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1. Introduction 

       The paper is dedicated to the constructions of special multivariate maps on affine 

space Kn over finite commutative ring with the unity. We are interested in maps of 

prescribed bounded by constant degree or unbounded degree but  prescribed  density 

which has a trapdoor accelerator,  i.e pieces of information such that its knowledge  

allows us to compute the reimage of the map in polynomial time.   

    One of the applications of these maps is the following scheme of access control to 

the resources of Information System. Administrator A of the Information System (IS) 

possesses the map F in n-variables and its trapdoor accelerator T. He/she is going to 

give secure access to the resources of  IS to trusted user U. So A and U executes se-

lected  protocol of Noncommutative Cryptography in terms of special subsemigroup S 

of the  affine Cremona semigroup of all multivariate maps of Kn into itself. The output 

of the protocol X can be used by A and U for the creation of its deformation  G(X) 

which is  a transformation of Kn 

   Administrator sends F+G(X) to U.  User restores F. Now A is able to create pseu-

dorandom  or genuinely random password (p1, p2, ...., pn) =p as the condition to enter 

the system. Administrator solves the equation F(x)=b and sends the solution x=(d1, 
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d2,..., dn)=d to the user together with the link for entering the password. User U gets 

the password as F(d1, d2,...., dn). 

     Administrator has the option to change the password several times working with 

the same map F with the trapdoor accelerator. He/she is able to change F via a new 

session of the protocol and delivery scheme. 

     The security of this scheme rests on the security of selected Postquantum Protocol 

on Noncommutative Cryptography. We describe Twisted Diffie-Helman protocol 

which use the complexity of Conjugation Power Problem of the semigroup  nES(K) of 

Eulerian endomorphisms of K[x1, x2,..., xn] which sends each variable xi, i=1,2,..., n to 

a monomial term. Some other protocols of Noncommutative Cryptography with the 

platform  nES(K) are given in [1]. 

      For each positive integer d, d≥2 we present the multivariate map of degree d with 

the trapdoor accelerator. In fact we present the iterative process of expansion of initial 

map F0 which can be a bijective  multivariate  nonlinear map of degree at most d on 

Kn  with the  trapdoor accelerator T or an element of general affine group AGLn(K). 

The input parameters are positive integers m(1), m(2),..., m(k), k≥2. The step i,  i=1, 

2,..., k  of the algorithm produces the multivariate map Gi of degree d on the K 

n+m(1)+m(2)+...+m(i) with the trapdoor accelerator Ti. 

     Similarly we can take polynomial surjective map F0  of Kn onto Kr of degree at 

most d with the trapdoor accelerator T and get the sequence of surjective polynomial 

multivariate maps  of Kn+m(1)+m(2)+...+m(i) onto Kr+m(1)+m(2)+...+m(i) of degree d with the 

trapdoor accelerators. 

     So we can use known construction of multivariate cryptography over the general 

maps with trapdoor accelerators or linear maps on affine spaces for the construction of 

new maps together with the polynomial algorithm to compute reimage. 

We define the density of the multivariate polynomial in n variables as the number of 

its monomial terms.    The density of multivariate map F : (x1, x2, ...., xn) →(f1 (x1, x2, 

...., xn), f2(x1, x2, ...., xn),...., f2(x1, x2, ...., xn),...., fm(x1, x2, ...., xn)) is the maximal value 

of densities of  fi  for i=1, 2,..., m. 

    We also will work with the multivariate maps in n variable  of unbounded degree 

and prescribed density O(nλ).  Let K* stands for the multiplicative group of K.  As-

sume that K* is nontrivial. We say that multivariate map F of Kn to itself has multipli-

cative trapdoor accelerator T if the restriction of F onto (K*)n is injective map and the 

knowledge of T allows to compute the reimage of the element from F((K*)n) in a pol-

ynomial time. 

   For each nonnegative rational number  λ we present the explicit constructions  of  

multivariate maps  of density λ with unbounded  degree and  multiplicative trapdoor 

accelerator.  Additionally we present  the iterative process of the expansion of the se-

lected initial map F0 which  is a  multivariate  nonlinear map of density O(1) on Kn  
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with unbounded degree and the multiplicative  trapdoor accelerator T.   The input con-

sists of  positive integers m(1), m(2),..., m(k), k≥2 and some internal parameters which 

are nonnegative rational numbers.   

   The step i,  i=1, 2,..., k  of the algorithm produces the multivariate map Gi of poly-

nomial density on the K n+m(1)+m(2)+...+m(i) with the multiplicative  trapdoor accelerator 

Ti.. Appropriate choice of internal parameters allows us to construct Gk of prescribed 

density O((n+m(1)+m(2)+...+m(k))λ). 

    We can use multivariate maps of unbounded degree and prescribed polynomial den-

sity with the multiplicative trapdoor accelerator instead of maps of bounded degree in 

the presented above scheme of  access control. We can use the same protocol of Non-

commutative Cryptography and the same platform  nES(K) of Eulerian transfor-

mations. The modification of the deformation rule will be presented. 

    Let us consider the case of finite commutative ring K of the cardinality O(1) with 

nontrivial multiplicative group. In the case of the map F of unbounded by constant 

degree of size O(n) and of density O(1) with the multiplicative trapdoor accelerator we 

use term pseudolinear map. The complexity of computation  of F(p), pϵ(K*)n  is O(n2).       

In the case of density O(nλ), λ<1 we use the term of  sub quadratic map.  The complex-

ity of computation  of F(p), pϵ (K*)n  is O(n2+λ). 

    It is better then in the case of quadratic map on the space Kn. If density is O(n) we 

say that we have pseudo quadratic map. 

    We hope that defined in the paper wide variety of the quadratic or cubic maps with 

the trapdoor accelerators and the varieties of pseudo-linear, sub quadratic and pseudo 

quadratic maps  with the multiplicative trapdoor accelerators can be effectively used in 

the presented above scheme of the access control of Information System. 

    These varieties are defined  via the symbolic computations in terms of algebraic 

graphs defined by the systems of nonlinear algebraic equations over the finite commu-

tative ring K with unity or temporal analogue  of these graphs  for which generic equa-

tions are changeable with the change of time. The sequences of pseudorandom or gen-

uinely random graphs can be used for the change of coefficients in time dependent 

algebraic equations. 

    For the design of maps we use Jordan -Gauss graphs which are bipartite graph with 

partition sets Kn  and  Km  given via quadratic equations such that the neighbourhood 

of the vertex is the solution set of linear system of equations written in its row-echelon 

form. 

   Subsection 2.1 of Section 2 contains basic definitions of affine Cremona semigroup 

and group of endomorphism of multivariate ring K[x1, x2,..., xn], endomorphisms with 

the trapdoor accelerators. It contains the discussion of the area of Multivariate Cryp-

tography over the general finite commutative ring. 
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      In the subsection 2. 2 we define linguistic graphs over the general commutative 

ring and their temporal analogue. Algorithm 1.2 allows us to construct the variety of 

elements of Cremona semigroup with the trapdoor accelerator defined in terms of se-

lected linguistic graph or its temporal analogue. Simple conditions insure that the con-

structive map is bijective transformation of Kn. The method allows us to construct sur-

jective maps of Kn  onto Km, n>m≥2 with the trapdoor accelerator. For practical im-

plementation of the algorithm we need select special classes of linguistic graphs which 

allow us to control the degrees and densities of the outputs. We define the special class 

of Jordan-Gauss graphs and consider flexible families of generalised Double Schubert 

graphs DSs,r(K) and truncated Double Schubert graphs QDSs,r(K)  which are conven-

ient instruments for generating of families of multivariate maps of prescribed degree 

on the affine space Kn. 

