 . For µµµ = 0,
we might omit it from the notation and simply write DΛ,ΣΣΣ .

The smoothing parameter of a lattice Λ, denoted by ηϵ(Λ) for some ϵ > 0
and introduced by [MR04], is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ϵ,
where ρσ(x) := exp(−π∥x∥2/σ2). When ϵ is omitted, it is some unspecified
negligible function ϵ = negl(λ) in the lattice dimension or the security parameter.
By specializing [MR04, Lem. 3.2] to the integer lattice Λ = Zd (which is self-
dual), we know that for ϵ = 2−d it holds ηϵ(Λ) ≤

√
d.

We use the coefficient embedding τ to sample discrete Gaussian distributions
over R of degree d. We denote by s ← DRm,µµµ,ΣΣΣ the process of sampling s′ ←
DZdm,µµµ,ΣΣΣ and setting s := τ−1(s′).

Lemma 1 (Adapted from [Lyu12, Lem. 4.4]). Let t, σ be positive reals
and R be a degree-d ring of integers. Then DR,σ2 is (t, 2d exp(−t2/2σ2))-bounded.

Lemma 2 (Adapted from [MR04, Lem. 4.4]). Let Λ be an n-dimensional
lattice and ϵ ∈ (0, 1). Then for any ccc ∈ Rn and σ ≥ ηϵ(Λ) we have that ρc,σ2(Λ) :=∑

x∈Λ exp(−π∥x− ccc∥2/σ2) is in the range [1− ϵ, 1 + ϵ] · det(Λ)−1.

The smoothing parameter is relevant when decomposing discrete Gaussians.

Lemma 3 (Decomposition).

1. Let σ, δ ∈ R be two variances and Λ ⊂ Rd be a lattice. Let x1 ← DΛ,σ2

and x2 ← DΛ,δ2 with σ, δ ≥
√

2·η(Λ). Then, x := x1+x2 is statistically close
to a zero-centered discrete Gaussian distribution over Λ with covariance γ2 =
σ2 + δ2.



2. Let Λ ⊂ Zm be a sub-lattice of rank n with basis L ∈ Zm×n. Further, let σ
be a positive real, defining ΣΣΣ = σ2LLT ∈ Zm×m, and ΣΣΣ′ ∈ Zm×m be a
positive semidefinite matrix. Moreover, we assume that the eigenvalues of
the matrix Γ = σ

√
Im − σ2L(ΣΣΣ + ΣΣΣ′)−1LT are greater than or equal to the

smoothing parameter η(Zm). Let x1 ← DZm,ΣΣΣ′ and x2 ← DΛ,ΣΣΣ. Then, x :=
x1 +x2 is statistically close to a zero-centered discrete Gaussian distribution
over Zm with covariance matrix ΣΣΣ + ΣΣΣ′.

Proof. Item 1. This is a special case of [MP13, Thm. 3.3] with m = 2 and z the
all-1 vector. Item 2. Proven in [MKMS22, Lem. 1]. ⊓⊔

Measurement of Distribution Closeness. In the following, we recall the definition
of the Rényi divergence of some order α. Even though it is technically possible
to allow the order to take a real value, we limit ourselves to α being a positive
integer throughout the work.

Definition 5 (Rényi Divergence). For any two probability distributions P
and Q defined over R, the Rényi divergence (RD) of order α > 1 is defined as

RDα(P∥Q) = Ex∼Q

(
P (x)
Q(x)

) α
α−1

.

For discrete distributions with Supp(P ) ⊆ Supp(Q), this is:

RDα(P∥Q) =

 ∑
x∈Supp(P )

P (x)α

Q(x)α−1

 1
α−1

.

Lemma 4 (Multiplicativity [LSS14, Lemma 4.1]). Let α ∈ (1,∞). Let P
and Q denote distributions of a pair of random variables (Y1, Y2). Also, for i ∈
{1, 2} let Pi and Qi be the marginal distribution of Yi under P and Q, respec-
tively. Then if Y1 and Y2 are independent:

RDα(P∥Q) = RDα(P1∥Q1) · RDα(P2∥Q2).

Lemma 5 (Probability Preservation [LSS14, Lemma 4.1]). Let α ∈ (1,∞)
and E ⊆ Supp(Q) be an arbitrary event. Then:

Q(E) ≥ P (E)
α

α−1 /RDα(P∥Q).

Lemma 6 (Data Processing Inequality [vEH14, Theorem 9]). Let α ∈
(1,∞). For any function f , where P f (respectively Qf ) denotes the distribution
of f(y) induced by sampling y ← P (respectively y ← Q):

RDα(P f∥Qf ) ≤ RDα(P∥Q).

Lemma 7 ([Mir17, Prop. 7]). For mean µ ∈ R, variance σ2 ∈ R and or-
der α > 1 it holds

RDα(Dσ2∥Dµ,σ2) = RDα(Dµ,σ2∥Dσ2) = exp(αµ2/(2σ2)).



The following lemma generalizes a result on the Rényi divergence of discrete
Gaussians from [LSS14] to arbitrary orders. We specialize it to spherical discrete
Gaussians for simplicity of presentation.