      Assume that (F, T) stands for pair multivariate function F of degree d, d≥2 on K n  

and its trapdoor accelerator. We suggest  the method of construction of new pair (F’, 

T’) of degree d on K n’,  n’> n from the known (F, T). It  can be used iteratively. Many 

constructions of pairs (F, T) over fields can be found in the recent papers on Classical 

Multivariate Cryptography [26]-[37]. 

        In Section 3 we introduce semigroup of nES(K) of Eulerian endomorphisms of 

K[x1, x2,..., xn] and consider iterative method of construction of multivariate maps of 

prescribed density O(nd) with the trapdoor accelerators or multiplicative trapdoor ac-

celerators. These maps are constructed in terms of temporal truncated  Schubert 

graphs. 

           In Section 4 we consider twisted Diffie-Hellman protocol implemented with the 

platform  nES(K)  of Eulerian transformations. We introduce several deformation rules 

convenient for the safe delivery of multivariate maps of prescribed degree or density 

from one correspondent to  his/her partner. We discuss the use  of stable subsemi-

groups  of Cremona semigroup nCS(K) as platform for the protocol. Stability means 

that the maximal degree of endomorphisms from the semigroup is a constant d. 

 In section 5 we consider Jordan-Gauss graphs of geometries of Chevalley groups de-

fined over field F, their analogue defined over general commutative ring K and tem-

poral versions of these graphs.  The class of such temporal graphs and their special 

homomorphic images (symplectic quotients) contains temporal generalised Schubert 

graphs and truncated Schubert graphs. 

   We consider temporal geometries of Chevalley type over K defined in [2] in terms of 

root system with Coxeter - Dynkin diagram Xn, corresponding cryptosystems and pro-

tocol based algorithms in terms of platforms defined in terms of these temporal geom-

etries in Section 5. 

     Section 6 contains conclusive remarks. 
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2. On the methods of constructions of multivariate transformations of Kn with the 

trapdoor accelerator 

     2.1. General remarks.       

       Let K be a finite commutative ring. It is possible to say that Multivariate Cryp-

tography in a wide sense is about the use of polynomial maps F of affine spaces Kn  to 

itself for cryptographical purposes. 

       In classical case K=Fq the map F is an element of affine Cremona semigroup 
nCS(K) of endomorphisms of multivariate ring K[x1, x2, ..., xn].  Endomorphism F can 

be given by its values F(x1)=f1, F(x2)=f2, ..., F(xn)=fn on the variables xi, i=1, 2,..., n. 

       We can assume that polynomials fi are given in their standard form i.e. sum of 

monomial terms ordered in lexicographical order. 

Endomorphism F induces the map F’ : x1→f1(x1, x2, ..., xn), x 2→f1(x1, x2, ..., xn),..., 

xn→fn(x1, x2, ..., xn) of the affine space K n  into itself. 

      We define degree deg(F)  as maximal value of deg (fi). The density den fi(x1, x2, ..., 

xn) is its number of monomial terms. We define density den(F) of F as maximal value 

of den (fi), i=1, 2, ..., n and identify endomorphism  F with the tuple (f1(x1, x2, ..., xn), 

f2(x1, x2, ..., xn), ,...., fm(x1, x2, ..., xn)). 

     The image  Im F’ is isomorphic to Km for some m, n≥m. We can treat F’ as surjec-

tive map of Kn onto Km.   

      We say that piece of information T is trapdoor accelerator of  surjective nonlinear 

polynomial map F’ of K n  onto Km, n ≥m if the knowledge of T allows to compute a 

reimage of given element bϵKm  in a polynomial time. 

     New multivariate cryptosystem  “TUOV: Triangular Unbalanced Oil and Vinegar” 

was officially submitted to NIST  recently  see 

https://csrc.nist.gov/csrc/media/Projects/pqc-digsig/documents/round-1/spec-

files/TUOV-spec-web.pdf). It is based on the  quadratic map  defined over finite fields 

with the trapdoor accelerator. 

     He hopes that this is the example of one way function, i. e the reimage of this quad-

ratic map is not possible to compute in a polynomial time without the knowledge of 

given trapdoor accelerator. 

As you know the existence of one way function is not proven. Anyway there is a 

chance of NIST certification of TOUV as first representative from the class of Multi-

variate Public Keys. 

As you know Multivariate cryptography uses the gap between linearity and nonlinear-

ity.  We know that the system of linear equations written over the field F  can be 

solved in time O(n3) via Jordan-Gauss elimination method.   

  The complexity of solving nonlinear system of constant degree d, d>1 is  subexpo-

nential. 

      Despite the convenience of Groebner basis method for the implementation 

https://csrc.nist.gov/csrc/media/Projects/pqc-digsig/documents/round-1/spec-files/TUOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-digsig/documents/round-1/spec-files/TUOV-spec-web.pdf
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 the complexity of this algorithm is equivalent to old Gauss elimination method for 

solution of the system of nonlinear equation.    

     Recall that  the  standard way to transform of nonlinear system of  equation of de-

gree d, d>2 to equivalent quadratic system via introduction of additional variables and 

substitutions is well known (see [3]). 

   So if we have a nonlinear map F of bounded degree d in ‘’ general position’’ which 

has a trapdoor accelerator T then corresponding cryptosystem is secure.  This status is 

insure the fact that F is given as one way function i. e reimage of F is impossible to 

compute in a polynomial time without knowledge  of  the secret T. 

   The map F is not in ‘’ general position’’ if some additional specific information is 

known. For instance, if F is bijective cubic map and F-1 is also cubic. Then public user 

can generate O(n3) pairs of kind plaintext p/corresponding ciphertext c and approxi-

mate inverse map in time O(n10). 

  Known computer tests and cryptanalytic methods are attempts to justify  that the map 

F is ‘’in general position’’. Noteworthy  that the existence of one way function is not 

proven yet even under the main  complexity conjecture  that P≠NP. 

    Note that the investigation of nonlinear systems of equations over the commutative 

ring K with zero divisors is essentially harder case in comparison the case of a field.  

Multivariate Cryptography over rings with zero divisors can be  an interesting direc-

tion of  cryptographic research. 
        2.2. Linguistic  graphs and multivariate maps over commutative rings. 

            Below we present the method of construction of nonlinear representatives of 

affine Cremona semigroup End K[x1, x2,..., xn] where K is a finite commutative ring.   

The incidence structure is the set V with the partition sets P (points) and L (lines) and 

symmetric binary relation I such that the incidence of two elements implies that one of 

them is a point and another one is a line. We shall identify I  with the simple graph of 

this incidence relation  which is of course a bipartite graph. The pair  x,  y ,  x ϵ P, yϵ L 

such that  x I y  is called a  flag of incidence structure I. 