Lemma 8 (Adapted from [LSS14, Lem. 4.2]). Let α be a positive inte-
ger, µ1µ1µ1,µ2µ2µ2 ∈ Rd and σ be a positive real. Further, let Λ ⊂ Zd be a lattice.
If µ1µ1µ1,µ2µ2µ2 ∈ Λ, let ϵ = 0. Otherwise, fix ϵ ∈ (0, 1) and assume σ ≥ ηϵ(Λ). For any
lattice Λ ∈ Rd:

RDα := RDα(DΛ,µ1µ1µ1,σ2∥DΛ,µ2µ2µ2,σ2) ≤
(

1 + ϵ

1− ϵ

)α/(α−1)
· exp(α∥µ1µ1µ1 −µ2µ2µ2∥2/(2σ2)).

Proof. By definition of discrete Gaussians,

DΛ,µ1µ1µ1,σ2(x) = exp(−∥x−µ1µ1µ1∥2/(2σ2))
ρµ1µ1µ1,σ2(Λ) and

DΛ,µ2µ2µ2,σ2(x) = exp(−∥x−µ2µ2µ2∥2/(2σ2))
ρµ2µ2µ2,σ2(Λ) ,

where ρµµµ,σ2(Λ) =
∑

y∈Λ exp(−∥y−µ1µ1µ1∥2/(2σ2)) for any µµµ ∈ Rd. We compute

RDα =
(∑

x∈Λ

DΛ,µ1µ1µ1,σ2(x)α

DΛ,µ2µ2µ2,σ2(x)α−1

)1/(α−1)

=
ρµ2µ2µ2,σ2(Λ)

ρµ1µ1µ1,σ2(Λ)α/(α−1)

·

(∑
x∈Λ

exp(−α∥x−µ1µ1µ1∥2/(2σ2) + (α− 1)∥x−µ2µ2µ2∥2/(2σ2))
)1/(α−1)

.

We first simplify the right term of the multiplication, then simplify the whole
multiplication. Defining ccc = αµ1µ1µ1 − (α− 1)µ2µ2µ2 we claim that:

Claim. α∥x−µ1µ1µ1∥2 − (α− 1)∥x−µ2µ2µ2∥2 = ∥x− ccc∥2 − α(α− 1)∥µ1µ1µ1 −µ2µ2µ2∥2.

Proof.
α∥x−µ1µ1µ1∥2 − (α− 1)∥x−µ2µ2µ2∥2

= ∥x∥2 + (α− 1)2∥µ2µ2µ2∥2 + 2(α− 1)⟨x,µ2µ2µ2⟩+ α2∥µ1µ1µ1∥2 − 2α⟨x,µ1µ1µ1⟩
− 2α⟨(α− 1)µ2µ2µ2,µ1µ1µ1⟩ − (α− 1)2∥µ2µ2µ2∥2 − (α− 1)∥µ2µ2µ2∥2 + α∥µ1µ1µ1∥2

− α2∥µ1µ1µ1∥2 + 2α⟨(α− 1)µ2µ2µ2,µ1µ1µ1⟩
= ∥x− ccc∥2 − α(α− 1)∥µ1µ1µ1 −µ2µ2µ2∥2

■



Hence the right term of the multiplication simplifies as follows:(∑
x∈Λ

exp(−α∥x−µ1µ1µ1∥2/(2σ2) + (α− 1)∥x−µ2µ2µ2∥2/(2σ2))
)1/(α−1)

= exp(α∥µ1µ1µ1 −µ2µ2µ2∥2/(2σ2)) ·
(∑

x∈Λ

exp(−∥x− ccc∥2/(2σ2))
)1/(α−1)

= exp(α∥µ1µ1µ1 −µ2µ2µ2∥2/(2σ2)) · ρc,σ2(Λ)1/(α−1).

Notice that for µ1µ1µ1,µ2µ2µ2 ∈ Λ and thus c ∈ Λ, we have ρµ1µ1µ1,σ2(Λ) = ρµ2µ2µ2,σ2(Λ) =
ρc,σ2(Λ). From this, we conclude that

ρµ2µ2µ2,σ2(Λ)
ρµ1µ1µ1,σ2(Λ)α/(α−1) · ρc,σ2(Λ)1/(α−1) = 1.

As a result, we get RDα = exp(α∥µ1µ1µ1 −µ2µ2µ2∥2/(2σ2)).
Otherwise, we can use the assumption that σ ≥ ηϵ(Λ) and apply Lemma 2,

fixing ϵ ∈ (0, 1), from which we know that for any zzz ∈ Rn, ρzzz,σ2(Λ) is in the
range [1 − ϵ, 1 + ϵ] · det(Λ)−1. Applying this to the sums in the expression for
RDα gives the claimed interval for RDα. ⊓⊔

3 Module Learning with Errors and Variants

We first introduce in Section 3.1 the definition of truncated Module Learning
with Errors, from which standard LWE [Reg05] and MLWE [LS15] can be ob-
tained as special cases. In Section 3.2, we recall the definition of MLWE with hints
on the secret and prove that its hardness can be reduced from standard MLWE.

3.1 Truncated Module Learning with Errors

Truncated MLWE as we define it has a matrix A ∈ Rm×n
q whose entries are trun-

cated, where Trunc is defined in Equation 1. The only existing similar definition
in the literature is given in [JZW+23], where truncation can be seen as a special
case of semiuniform distributions.

Definition 6 (Truncated MLWE Problem). Let R be a degree-d ring of
integers. Let q, m, n and c be positive integers. Further let Derr and Dsec be dis-
tributions over R. The (non-interactive) experiments of the search and decision
versions of truncated MLWE are defined in Figure 1. For an adversary A trying
to solve the Trunc-MLWE problem, the respective advantage is defined as

AdvS-Trunc-MLWE
q,m,n,Dsec,Derr,c(A) = Pr[S-Trunc-MLWEc

q,m,n,Dsec,Derr
(A) = 1],

and

AdvD-Trunc-MLWE
q,m,n,Dsec,Derr,c(A) = Pr[D-Trunc-MLWEc

q,m,n,Dsec,Derr
(A) = 1]− 1

2 .



S-Trunc-MLWEc
q,m,n,Dsec,Derr

(A)

1 : U← Rm×n
q

2 : A = Trunc(U, c)
3 : s← Dn

sec

4 : e← Dm
err

5 : b := As + e mod q

6 : s′ ← A(A, b)
7 : return s = s′

D-Trunc-MLWEc
q,m,n,Dsec,Derr

(A)

1 : U← Rm×n
q

2 : A = Trunc(U, c)
3 : b← {0, 1}
4 : if b = 0 :
5 : s← Dn

sec

6 : e← Dm
err

7 : b := As + e mod q

8 : else :
9 : b← Rm

q

10 : b′ ← A(A, b)
11 : return b = b′

Fig. 1: The experiments for S-Trunc-MLWE and D-Trunc-MLWE.

If no bits are truncated from the matrix, i.e., c = 0, we recover the stan-
dard MLWE problem [LS15] and simply write S-MLWEq,m,n,Dsec,Derr and respec-
tively D-MLWEq,m,n,Dsec,Derr . If additionally the ring is of degree 1, i.e., R = Z,
we recover the standard LWE problem [Reg05].

3.2 Module Learning with Errors with Hints

In the following, we define a variant of the Module Learning with Errors problem,
where some approximate hints on the MLWE secret s are additionally given to
the adversary, denoted by Hint-MLWE. Concretely, a hint is of the form (H, h),
with h = Hs+ f , where H is the hint matrix of bounded infinity norm and f the
hint noise coming from some distribution Dnoi over R. Note that h is in general
not taken modulo q.

Different variants of MLWE with hints have been proposed in the literature
before. Sometimes, H is honestly sampled from some distribution [KLSS23].
Other times, it is chosen by the adversary. Here, the adversary either has to
choose before seeing the MLWE matrix A, or after having seen it as in [PS24].
In our case, we require the latter case, as we later in Section 5 use Hint-MLWE,
where the hint matrix stores the low-order bits of A.

Definition 7 (MLWE with Hints Problem). Let R be a degree-d ring of
integers. Let q, m, n, B and ℓ be positive integers. Further let Derr, Dsec and Dnoi
be distributions over R. The (interactive) experiments of the search and decision
versions of MLWE with hints are defined in Figure 2. For an adversary A trying
to solve the Hint-MLWE problem, the respective advantage is defined as

AdvS-Hint-MLWE
q,m,n,Dsec,Derr,Dnoi,B,ℓ(A) = Pr[S-Hint-MLWEDnoi,B,ℓ

q,m,n,Dsec,Derr
(A) = 1],



and

AdvD-Hint-MLWE
q,m,n,Dsec,Derr,Dnoi,B,ℓ(A) = Pr[D-Hint-MLWEDnoi,B,ℓ

q,m,n,Dsec,Derr
(A) = 1]− 1

2 .

S-Hint-MLWEDnoi,B,ℓ
q,m,n,Dsec,Derr

(A)

1 : A← Zm×n
q

2 : Zℓ×n ∋ H← A(A)
3 : if ∥H∥∞ > B

4 : return ⊥
5 : s← Dn

sec

6 : e← Dm
err

7 : b := As + e mod q

8 : f ← Dℓ
noi

9 : h := Hs + f mod q

10 : s′ ← A(b, h)
11 : return s = s′

D-Hint-MLWEDnoi,B,ℓ
q,m,n,Dsec,Derr

(A)

1 : A← Zm×n
q

2 : Zℓ×n ∋ H← A(A)
3 : if ∥H∥∞ > B

4 : return ⊥
5 : s← Dn

sec

6 : b← {0, 1}
7 : if b = 0 :
8 : e← Dm

err

9 : b := As + e mod q

10 : else :
11 : b← Zm

q

12 : f ← Dℓ
noi

13 : h := Hs + f mod q

14 : b′ ← A(b, h)
15 : return b = b′

Fig. 2: The experiments for S-Hint-MLWE and D-Hint-MLWE.

The hardness of Hint-MLWE can be reduced from the hardness of the stan-
dard MLWE problem in the case of discrete Gaussian secret and hint noise dis-
tributions. This has been proven in the case of RLWE (that is, the special case
of MLWE with rank n = 1). Our result generalizes their proof to higher ranks,
whereas the proof strategy closely follows their original proof. Note that as in the
original proof, we restrict the result to power-of-two cyclotomics. This is mainly
due to the fact that we bound the infinity norm of Rot(H) through the infinity
norm of the hint matrix H. One could generalize it to other fields and rings,
at the expense of looser norm bounds, determined by the so-called expansion
factor [LM06,RSW18].