    Let K be a finite commutative ring with the unity.  We refer to an incidence struc-

ture with a point set P=Ps,m=Ks+m and a line set L=Lr,m=Kr+m as linguistic incidence 

structure  Im if point x=(x1, x2,…, xs, xs+1, xs+2, …,  xs+m)  is incident to line  y=[y1, y2, 

… , yr , ,yr+1,yr+2 , …, yr+s ] if and only if the following relations hold   

  a1xs+1-b1yr+1=f1 (x1,x2 ,… ,xs, y1, y2, …  , yr), 

  a2xs+2-b2yr+2=f2 (x1,x2 ,… , xs ,    xs+1,  xs+1, y1, y2, …  , yr, yr+1), (1) 

  … 

 amxs+m-bmyr+m=fm(x1,x2 ,… ,xs, xs+1,…, xs+m-1, y1, y2, …  , yr, yr+1, …,yr+m-1)  

where  aj, and bj, j=1,2,…,m are not zero divisors, and fj are multivariate polynomials 

with coefficients from K (see [4], [5]). Brackets and parenthesis allow us to distinguish 

points from lines. 
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   The colour ρ(x)=ρ((x)) (ρ(y)=ρ([y])) of point  (x)  (line [y])  is defined as projection 

of an element (x) (respectively [y]) from a free module on its initial s (relatively r) 

coordinates. As it follows from the definition of linguistic incidence structure for each 

vertex of incidence graph there exists unique neighbour of a chosen colour. 

   We refer to ρ((x))=(x1, x2 ,… , xs) for  (x)=(x1, x2 ,… , xs+m) and ρ([y])=(y1, y2, …  , 

yr) for [y]=[y1, y2, …  , yr+m] as the colour of the point and the colour of the line re-

spectively. For each b ϵ Kr and p=(p1, p2 ,… ,ps+m)  there is a unique neighbour of the 

point [l]=Nb(p) with the colour b. Similarly for each cϵKs and line l=[l1, l2 ,… , lr+m]  

there is a unique neighbour of the line (p)= Nc([l]) with the colour c. The triples of 

parameters s, r, m defines type of linguistic graph. 

      Let Ja(v) stands for the operator of change colour of vertex v (point or line) for 

a=(a1, a2, ..., at)  where t=s or t=r. 

      We consider also linguistic incidence structures defined by infinite number of 

equations. Let I(K) and I’(K’) be two linguistic graphs of the same type (s, r, m) with 

governing polynomials fi and f’i written in their standard forms. We refer to them as 

symbolically equivalent structures  if   monomial terms of fi  and f’i  for each i  are the 

same up to their nonzero coefficients. 

        We refer to family I(K)t , t=1, 2,... of symbolically equivalent linguistic graphs as 

temporal linguistic graph. 

    Algorithm 1.2. (Generation of multivariate map  F  with the trapdoor accelerator, 

see [6] )  

     Let us consider linguistic graph graph  mIs,r(K)  given by equations (1) of type s, r, 

m , s ≥r  together with graph  mIs,r(R)  where  R is the commutative ring of multivariate 

polynomials K[z1, z2, ..., zs, zs+1, zs+2, ..., zs+m]  given by the  same equations (1) with 

coefficients from K but with variables xi, yj  from R. So infinite graph mIs,r(R)  has the 

point set Rs+m  and the line set  Rr+m.     

        Let us  conduct the following symbolic computation. We consider the special 

point z=(z)=(z1, z2, ..., zs, zs+1, zs+2, ..., zs+m) which coordinates are variables, positive 

integer  l  and colours a(1), a(2),...., a(l), b(1), b(2),..., b(l) and c  such that a(1), a(3), 

..., a(l),  b(2), b(4),.., b(l-1) ϵ K[z1, z2, ..., zs]
s, elements  a(2), a(4),..., a(l-1), b(1), 

b(3),...,b(l)ϵK[z1, z2, ..., xs]
 r. 

So,  we compute  recurrently v1=Ja(1)(z), u1=Nb(1)(v1), v2=Ja(2)(u1), u2=Nb(2)(v2),..., 

vl=Ja(l)(ul-1), ul=Nb(l)(vl) and finally  Jc(ul)=v. If l is odd then v=(f1, f2, ..., fr, f1+r, f2+r, 

..., fm+r). Thus we construct the map F=F(a(1), a(2),...., a(l), b(1), b(2),..., b(l), c) from  

Ks+m  to K r+m  sending the tuple (z1, z2, ..., zs, xs+1, xs+2, ..., xs+m) to (f1, f2, ..., fr, fr+1, 

fr+2, ..., fr+m).  In the case of even k we construct the transformation F=F(a(1), a(2),...., 

a(l), b(1), b(2),..., b(l), c) of Ks+m given by the tuple (f1, f2, ..., fs, f1+s, f2+s, ..., fm+s).     

Note  that fi , i=1, 2,..., s are elements of K[z1, z2, ..., zs] but fiϵK[z1, z2, ..., zs, z1+s, z2+s, 

..., zm+s]. 
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Assume that  map L1 is an element of AGLs+m(K) and  L2 is taken from AGLr+m(K) in 

the case of odd l and L2 ϵAGLs+m(K) if l is even. The bijective polynomial maps L1 and 

L2 have degree 1.  Then we can compute the standard form of the map G=L1FL2. 

      Proposition 1. 2.  [6] Assume that constant  l is odd the tuple c defines surjective 

multivariate map C from Ks  to K r with trapdoor accelerator T  and parameters a(i), 

b(i)  and c have degrees of size O(1). Then polynomial surjective map G  from Ks+m to 

Kr+m has the trapdoor accelerator T’ which is the knowledge on l, a(i), b(i), i=1,2,..., l, 

C, T , L1, L2  and equations (1). 

      Remark 1.2. If K=Fq we can take the pair C, T defined by J. Ding and his team 

and get a new surjective map G from larger vector space with the trapdoor accelerator. 

      Proposition 2.2. [6] Assume that l is even or r=s and the tuple c defines bijective  

multivariate map C from Ks  to K s  with trapdoor accelerator T.  Assume that a(i), 

b(i), c are of size O(1). Then the  map G is bijective, it  has trapdoor accelerator T’ 

which is the knowledge on l, a(i), b(i), i=1,2,..., l, C, T , L1 , L2  and equations (1). 

        Remark 2.2. Under the condition of Proposition 2 in the case of even l it could 

be that r>s. 

     Procedure 1.2 (reimage computation). 

Alice gets the image e=(e1, e2, ..., et , et+1 , et+2,..., et+m), t=r or t=s of the map G.  She 

creates intermediate vector (z1, z2,.., zs, zs+1, zs+2, ..., zs+m). Alice computes (L2)
-

1(e)=(d1, d2, ..., dt , dt+1 , dt+2,..., ds+m)=d. She investigates the system of equations  

c1(z1, z2, ..., zs)=d1, c2(z1, z2, ..., zs)=d2,…, ct(z1, z2, ..., zs)=dt. The knowledge of T al-

lows her to  take some solution z1=α1,  z2=α2, ...,  zs=αs.  Alice calculates values  

β(i)=b(i)(α1, α2, ..., αs), γ(i)=a(i)(α1, α2, ..., αs), i=1, 2,..., l .   

She computes Jβ(l)(d)=vl,  Na(l)(vl)= ul,  Jβ(l-1)(ul )=vl-1, Na(l-1)(vl-1)= ul-1, …,  Jβ(1)(u2 

)=v1, Na(l)(v1)= u1, Ja(u1)=u  for  a= (α1, α2, ...,  αs). 

Alice computes the reimage as (L1)
 -1(u). 