Theorem 1 (Adapted from [MKMS22, Thm. 1]). Let R be a power-of-
two cyclotomic ring of degree d. Let q, m, n, B and ℓ be positive integers and σ, δ
be positive reals such that σ

√
1− σ2B2d2n(ℓ + 2)/δ2 ≥

√
d(n + ℓ). By Derr we

denote an arbitrary distribution over R. We set Dsec = DR,σ2 , D′sec = DR,δ2

and Dnoi = DR,δ2 . Then, there is a reduction from the problem MLWEq,m,n,Dsec,Derr

to Hint-MLWEDnoi,B,ℓ
q,m,n,D′

sec,Derr
. More concretely, assuming that there exists an adver-

sary A against Hint-MLWE with advantage Adv, we can construct an adversary B



against MLWE with advantage at least Adv. The reduction works for both, the
search and the decision variants of the problem.

As example parameters, we can set δ2 ≥ 2σ2B2d2n(ℓ+2) and σ ≥
√

2d(n + ℓ).
When setting n = 1, we recover the original result [MKMS22, Thm. 1]. When
setting d = 1, we obtain the result for plain LWE.

Proof. We detail out the proof in the case of the corresponding decision variants.
The proof for the search variants works analogously. Let A be an adversary
against D-Hint-MLWE with advantage Adv. We now construct a reduction B
against D-MLWE with advantage at least Adv.

In the D-MLWE experiment, A is given as input (A, b) ∈ Rm×n
q × Rm

q . The
reduction now forwards A as input to the adversary A, who responds with a
hint matrix H ∈ Rℓ×n such that ∥H∥∞ := ∥τ(H)∥∞ ≤ B.

The matrix H defines the matrix Rot(H) ∈ Zdℓ×dn, where every coefficient
in H is replaced by its corresponding multiplication matrix. The matrix Rot(H)
defines a lattice Λ in Rd(n+ℓ), given as Λ =

{
(τ(s),−Rot(H)τ(s))T | s ∈ Rn

}
,

where τ denotes the coefficient embedding. Every element in Λ can be written
as L ·τ(s) with L = (Idn,−Rot(H))T ∈ Zd(n+ℓ)×dn. By the properties of discrete
Gaussians, if s ← Dn

sec = DRn,σ2 (i.e., τ(s) ← DZdn,σ2), then L · τ(s) ∼ DΛ,ΣΣΣ ,
where ΣΣΣ = σ2LLT ∈ Zd(n+ℓ)×d(n+ℓ). We further set ΣΣΣ′ = δ2Id(n+ℓ) − ΣΣΣ. As
we later use ΣΣΣ′ as the covariance matrix of a discrete Gaussian distribution, we
have to make sure that it is positive semi-definite.

Claim. Assume δ ≥ σBd
√

n(ℓ + 2), then the matrix ΣΣΣ′ is positive semi-definite.

Proof (Claim). Note that ΣΣΣ is symmetric over Z, thus ΣΣΣ′ = δ2In+ℓ − ΣΣΣ is
symmetric over Z as well. Let us recall the concrete forms of ΣΣΣ and ΣΣΣ′ given by

ΣΣΣ = σ2
(

Idn −Rot(H)T

−Rot(H) Rot(H)Rot(H)T

)
,

and

ΣΣΣ′ =
(

(δ2 − σ2)Idn σ2Rot(H)T

σ2Rot(H) δ2Idℓ − σ2Rot(H)Rot(H)T

)
.

The first dn diagonals of ΣΣΣ′ are given by δ2−σ2, the last dℓ diagonals are given
by δ2 − σ2∥hi∥2, where hi is the i-th row of Rot(H) for i ∈ {1, . . . , dℓ}. Note
that ∥hi∥2 ≤ ndB2, as we are working over a power-of-two cyclotomic ring.
Thus, assuming

δ ≥ σB
√

nd, (2)

the diagonal entries of ΣΣΣ′ are non-negative. In this case, it is enough to show
that ΣΣΣ′ is diagonally dominant. By construction, ∥ΣΣΣ∥∞ ≤ σ2ndB2. We write ΣΣΣ′ =
(ΣΣΣ′ij)ij with i, j ∈ {1, . . . , d(n + ℓ)}. On the one side, the absolute values of
the entries on the diagonal can be lower bounded as |ΣΣΣ′ii| ≥ δ2 − σ2ndB2



for i ∈ {1, . . . , d(n + ℓ)}. On the other side, the sum of the absolute values
of the entries off the diagonal can be upper bounded as∑

j ̸=i

∣∣ΣΣΣ′ij∣∣ ≤ max
{

σ2dnB + σ2d2ℓnB2, σ2dℓB
}
≤ σ2B2d2n(ℓ + 1),

where we used that B, d, ℓ are positive integers. Overall ΣΣΣ′ is diagonally dominant
if

δ ≥ σBd
√

n(ℓ + 2). (3)

■

The reduction B continues as follows. They sample (s′, f ′)← DRn+ℓ,ΣΣΣ′ (i.e.,
(τ(s′), τ(f ′))← DZd(n+ℓ),ΣΣΣ′) and set b′ = b + As′ and h = Hs′ + f ′. They then
forward (b′, h) to the adversary A. On the output bit b by A, the reduction also
outputs b as their answer. We now analyze the advantage of B, assuming that A
has advantage Adv.