     Remark. 3. 2. We can define F=F(a(1), a(2),...., a(l), b(1), b(2),..., b(l), c)= 

F(a(1), a(2),...., a(l), b(1), b(2),..., b(l), c, I1 , I2,..., Il ) in the case of temporal linguistic 

graph mIs,r(K)t   via simple assumption  that operators Nb(j)  of the algorithm are exe-

cuted in the graph Ij (K[z1, z2, ..., zs, zs+1, zs+2, ..., zs+m] ) formed as expansion of   mo-

mentum graph Ij= mIs,r(K)j /t=j , j=1, 2, ..., l . Proposition 1.1 and 2.2 hold for temporal 

graphs as well.   

     To control the degrees and densities of F=F(a1, a2,...., al, b1, b2,..., bl, c) we need a 

special class of linguistic graphs over K. 

    Jordan-Gauss graphs are linguistic  graphs given by special quadratic equations 

over the commutative ring K with unity such that the neighbour of each vertex is de-

fined by the system of linear equation given in its row-echelon form (see  [7],  [8], [9])  

   Generalised Double Schubert graph DSs,r(K)  (see [6],  [10] and further references) is 

a bipartite graph with the points of kind (x)=(x1, x2, ..., xs, x11, x12, ..., xsr) and lines 
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[y]=[y1, y2,..., yr, y11,, y12, ..., ysr] such that point (x) is incident to [y] if and if  the con-

ditions 

xij-yij=xiyj          (1)  

hold for i=1, 2,...,s and j=1, 2,..., r. 

Temporal graph DSs,r(K)t  is given by equations 
i,jα(t)xij -

  i,jβ(t)yij   =  
i,jγ(t)xiyj          (1’) 

where i,jα(t)  and i,jβ(t)  are elements of multiplicative group K* and i,jγ(t) are elements 

of K-{0}. 

     To form momentum graphs D1=DSs,r(K)t/ t=1, D2=DSs,r(K)t/ t=2, ... we can use 

pseudorandom or random sequences of elements from K* or K-{0} respectively. For 

the constructions genuinely random sequences Quantum Computer can be used. 

   Remark 4.2. Graph  DSs,r(K), K=Fq is formed by spaces of dimension s and s+1 

from two corresponding largest Schubert cells of projective geometry PGs+r(Fq).  

    Proposition 3.2.  [6] Let us consider map introduced above map G=L1F(a(1), 

a(2),...., a(l), b(1), b(2),..., b(l), c, D1, D2,..., Dl)L2 in the case of the temporal graph DS 

s,r(K) t.   Assume that  deg a(i)+deg b(i)≤d,  deg c=d. Then degree of G=G(a(1), 

a(2),..., a(l), b(1), b(2),..., b(l), c) is d.  

              In the case of d=2, 3 we can use this construction to obfuscate selected multi-

variate cryptosystem C, T.  In particular we can take as C, T already mentioned  quad-

ratic cryptosystem TUOV (Triangular Unbalanced Oil and Vinegar cryptosystem). We 

can also introduce enveloping trapdoor accelerator for Matsumoto-Imai cryptosystem 

over finite fields of characteristic 2, for the Oil and Vinegar public keys over Fq.                                                              

Another  quadratic multivariate public keys defined over Jordan-Gauss graphs        

D(n, K), where K is arbitrary finite commutative ring  with the nontrivial multiplica-

tive group. It gives us the option to use Proposition 3.2 in the case of arbitrary commu-

tative ring K (see [8], [11]). We can obfuscate presented above constructions of  mul-

tivariate maps of degree d with the trapdoor accelerator T below via deleting of some 

coordinates of points and lines with double indexes together with corresponding equa-

tions.  It will give us examples of multivariate maps of prescribed degree with the 

trapdoor accelerator on arbitrary free module Kn .Instead of generalised Schubert graph 

DSs,r(K) with points of kind (x)=(x1, x2, ..., xs, x11, x12, ..., xsr)  and lines [y]=[y1, y2,..., 

yr, y11,, y12, ..., ysr] we consider homomorphic image QDSs,r(K) where Q is selected 

proper  subset of Cartesian product of {1,2,…, s}=N and [1,2,…,r}=M. We assume that 

r=O(s), the projection (i, j)→i maps Q onto N and the projection (i, j)→j maps Q onto 

M. Let Q={α(1), α(2),...,α(m)} where m=O(st), 1 ≤t≤2.  Then partition sets of  
QDSs,r(K) are affine space Ks+m and Kr+m.                                                                                                          

We consider the map  QF=QF(a1, a2,...., al, b1, b2,..., bl, c)   obtained in the case of lin-

guistic graph QDSs,r(K).                                                                                                                             

We also consider QG as  L1
QFL2 where L1 and L2 are bijective affine transformations of 
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partition sets of QDSn,k(K).We refer to graphs QDSs,r(K) as Truncated Schubert Graphs 

and consider their temporal analogous QDSs,r(K) t  introduced via the deletion of coor-

dinates indexed by elements of N∙M -Q and corresponding equations from the system 

(1’).                                                                                                                                 

Let  D1=DSs,r(K)t/ t=1,D2=DSs,r(K)t/ t=2, ... stands for the momentum graphs of 
QDSs,r(K) t .                                                                                                                   

Proposition 3’.2. [6] Let us consider map introduced above map G=L1F(a(1), a(2),...., 

a(l), b(1), b(2),..., b(l), c, D1, D2,..., Dl)L2 in the case of the temporal graph QDS 
s,r(K) t.   

Assume that  deg a(i)+deg b(i)≤d,  deg c=d. Then degree of G=G(a(1, a2,..., al, b1, 

b2,..., bl, c, D1, D2,..., Dl) is d.                                                                                      

Corollary. Formulated above proposition allows us to construct multivariate bijective  

map G of prescribed degree d, d≥2  with the trapdoor accelerator on arbitrary affine 

space Kn..                                                                                                                          

We can use the construction of Proposition 3’ iteratively.                                           

Example 1.2. Let us select finite commutative ring K and positive numbers s,  m(1), 

m(2), .... to generate the sequence of bijective maps of prescribed degree d on Ks+m(1), 

Ks+m(1)+m(2), ... with the trapdoor accelerators.                                                                  

1 step. We use Proposition 3’.2  in the case of selected d, temporal Jordan-Gauss graph 

of type s, r, s+m(1)  where   s+m(1)≤ sr , l=l(1) is even, tuples a(1)=a(1, i), b(1)=b(1, 

i) satisfy the condition of the statement and c=(c1, c2,.., cs) has degree 1 and the map C 

of kind zi→ci(z1, z2,..., zs), i=1, 2,.., l is an element of AGLs(K).  Let the standard form 

G1 from s+m(1)CG(K) with the corresponding trapdoor accelerator T1 be the output of 

the procedure.                                                                                                                   

2 step and iteration. We use Proposition 3’.2 in the case of Jordan graph of type 

s+m(1), r(1), s+m(1)+m(2) where s+m(1)+m(2) ≤(s+m(1))r(1), l=l(2)  is even, a(i) 

and b(i) satisfy the condition of the statement and c coincides with the tuple 

g(1)=(G1(z1), G1(z2), ..., G1(zs+m(1))). Let the standard form of G2 and its trapdoor ac-

celerator T2 be the output of Step 2. Notice that the piece of information T2 is an ex-

pansion of T1.                                                                                                                  

We use the  tuple  c=g(2)=(G2(z1), G2(z2), ..., G2(zs+m(1)+m(2) )) and Proposition 3’ to 

generate the transformation G3  of affine space Ks+m(1)+m(2)+m(3)  with the trapdoor ac-

celerator T3 expanding T2. If we use k as total number of steps, then the continuation of 

this recurrent procedure of generating tuples g(3), g(4), ...,g(k-1) via free selection of 

even parameters l(3), l(4), ...., l(k) gives the transformation  Gk_of degree d on the af-

fine space of dimension   s+m(1)+m(2)+...+m(k) together with the trapdoor accelera-

tor Tk.                                                                                                                                

Procedure 2. 2 (reimage computation for (Gk, Tk)).                                                    

Assume that   Gj=
jL1Fj 

jL2, j=1,2,...., k  and Fj=F(a(1, j), a(2, j),...., a(l(j), j), b(1, j), 

b(2, j),..., b(l(j),j), g(j-1), jD1, 
jD2,..., 

jDl(j))  acting on the affine space jW of dimension 
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s+m(1)+m(2)+...+m(j)=n(j).                                                                                         

Alice obtained the ciphertext 0c=(0c1, 
0c2,..., 

0cn(k)). She computes  kL2
-1(0c) = kc and 

takes its projection kc’ on the first n(k-1) coordinates.                                                 

Alice computes  k-1L2
-1(kc’)= k-1c    and takes its projection  k-1c’  on first n(k-2) coordi-

nates. She continue this procedure and gets the tuples                                             
1c=(b1, b2, ..., bs, bs+1, bs+2,..., bs+m(1)) and 1c’=(b1, b2,..., bs).                                      

Alice forms the intermediate tuple (z1, z2,..., zs) and investigates the system of linear 

equations c1(z1, z2,..., zs)=b1, c2(z1, z2,..., zs)=b2, ..., cs(z1, z2,..., zs)=bs. She gets the so-

lution z1=α1, z2=α2,…, zs=αs.. Alice computes tuples a*(i, 1)=a(1, 1)( α1, α2,..., αs),  

b*(i, 1)=b(1, 1)( α1,α2,..., αs), i=1, 2,..., l(1)  with coordinates from K.                       

Alice takes graph   
1Dl(1) and computes  d(l(1))=Jb*(l(1),1)(

1c). She takes the neighbour  

d’(l(1)=Na*(l(1)),1) (d(l(1)) of the point d(l(1) of colour a*(l(1), 1).Alice treats the tuple 

d’(l(1)) as the line of graph 1Dl(1).She computes Jb*(l(1)-1),1) (d’(l(1))=d(l(1)-1) and its 

neighbour d’(l(1)-1)=N a*(l(1)-1),1) (d(l(1)-1). Alice continue this process and gets 

d’(1)=N a*(1,1) (d(1)) in the graph 1D1. So she gets e(1)=Jγ(d’(1)), γ= (α1,α2,..., αs).      

The tuple (1L1)
-1(e(1))=r(1) is the solution of the equation L1F1(z1, z2, zs, zs+1, ..., 

zs+m(1))= 1c=1(L2)
-1(2c’) which is equivalent to G1(z1, z2, zs, zs+1, ..., zs+m(1))=

2c’.         

Alice considers the equation 2L1F2(z1, z2, ...., zs, zs+1, ..., zs+m(1), zs+m(1)+1,..., 

Zs+m(1)+m(2))=
 2c=2L2(

3c’).                                                                                              

The first  s+m(1) equations of this system are equivalent to L1F1(z1, z2, ...., zs+m(1))=
1c 

with the solution γ(1)=(1α1, 
1α2, …, 1αs+m(1)).                                                                

Alice computes the specializations a*(1, 2), a*(2, 2),..., a*(l(2), 2), b*(1, 2), b*(2, 

2),..., b*(l(2), 2)  of a(1, 2), a(2, 2),..., a(l(2), 2), b(1, 2), b(2, 2),..., b(l(2), 2) under the  

substitution     z1=
1α1, z2=

1α2, …, zs+m(1)=
 1αs+m(1).                                                        

She computes the point d(l(2))=Jb*(2, l(2))(
2c) and line  d’(l(2))=Na*(2, l(2))(d(l(2))) of the 

graph  2Dl(2),  computes  d(l(2)-1)=Jb*(2, l(2)-1)(d’(l(2)) and vertex d’(l(2)-1)=Na*(2, l(2)-

1)(d(l(2)-1)) of the graph 2Dl(2)-1. Alice continue this process and gets  d’(1)=N a*(2,1) 

(d(1)) in the graph 2D1. So she gets e(1)=Jγ(1)(d’(1)) in this graph.                              

The tuple (2L1)
-1(e(1))=γ(2) is the solution of the equation 2L1F2(z1, z2, zs, zs+1, ..., 

zs+m(1), zs+m(1)+1,...,    zs+m(1)+m(2) )=
2c=1(L2)

-1(3c’) which is equivalent to                       

G2(z1, z2, zs, zs+1, ..., zs+m(1)+m(2))=
3c’.                                                                            

Alice continue this recurrent  process and  gets the solution γ(k) of the equation Gk(z1, 

z2, zs, zs+1, ..., zs+m(1)+m(2)+...+m(k))=
 0c.                                                                            

Example 2.2. Let us select finite commutative ring K and positive numbers s, r, s≥r,  

m(1), m(2), .... to generate the sequence of bijective maps of prescribed degree d from  

Ks+m(1) onto Kr+m(1), from Ks+m(1)+m(2) onto Kr+m(1)+m(2), ... with the trapdoor accelera-

tors. We will use Proposition 3’ several times in the case of odd parameter l.  
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    1 step. We use Proposition 3’  in the case of selected d, temporal Jordan-Gauss 

graph of type s, r, m(1)  where   s≤m(1)≤ sr , l=l(1) is odd, tuples a(i), b(i) satisfy the 

condition of the statement and c=(c1, c2,.., cs) has degree 1 and the map C : (z1, z2,..., 

zs)→(c1(z1, z2,..., zs), c2(z1, z2,..., zs),…, cr(z1, z2,..., zs) is surjective. We can  assume that 

linear expressions c1, c2,..., cr are written in a row echelon form. 

      Let the standard form the map G1  from Ks+m(1)onto Kr+m(1)) with the corresponding 

trapdoor accelerator T1 be the output of this step. 

     2 step and iteration. We use Proposition 3’ in the case of Jordan graph of type 

s+m(1), r(1)+m(1) , m(1)+m(2) where s+m(1)+m(2) ≤(s+m(1))(r(1)+m(1) , l=l(2)  is 

odd, a(i) and b(i) satisfy the condition of the statement and c coincides with the tuple 

g(1)=(G1(z1), G1(z2), ..., G1(zr+m(1))). Let the standard form of G2 and its trapdoor ac-

celerator T2 be the output of Step 2. Notice that the piece of information T2 is an ex-

pansion of T1.                               