Case 1) Assume that (A, b) is given as b = As + e. Thus, b′ = A(s + s′) + e.
Set f = −Hs+f ′. Note that the values s and f are not known to the reduction B,
but only needed to argue that (b′, h) has the right distribution. Then, (s+s′, f) =
(s + s′,−Hs + f ′) = (s,−Hs) + (s′, f ′), with (s,−Hs) ∼ DRn+ℓ,ΣΣΣ and (s′, f ′) ∼
DRn+ℓ,ΣΣΣ′ . By Lemma 3 Item 2, this implies that (s+ s′, f) ∼ DRn+ℓ,δ2 as long as
the eigenvalues of ΓΓΓ = σ

√
Id(n+ℓ) − σ2LLT /δ2 are above the smoothing param-

eter of Zd(n+ℓ). To lower bound the eigenvalues of ΓΓΓ , it suffices to upper bound
the eigenvalues of LLT . To do so, we use a known result of spectral theory: It
states that the eigenvalues of LLT can be upper bounded by the sum of the ab-
solute values of any of its row. The latter can be upper bounded by B2d2n(ℓ+2),
implying the condition

σ
√

1− σ2B2d2n(ℓ + 2)/δ2 ≥ η(Zd(n+ℓ)). (4)

Note that Equation 4 subsumes Equations 3 and 2. Moreover, η(Zd(n+ℓ)) ≤√
d(n + ℓ) and thus the condition of the theorem statement fulfills the above

conditions. It yields H(s+s′)+f = H(s+s′)−Hs+f ′ = Hs′+f ′ and thus (b′, h)
is distributed correctly.

Case 2) Assuming (A, b) comes from the uniform distribution, so does (A, b′).
With the same argumentation as above, h has the correct distribution and
hence (b′, h) is a valid input to A, concluding the proof. ⊓⊔

4 Hardness of Truncated MLWE Using Rényi Divergence

We begin with our first approach to reduce the hardness of Trunc-MLWE from
standard MLWE, using the Rényi divergence. Note that the results only apply
to the respective search variants.



Theorem 2. Let R be a power-of-two cyclotomic ring of degree d. Further,
let α, q, m, n, η and c be positive integers and δ be a positive real. Further,
let Dsec, Derr and D′err be distributions over R such that Dsec is (η, δ)-bounded
(Def. 1). Then, there is a reduction from the problem S-MLWEq,m,n,Dsec,D′

err
to the

problem S-Trunc-MLWEc
q,m,n,Dsec,Derr

. More concretely, assuming there exists an
adversary A against S-Trunc-MLWE with advantage Adv, we can transform them
into an adversary against S-MLWE with advantage Adv′ such that

(Adv − δn)
α

α−1 ≤ Adv′ · RDα(Derr + µ⃗∥D′err)m,

where µ⃗ = (µ, . . . , µ) ∈ Zd ∼= R, with µ = d · 2c · n · η.

The reduction loss is reflected by replacing the error distribution Derr by a wider
distribution D′err. How much wider the distribution has to be is impacted by the
ring degree d, the number of truncated bits c, the bound on secrets η and the
rank n of the MLWE problem.

Proof. Let A be an adversary against S-Trunc-MLWE, whose experiment is de-
fined in Figure 1. On input (A, b), the adversary A outputs a guess s′ and wins
the experiment if the guess was correct. Below, we argue the theorem via a se-
ries of intermediate hybrids, each specifying the distribution of the input (A, b)
given to A.

H0: Sample (A, b) as specified in the S-Trunc-MLWE game in Figure 1.
Thus, A = Trunc(U, c) with U← Rm×n

q . Moreover, b = As+e mod q, with s←
Dn

sec and e← Dm
err.

H1: We now sample A as in H0, but change how b is defined. First, we
sample f ← (D′err)m and then we set b = Us + f mod q.

H2: Now, b is sampled as in H1. However, we modify the input A by setting
it to A := U. In other words, (A, b) corresponds to an instance of S-MLWE
(without truncation).

From H0 to H1: First, we use that Dsec is (η, δ)-bounded, to condition on the
event of ∥s∥∞ ≤ η implying

Adv = Pr[s← A(A, b) | (A, b) ∼ H0]
= Pr[s← A(A, b) | (A, b) ∼ H0 ∧ ∥s∥∞ ≤ η] · Pr[∥s∥∞ ≤ η]

+ Pr[s← A(A, b) | (A, b) ∼ H0 ∧ ∥s∥∞ > η] · Pr[∥s∥∞ > η]
≤ Pr[s← A(A, b) | (A, b) ∼ H0 ∧ ∥s∥∞ ≤ η] + δn.

Second, we use the probability preservation property of the Rényi divergence
from Lemma 5 to argue

Pr[s← A(A, b) | (A, b) ∼ H0 ∧ ∥s∥∞ ≤ η]
α

α−1

≤ Pr[s← A(A, b) | (A, b) ∼ H1 ∧ ∥s∥∞ ≤ η] · RDα(H0∥H1).