     We use the  tuple  c=g(2)=(G2(z1), G2(z2), ..., G2(zr+m(1)+m(2) )) and Proposition 3’ to 

generate the map  G3  of affine space Ks+m(1)+m(2)+m(3)  onto Kr+m(1)+m(2)+m(3)   with the 

trapdoor accelerator T3 expanding T2. If we use k as total number of steps, then the 

continuation of this recurrent procedure of generating tuples g(3), g(4), ...,g(k-1) via 

free selection of odd  parameters l(3), l(4), ...., l(k) gives the standard form of the map   

Gk_of degree d  from the affine space of dimension   s+m(1)+m(2)+...+m(k) onto free 

module of dimension  r+m(1)+m(2)+...+m(k) together with the trapdoor accelerator 

Tk. 

     The procedure of reimage computation of Gk is similar to the case of Example 1.2. 

    Remark 4. 2.  (nonlinear disturbance). In both examples instead of linear map C 

any nonlinear surjective map H of degree at most d with the trapdoor accelerator can 

be used. In particular one can use quadratic  transformations of arbitrary free module 

Kn presented in [8], [11].  In  the case of Example 2. In case of finite field many classi-

cal broken or unbroken multivariate cryptosystem can be used (see [12 ] and further 

references). 
    

3. On the multivariate maps of prescribed density with the trapdoor accelerator. 

     Let Assume that commutative ring K contains nontrivial multiplicative group  

K*. Let us consider the totality  nES(K) of endomorphisms of K[z1, z2,..., zn] of kind 

z1 → q1z1 
a(1,1) z2 

a(1,2) … zn 
a(1,n) ,  

z2 → q2z1 
a(2,1) z2 

a(2,2) … zn 
a(2,n) ,         (1.3) 

… 

zn →qnz1 
a(n,1) z2 

a(n,2) … zn 
a(n,n)  

where qi are regular elements of finite commutative ring K with the unity.   

It is easy to see that the complexity of the composition of two elements of kind 

(1.3) is O(n3). 



13 

   The semigroup nES(K) acts naturally on (K*)n and contains large subgroup nEG(K)  

of bijective transformations of the variety  (see [1]).  

Recall that we define density den (f)  of element  f from K[z1, z2,..., zn] written in its 

standard form as its number of monomial terms. The density of the tuple  H(z1, z2,..., 

zn) is defined as maximum of den(hi), i=1,2,..., m. 

The following statements are proven in [6]. 

    Proposition 1. 3. Let us consider map introduced above map F=F(a(1), a(2),...., 

a(l), b(1), b(2),..., b(l), c, D1, D2,..., Dl) in the case of the temporal graph QDS 
s,r(K) t 

where  K is a commutative ring with nontrivial multiplicative group K*. Assume that 

the  densities of a(i), b(i)  and c are  of size O(s α(i)), O(s β(i)) and  O(sγ)   such that 

0≤α(i)+β(i)≤d and γ≤d for some d, d≥0.  Then   den F has size O(s d). 

     Remark 1. 3. Parameter d can be selected as rational number. 

    Corollary 1.3. Let s=r or l is even, r=O(s), m =O(sμ),  1≤μ≤2,  H be an element of 
s+mES(K)  and LϵAGLs+m (K) and F  satisfies conditions of Proposition 1. 3. Then the 

density of standard form of G=HFL is  O(s d+μ)=O((s+m) d/μ+1). 

     Remark 2.3. We can select L of density O(1) or density O(mλ), 0 ≤λ≤1. The sim-

plest case is of kind zi→diiżi+dii+1żi+1 +…+ dis+mżi+sm, i=1,2,…, m+s. Then the density 

of the map is O((s+m) d/μ+λ). 

     Corollary 2.3. Assume that conditions of Corollary 1.3 holds and   C=EN, where 

EϵsEG(K), NϵsCG(K). Then G induces injective map of (K*)s+m into (K)s+m. 

 Let Ms(K) = GLs(K)∩ sES(K) be the monomial group of linear transformations. 

     Corollary 3.3. Assume that conditions of Proposition 1.3 hold and 

 HϵM s+m (K)  and CϵsCG(K).  Then G is a bijective map of Ks+m onto itself. 

       Formulated above statements allow us to construct element G of nCG(K)  of un-

bounded  degree  and  prescribed density d, d≥O(n) with the trapdoor accelerator. 

    We define  multiplicative  trapdoor accelerator (F, T) of  F  which  is the map of 

density d  such that its restriction F’ on (K*)n is injective map and the knowledge of T 

allows to compute the reimage of F’ in a polynomial time. 

      Remark 3.3.  

We can construct multiplicative accelerators (F, T) where FϵnCS(K)  has unbounded 

degree and prescribed density O(nd ), d≥0. 

       Algorithm 1.3.  

 Public key with  the multivariate  map  G with the multiplicative trapdoor accelerator.  

 Alice select even parameter l of size O(1) and commutative ring K with nontrivial 

multiplicative group K*. Natural examples are finite field Fq or modular arithmetic Zq 

where q=2 s, s>1. 

She selects parameters n and k=O(n) together with the subset Q={α(1), α(2),..., α(m)}    

of  Cartesian product of {1,2,..., n} and {1,2,..., k} of cardinality m, m=O(nμ) where  

1≤μ≤2. Alice will work with graph QDSn,k(R) t, k=O(n), R=K[z1, z2, ..., zn, zα(1),  zα(2),  ...,  
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zα(m)].  She selects parameter d and tuples of polynomials  a(1), a(2),..., a(l), b(1), b(2), 

..., b(l)  with coordinates from K[z1, z2, ..., zn] satisfying conditions of Proposition 1.3,  

i. e. den(a(i)) has  size O(s α(i)),  

den(b(i))  has size O(s β(i)) and α(i)+β(i)=d. 

Alice  forms the tuples ai, bi , i=1, 2,.... l of  with coordinates of kind q1z1 
a(1,1) z2 

a(1,2) … zn 
a(1,s) +q2z1 

a(2,1) z2 
a(2,2) … zn 

a(2,n) +…+qrz1 
a(r,1) z2 

a(r,2) … zn 
a(r,n)  where qi ≠0.  

She  selects  the pair of  E, E’ϵnEG(K)  such that (EE’, (K*)n) and  

(E’E, (K*)s) are identity permutations.  The procedure 1 for this  step is given below.  

She takes N of density O(1) from AGLn(K) and L from AGLn+m(K) together with H and 

H’ from 
 m+nEG(K) such that HH’ and H’H are identity transformations of (K*)s+m(1).    Alice 

computes C=EN moving (z1, z2, ..., zn) to c=(c(1), c(2),..., c(n)).  

She select parameters i,jα(t)ϵK*,   i,jβ(t)  and   
i,jγ(t) where t=1, 2, ..., l,  

(i, j)ϵQ for construction of  momentum Jordan-Gauss graphs D1, D2 ,..., Dl of the tem-

porary graph QDSs,k(K) t. 

Alice will use Dj(K[z1, z2, ..., zs , zα(1),  zα(2),  ...,  zα(m(1))]) which are special momentum 

graphs of QDSs,k(R) t defined by equations with coefficients from K but with the point 

set Rn+m and line set Rk+m. 

She  uses symbolic computation in the graph  QDSn,k(R) t to construct the transfor-

mation  F=F(a(1), a(2),...., a(l), b(1), b(2),..., b(l), c, D1, D2,..., Dl) of Kn+m to itself. 

Alice uses Procedure 1 to form H from  
n+m EG(K). She forms L from AGLn+m(K)  of density O(mλ),  λ≤1 and the element  

G=HFL of  affine Cremona semigroup. She computes the standard form of G and an-

nounces this multivariate rule publicly. 

 The standard form of G will be used as encryption tool in the case of the space of 

plaintexts (K*)n+m .  

Alice generates the map via special walks on the graph. The degree of the map G is 

O(n+m).The density of the map is O(n+m) λ+d/μ. 

Thus the complexity of encryption of computation of the image of (p1, p2,..., 

pn+m)ϵ(K*)m+n is  O(n+m) λ+d/μ+1. 

       Decryption procedure. 

Public user Bob writes his plaintext p=(p1, p2,..., pm+n) and sends the ciphertext 

s=G(p) to Alice. 

Alice decrypts via the following procedure. 

She computes L-1(s)=(d1, d2, ..., dn, dα(1), dα(2),..., dα(m))=d. Alice creates intermediate 

tuple of variables  (z1, z2,..., zn, zα(1), zα(2),..., zα(m)) consider the equations. She computes 

N-1(d1, d2, ..., dn)=(e1, e2, ..., en) and considers the equations  

E(z1, z2,..., zn)=e1, 

E(z1, z2,..., zn)=e2, 
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..., 

E(z1, z2,..., zn)=en, 

Alice uses E’ and gets the  solution z1=t1, z2= t2, ..., zn= tn. 

She computes a(i)(t1, t2,..., tn)=a*i, i=1, 2,..., l, b(i)(t1, t2,..., tn)=b*i, i=1, 2,..., l   and 

writes the system of linear equations     

F=F(a*(1), a*(2),...., a*(l), b*(1), b*(2),..., b*(l), d’)(t1, t2, ..., tn, zα(1), zα(2),..., zα(m))=d 

where d’=(d1, d2, ..., dn). 

This system is already written in row-echelon form. 

So Alice gets the solution  zα(1)=tα(1), zα(2)=tα(2),...,zα(m)=tα(m). 

She forms t=(t1, t2,..., tn, tα(1), tα(2),..., tα(m)) and p as H’(t). 

      Procedure 1.3. 

     Let K be a finite commutative ring with unity and nontrivial multiplicative group 

K* of order d>1. Assume that parameter n is selected and we have a task of the gener-

ating of  two elements E and E’ of nEG(K) such that EE’ and E’E act on (K*)n as iden-

tity transformations. 

    We form  the transformation J1 and J2  from  nEG(K) of kind  

y1=μ1x1
a(1,1)

 

y2=μ2x1
a(2,1) x2

a(2,2)
  

… 

yn =μnx1
a(n,1) x2

a(n,2)
 …xn

a(n,n)   
 

where (a(1,1), d)=1, (a(2, 2), d)=1,…,(a(n, n), d)=1, 

 

 

z1 =μ’1y1
b(1,1) y2

b(1,2)
 …yn

b(1,n)   
z2 =μ’1y2

b(2,2) y2
b(2,3)

 …yn
b(2,n)   

… 

zn =μ’nyn
b(n,n)

 

where (b(n,n), d)=1, (b(n-1, 2), d)=1,…,(b(1, n), d)=1. 

        The computation of inverses J’1 and J’2 of the transformations J1 and J2 of the 

variety (K*) n  is straightforward. So Alice computes E=J1J2 and  E’=J’2J’1. 

Similarly she constructs lower triangular and upper triangular bijective transfor-

mations JG1 and JG2  from    (m+nES(K), (K*)m+n ).   

       So Alice computes H=GJ1 GJ2 and  H’=GJ’2 GJ’1. 

In the case d=0 and λ=0 when the density of a(i), b(i) and L are O(1)  

we obtain  pseudolinear cryptosystem. Its  complexity for the encryption  is  O(n+m) 2. 
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In the case of d/μ+λ<1 we get sub quadratic cryptosystem . It has complexity better 

than O(n+m)3. 

If d/μ+λ=1 we obtain pseudo  quadratic cryptosystem.  

         More general methods of generation of invertible elements of nES(K) can be 

found in [1]. 

    Corollary 4. 3. Let K be commutative ring with nontrivial multiplicative group K*. 

Then for each natural n , n>2 we can construct multivariate map of  prescribed densi-

ty with the multiplicative trapdoor accelerator. 

Recall that  G=EQQL induces injective map of (K*)n+m into Kn+m. 

The standard form of G has the trapdoor accelerator Q, E, L, H, N, ai, bi, i=1, 2,..., l, 

T’. We assume that equations of  DS(n, K) are known publicly. 

     Remark 4.3. Note that the map with the trapdoor accelerator of polynomial density 

O(nd) where d, d ≥2 is a natural number can be obtained as  the product of J1 and J2 of 

the Procedure 1 and selected multivariate map F of degree d with the trapdoor acceler-

ator T. 

     In [8] we use the special walks of odd length  in the Jordan-Gauss graphs D(n, K) 

of type 1, 1, n-1 for the generation of quadratic multivariate map F with the trapdoor 

accelerator . 

         The point (p)=(p1, p2,…, pn)  of this graph is incident with the line [l]=[l1, l2, …, 

ln], if the following relations between their coordinates hold: 

 l2-p2=l1p1, l3-p3=l2p1, l4-p4=l1p2,  li-pi=l1pi-2,  li+1-pi+1=li-1p1, : li+2-pi+2=lip1: li+3-

pi+3=l1pi+1 where i≥5. 

So the encryption scheme is the following. Let us take graph D(n, K[x1, x2,…, xn]), 

sequence of colors d(1), d(1)+x1, d(2),d(3)+ x1 ,  …, d(l-1)+ x1, d(l) ( d(i) ϵK) and 

h=h(x1, x2,…, xn)= ax1
t+f(x1, x2, …, xn) where aϵK*, quadratic f has the property that 

f(a1, a2,…., an)=f(b1, b1, …, bn) when tuples (a1, a2,…., an) and (b1, b1, …, bn)  are 

consist of coordinates of vertexes from the same connected component of the graph 

D(n, K), tϵ{1, 2} and xt =b has unique solution for each b from K. 

Then we have to take sequence x=(x1, x2,…, xn)  (point from D(n, K[x1, x2,…, xn])  ),   

v1=Nd(1)(x), Nd(2)+x1(v1)=v2, Nd(l)(vl-1)=v1, vl+1=Jh(vk)=(u1, u2, …, un). 

Let F be the map x1→u1(x1, x2,…, xn ),  x2→u2(x1, x2,…, xn), …, xn→un(x1, x2,…, xn). 

Then deg F=2. 

We consider the map of kind  G=J1J2L1FL2 where L1  and L2 are elements of AGLn(K). 

          We generate the map G in the case when K is a finite field Fq, q=28, Fq, q=212 

and Fq,q=216 for t=2. 

    Let us denote  G as G(n, l, K) in the case when the length of the sequence of colours 

d(1), d(2),…, d(l) has length l.  We present time of generation (in ms) of element 
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G=G(n, l, K)  and the total  number M(G) of monomial terms in all  gi (global density). 

We refer to parameter l as length of word. We can see the ‘’condensed matters phys-

ics’’ digital effect. If l is ’’sufficiently large’’, then M(g) is independent from l con-

stant (c).   

We have written a program for generating of elements and for encrypting a text using 

the generated public key. The program is written in  SAGE  [8]. We use an average PC 

with processor Pentium 3.00 GHz, 2GB memory RAM and system Windows 7.  