Note that the only difference between the two hybrids is how b is defined.
In H0, b = As + e = (U−NU)s + e = Us + (e−NUs), where NU = U mod 2c.
In H1, b = Us + f . By the data processing inequality from Lemma 6, consider



the function f(y) = (A, As + y), where NUs serves as a fixed parameter for the
distributions and the function; however, only the first distribution uses NUs,
subtracting it from every sample. This yields:

RDα(H0∥H1) ≤ RDα(e−NUs∥f)
≤ RDα(Derr + µ⃗∥D′err)m.

where ∥−NUs∥∞ ≤ d · 2c · n · η = µ. Note that here we are using the properties
of power-of-two cyclotomics. When generalizing to other rings, the bound would
be looser by the so-called expansion factor [LM06,RSW18]. Overall,

(Adv − δn)
α

α−1 ≤ Pr[s← A(A, b) | (A, b) ∼ H1] · RDα(Derr + µ⃗∥D′err)m.

From H1 to H2: We observe that the only difference between H1 and H2 is
that the c least significant bits of U are removed in H1, but not in H2. Removing
the low-order bits only results in less information being transmitted, so the
advantage of an adversary in H1 cannot be greater than that of an adversary
in H2:

Pr[s← A(A, b) | (A, b) ∼ H1] ≤ Pr[s← A(A, b) | (A, b) ∼ H2].

The proof concludes by observing that H2 is equivalent to an instance of the
problem S-MLWEq,m,n,Dsec,D′

err
. ⊓⊔

Theorem 2 applies to any secret and error distributions as long as the secrets
are of bounded infinity norm and the Rényi divergences are well-defined and
small enough. We now provide example corollaries for bounded uniform, rounded
and discrete Gaussian distributions.

Corollary 1. Let R be a power-of-two cyclotomic ring of degree d. Further,
let α, q, m, n, η and c be positive integers. We set Dsec = U0,η+1 and Derr = U0,k

and D′err = U0,k+µ, where µ = d · n · 2c · η. Then, for any adversary A it holds

AdvS-Trunc-MLWE
q,m,n,Dsec,Derr,c(A)

α
α−1 ≤ AdvS-MLWE

q,m,n,Dsec,D′
err

(A) ·
(

k + µ

k

)d·m

.

Here, it is very clear that the resulting error distribution D′err has infinity
norm larger than 2c, avoiding the trivial setup mentioned in the introduction.

Remark 1. In order to bound the reduction loss, one has to make sure that k is
large enough. For instance, when k ≥ d2mn, the loss is bounded above by(

k + µ

k

)d·m

=
(

1 + µ

k

)d·m
≤
(

1 + η · 2c

dm

)dm

≤ eη·2c

,

which is constant for η and c being constants.



Proof. We observe that Dsec = U0,η+1 is (η, 0)-bounded. We now provide a con-
crete value for the Rényi divergence from Theorem 2. We observe that Derr + µ⃗ =
U0,k + µ⃗ = Uµ,k+µ and Supp(Derr + µ⃗) = Supp(Uµ,k+µ) = {µ, . . . , µ + k − 1}d ⊂
{0, . . . , µ + k − 1}d = Supp(U0,k+µ) = Supp(D′err), implying a well-defined Rényi
divergence.

RDα(Derr + µ⃗∥D′err) =

 ∑
x∈Supp(Uµ,k+µ)

Uµ,k+µ(x)α

U0,k+µ(x)α−1

1/(α−1)

=
(

(k)d · (1/(k))dα

(1/(k + µ))d(α−1)

)1/(α−1)

=
(

k + µ

k

)d

.

⊓⊔

Corollary 2. Let R be a power-of-two cyclotomic ring of degree d. Further,
let α, q, m, n, η and c be positive integers and Dsec be any (η, δ)-bounded distri-
bution over R. We set Derr = D′err = ⌊Dσ2⌉ over R (via coefficient embedding τ)
for positive real σ. Then, for any adversary A it holds(

AdvS-Trunc-MLWE
q,m,n,Dsec,Derr,c(A)− δn

) α
α−1 ≤ AdvS-MLWE

q,m,n,Dsec,D′
err

(A) · exp
(

αdmµ2

2σ2

)
,

where µ = d · n · 2c · η.

Proof. We provide a concrete value for the Rényi divergence in Theorem 2. We
use Lemma 6 with f(x) = ⌊x⌉ and µ⃗ ∈ Zd to argue that

RDα(Derr + µ⃗∥D′err) = RDα(⌊Dµ,σ2⌉∥⌊Dσ2⌉) ≤ RDα(Dµ,σ2∥Dσ2).

By Lemma 7 it yields

RDα(Dµ,σ2∥Dσ2) ≤ exp
(

αdµ2

2σ2

)
.

Thus, overall

RDα(Derr + µ∥D′err)m = exp
(

mαdµ2

2σ2

)
,

concluding the proof. ⊓⊔

Corollary 3. Let R be a power-of-two cyclotomic ring of degree d. Further,
let α, q, m, n, η and c be positive integers and Dsec be any (η, δ)-bounded distri-
bution over R. We set Derr = D′err = DR,σ2 for positive real σ. Then, for any
adversary A it holds(

AdvS-Trunc-MLWE
q,m,n,Dsec,Derr,c(A)− δn

) α
α−1 ≤ AdvS-MLWE

q,m,n,Dsec,D′
err

(A) · exp
(

αdmµ2

2σ2

)
,

where µ = d · n · 2c · η.



Proof. As before, we provide concrete values for the two corresponding Rényi
divergences in Theorem 2. We observe that

RDα(Derr + µ⃗∥D′err)m = RDα(DR,µ⃗,σ2∥DR,σ2)m = RDα(DRm,µµµ,σ2∥DRm,σ2).

where µµµ = (µ⃗, . . . , µ⃗)T ∈ Rm. By applying Lemma 8 and noticing that µµµ ∈ Zmd

and therefore ϵ = 0, we can argue that

RDα(DRm,µµµ,σ2∥DRm,σ2) ≤
(

1 + ϵ

1− ϵ

)α/α−1
· eα∥µµµ∥2/(2σ2) = eαdmµ2/(2σ2),

with ∥µµµ∥ = mdµ2, concluding the proof. ⊓⊔

4.1 Public Sampleability Does Not Help Here

As of today, the only way to use the Rényi divergence for decision problems
is to use the public sampleability framework from [BLR+18, Sec. 4]. We argue
below that, even though the truncated MLWE problem can be expressed as a
publicly sampleable problem, it does not lead to meaningful results. Intuitively,
the problem is that truncated and uniform matrices are not Rényi close, which
would be needed.

More formally, we observe that truncated MLWE fits well into the public
sampleable setting: given (A, b), one can easily sample fresh samples by draw-
ing new MLWE secret and errors. A very similar setting was used in [BLR+18,
Sec. 4.2]. However, the loss in the advantage depends on the Rényi divergence
between the standard way to sample A (i.e. uniformly over Rq) and the trun-
cated way to sample it (i.e. cutting the c lowest order bits off). Unfortunately,
their Rényi divergence is given by 2cdmn, which is exponential in the product of
ring degree and matrix dimensions, which is usually linear proportional to the
security parameter. Given this big loss, the reduction becomes vacuous.

5 Hardness of Truncated Module LWE Using Hints

We continue with our second approach to reduce the hardness of Trunc-MLWE
from standard MLWE, going through the intermediate Hint-MLWE problem (cf.
Section 3.2). The result now applies to both search and decision variants, but
requires a decomposition property for the error/noise distributions.

The following theorem establishes a reduction from Hint-MLWE to Trunc-MLWE.

Theorem 3. Let R be a ring of integers of degree d, and let q, m, n, B and c
be positive integers such that B = 2c. Moreover, let Dsec, Derr, D′err and Dnoi be
distributions over R such that (D′err)m is statistically close to (Derr)m + (Dnoi)m.
Then, there is a reduction from the problem Hint-MLWEDnoi,B,m

q,m,n,Dsec,Derr
to the prob-

lem Trunc-MLWEc
q,m,n,Dsec,D′

err
. More concretely, assuming that there exists an

adversary A against Trunc-MLWE with advantage Adv, we can construct an ad-
versary B against Hint-MLWE with advantage at least Adv. The reduction works
for both, the search and the decision variants of the problems.



Proof. We detail out the proof in the case of the corresponding decision vari-
ants. The proof for the search variants works analogously. Let A be an adver-
sary against Trunc-MLWE with advantage Adv. We now construct a reduction B
against Hint-MLWE with advantage at least Adv.

In the Hint-MLWE experiment, B is given as input A, sampled uniformly at
random from Rm×n

q . The reduction B now outputs H := −(A mod 2c) ∈ Rm×n
q

as hint matrix. Upon receiving (b, h) ∈ Rm
q × Rm

q , the reduction B sets t :=
(b + h)T ∈ Rm

q as well as B := (A + H)T ∈ Rm×n
q . Then, they provide (B, t)

as input to A. Let b′ be the guess of A, then B forwards b′ as their guess.
First, we observe that ∥H∥∞ ≤ 2c = B, hence H is a valid hint matrix

for Hint-MLWE, as specified in the Hint-MLWE experiment in Figure 2. Further,
we see that A + H = A− (A mod 2c) = Trunc(A, c). Hence, B has the correct
distribution as specified in the Trunc-MLWE experiment in Figure 1.

Case 1: If b = 0 in the Hint-MLWE experiment, then b = As+e mod q and h =
Hs + f ′′ for some s ← Dn

sec, e ← Dm
err and f ′′ ← Dm

noi. Hence, t = As + e + h =
(A+H)s+e+f = Trunc(A, c)s+e+f . Note that (e+f)T is statistically close to
some g ← (D′err)m. Overall, (B, t) is statistically close to the input distribution
in case of b = 0 in Trunc-MLWE.

Case 2: If b = 1 in the Hint-MLWE experiment, then b ← Rm
q and h and f ′

are chosen independently of b. Thus, t is also distributed uniformly at random
over Rm

q and hence (B, t) corresponds to the input distribution in case of b = 1
in Trunc-MLWE.

If A succeeds to guess correctly (i.e., b′ = b) with probability Adv in the
experiment of Trunc-MLWE, then B succeeds to guess correctly in the game
of Hint-MLWE with probability at least Adv as well. ⊓⊔

The following corollary instantiates the above theorem with discrete Gaussian
distributions over power-of-two cyclotomic rings and combines it with Theorem 1
to provide the complete reduction from MLWE to Trunc-MLWE.

Corollary 4. Let R be a power-of-two cyclotomic ring of degree d. Further,
let q, m, n and c be positive integers. Moreover, let γ, δ and σ be positive reals
such that σ ≥

√
2d(n + m), δ ≥ σ2cd

√
2n(m + 2), and σ2 + δ2 = γ2. We

set Dsec = Derr = DR,σ2 , D′sec = DR,δ2 and D′err = DR,γ2 . Then, there is a
reduction from MLWEq,m,n,Dsec,Derr to the problem Trunc-MLWEc

q,m,n,D′
sec,D′

err
.

Proof. Note that (DR,σ2)m = DRm,σ2 for every positive real σ. The corollary
follows by Lemma 3 Item 1 with Λ = Rm and noting that η(Rm) ≤

√
dm,

thus σ, δ ≥
√

2 · η(Rm). Moreover, we instantiate Theorem 1 with ℓ = m and
MLWE noise distributed as DR,σ2 . ⊓⊔

6 Comparison

As explained in the introduction, our work closes an open problem left open
by [JZW+23], by providing a reduction from standard MLWE to the truncated



problem in its decision variant. Their work only provides a reduction from the
less standard module variant of NTRU, denoted by MNTRU, and is limited to
the search versions. In total, we describe two approaches. The two different
reductions in Theorem 2 and Theorem 3 come with different advantages and
disadvantages, as detailed out in the following and summarized in Table 1.

Result Assumption Variant Secret Error
[JZW+23] MNTRU Search Entropic Gaussian
Theorem 2 MLWE Search Bounded Rényi-close
Theorem 3 MLWE Decision Gaussian Gaussian

Table 1: Comparison of [JZW+23] with our two results to prove the hardness
of Trunc-MLWE. Entropic distributions denote any distribution with enough min-
entropy. Rényi-close denotes the fact that the (shifted) starting and ending error
distribution have to be Rényi-close.

Note that all reductions, including [JZW+23] and ours, preserve the ring
degree d, the modulus q, as well as the MLWE dimensions m and n.

The reduction of [JZW+23] works for any secret distribution which has
enough min-entropy, what we denote by an entropic distribution. Thus, it also
covers secret distributions which have large infinity norm. Both the distribu-
tion of the starting MNTRU problem and the final error distribution of trun-
cated MLWE are assumed to be discrete Gaussians.

The most important positive aspect of the reduction in Theorem 2 using
the Rényi divergence (Section 4) is its flexibility in terms of considered secret
and error distributions. In particular, the reduction preserves the secret distribu-
tion Dsec, which can be any (η, δ)-bounded distribution over R. Moreover, it can
be instantiated with various error distributions, as long as their corresponding
Rényi divergences are defined and small. Of course, only error distributions for
which the starting MLWE problem is hard are useful. Corollaries 1, 2 and 3 give
three concrete examples for bounded uniform, rounded Gaussian, and discrete
Gaussian, but these are by far not the only ones possible. On the other hand,
the reduction is limited to the search variants, as the public sampleability result
in Section 4.1 is vacuous.

The biggest advantage of the reduction in Theorem 3 using hints (Section 5) is
that it works for the decision variant, which is needed when using it in the context
of IND-CPA secure public-key encryption schemes, for example to compressed
public keys. However, both Theorems 1 and 3 make use of the decomposition
theorems of discrete Gaussians. Thus, our overall result in Corollary 4 is limited
to discrete Gaussians secret and error distributions. Furthermore, the reduction
significantly increases the width of the discrete Gaussian secret distribution.

Finally, we concretely compare the parameter conditions of our results for
the case of discrete Gaussians, as summarized in Table 2. For simplicity, we



set the starting secret distribution to Dsec = DR,β2 for some positive real β.
By Lemma 1, the distribution Dsec = DR,β2 is then (

√
dβ, negl(d))-bounded.

Then, both Corollary 3 and Corollary 4 reduce MLWEq,m,n,DR,β2 ,DR,σ2 to the
problem Trunc-MLWEc

q,m,DR,δ2 ,DR,γ2 . One can observe that the loss in the ring
degree d parameter is larger in the first result (left column) than in the second
result (right column). The opposite effect can be observed for the matrix dimen-
sion m. Overall, the second reduction sets more constraints than the first. The
latter is thus preferable in the case of large degrees and small dimension m, as
one observes in practice.

S-Trunc-MLWE (Cor. 3 & RDα) D-Trunc-MLWE (Cor. 4)
β > 0 = σ

σ ≥ βd22cn
√

αm ≥
√

2d(n + m)
δ = β ≥ σ2cd

√
2n(m + 2)

γ = σ =
√

σ2 + δ2

Table 2: Parameter comparison between the two different reductions from MLWE
to Trunc-MLWE for discrete Gaussian secret and error distributions.
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