We have implemented three cases: 

1. L1 and L2 are identities, 

2. L1 and L2 are  maps of kind z1→ z1+ a2z2+a3z3+ … +atzt,,  z2→ z2, z3→z3, 

…, zn→ zn, ai≠0, i=1,2,…,n (linear time of computing for L1 and L2). 

3. L1= Ax+ b,  L2= A1x+ b1; matrices A, A1 and vectors b, b1 have mostly non-

zero elements. 

Tables 1. 1, 2.1 and 3.1 presents  of the global densities of the map defined over fields 

of order 28, 212 and 216 in the Case 1. 

Tables 1.2 , 2.2 and 3.2 corresponds to the Case 2 over the selected finite fields. 

Tables  1.3. 2.3 and 3.3 presents the global density of maps in the Case 3.  

               Table 1. 1  

(field of order 28) 

    

     

     

 

    

  

Number of coefficients 

 pass length/ n 16 32 64 128 

15 123 425 1204 2740 

31 123 439 1625 4716 

63 123 439 1626 6364 

127 122 439 1647 6367 
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                                 Table 2.1. 

Field of 

order 212. 

     

  

Number of coefficients. 

  Pass 

length/n 16 32 64 128 

 15 123 436 1204 2740 

 31 123 439 1644 4716 

 63 123 439 1647 6364 

 127 123 439 1647 6367 

                        

                    Table 3.1. 

Field of 

order 216. 

     

  

Number of coefficients 

  pass 

length/n 16 32 64 128 

 15 123 436 1204 2740 

 31 123 439 1644 4716 

 63 123 439 1647 6364 

 127 123 439 1647 6367 

  

                      

Table1.2 

Field of order 

28. 

     

 

     

  

Number of coefficients 

  pass length/n 16 32 64 128 

 15 783 4828 26174 120959 

 31 782 4833 32940 192050 

 63 782 4831 32951 240840 

 127 781 4832 32930 240840 
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Table 2.2 

 

Field of 

order 212. 

     

  

Number of coefficients 

  pass 

length/n 16 32 64 128 

 15 783 4832 26189 121132 

 31 783 4835 32967 192157 

 63 783 4835 32968 241034 

 127 783 4835 32967 241036 

  

Table 3. 2  

Field of 

order  216. 

     

  

Number of  coefficients 

  pass 

length/n 16 32 64 128 

 15 783 4832 26192 121135 

 31 783 4835 32968 192168 

 63 783 4835 32971 241046 

 127 783 4835 32971 241051 

  

Table 1.3 

Field of order 28. 

      

  

Number of coefficients. 

  pass 

length/n 16 32 64 128 

 15 2439 17887 136749 1069013 

 31 2443 17885 136760 1069129 

 63 2442 17885 136725 1069034 

 127 2434 17884 136768 1069097 

  

Table 2. 3 
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Field of order 212. 

      

  

Number of coefficients. 

  pass 

length/n 16 32 64 128 

 15 2447 17948 137240 1073017 

 31 2448 17945 137247 1073002 

 63 2448 17949 137249 1072985 

 

127 2448 17946 137254 1073007 

 

 

 

Table 3.3 

Field 

of 

order 

2 16. 

     

 

Number of 

coefficients 

   pass length/n 16 32 64 128 

 15 2448 17952 137276 1073256 

 31 2448 17952 137277 1073261 

 63 2448 17952 137280 1073261 

 

7 2448 17952 137280 1073266 

 

 

     Tables confirms that in the Case 2 and 3 we have pseudocubic multivariate 

transformations, i. e. maps of density O(n2). In the case 3 we have a pseudoquadratic 

maps. 

Similar cryptosystems of complexity O(n3) are proposed in [24], [25]. 

Similarly to the Example 1 we can use Proposition 4 iteratively. 

Example 1. 3  

         Alice selects finite commutative ring K and positive number s and prescribed 

degree d.    

Step 1. Alice selects even parameter l=l(1) of size O(1) and the degree d(1) of the ini-

tial map and parameter μ(1),  1≤μ(1)≤2. 

She takes parameter  k=O(s) together with the subset Q={α(1), α(2),..., α(m(1))}    

of  Cartesian product of {1,2,..., s} and {1,2,..., k} of cardinality m(1), m(1)=O(sμ(1)) 
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where  1≤μ(1)≤2. Alice will work with graph QDSs,k(R) t,  k=O(s), R=K[z1, z2, ..., zs, 

zα(1),  zα(2),  ...,  zα(m(1))].  She selects tuples of polynomials  a(1)=a(1, 1), a(2)=a(1, 

2),..., a(l)=a(1, l),  b(1, 1), b(1, 2), ..., b(1, l), l=l(1)  with coordinates from K[z1, z2, ..., 

zs] satisfying conditions of Proposition 4, i. e.  

deg (a(i))=α(i), deg b(i)= β(i) and α(i)+β(i)=d(1). 

Alice  forms the tuples ai, bi , i=1, 2,.... l of  with coordinates of kind q1z1 
a(1,1) z2 

a(1,2) … zs 
a(1,s) +q2z1 

a(2,1) z2 
a(2,2) … zs 

a(2,s) +…+qrz1 
a(r,1) z2 

a(r,2) … zs 
a(r,s) where qi ≠0.  

She  selects  the pair of  E, E’ϵsEG(K)  such that (EE’, (K*)s) and  

(E’E, (K*)s) are identity permutations.  She takes N of density O(1) from AGLs(K) and 

L of density O(1) from AGLs+m(1)(K) together with H=H1 and H’=H’1 from 
 m(1)+sEG(K) such that HH’ and H’H are identity transformations of (K*)s+m(1).    Alice 

computes C=EN moving (z1, z2, ..., zs) to c=(c(1), c(2),..., c(s)).  

She select parameters i,jα1(t)ϵK*,   i,jβ1(t)  and   
i,jγ1(t) where t=1, 2, ..., l(1), (i, j)ϵQ for 

the construction of  momentum Jordan-Gauss graphs 1D1, 
1D2 ,..., 

1Dl of the temporary 

graph QDSs,k(K) t. 

  Alice will use 1Dj(K[z1, z2, ..., zs , zα(1),  zα(2),  ...,  zα(m(1))]) which are special momen-

tum graphs of QDSs,k(R) t , R= K[z1, z2, ..., zs , zα(1),  zα(2),  ...,  zα(m(1))])  defined by equa-

tions of  1D1, 
1D2 ,..., 

1Dl with coefficients from K but with the point set Rs+m(1) and line 

set Rk+m(1). 

    She  uses symbolic computation in the graph  QDSs,k(R) t to construct the transfor-

mation  F=F1=F(a(1, 1), a(1, 2),...., a(1, l(1)), b(1, 1), b(1, 2),..., b(1, l), c, 1D1, 
1D2,..., 

1Dl(1)) of Ks+m(1). She already formed L=L1 from AGLs+m(1)(K)  of density O(1). Alice 

computes  the element  G1=H1F1L1 of  affine Cremona semigroup. She computes the 

standard form of G1. The degree of the map G1 is O(s+m(1)).The density of the map is 

O(s+m(1)) d(1) /μ(1). The trapdoor accelerator T1 consist of Q, equations of  QDSs,k(K), 

tuples a(1), a(2),...., a(l), b(1), b(2),..., b(l)  and momentum graphs, transformations E , 

N and H1 , L1.  

     Step 2 and the iteration. 

 Alice  selects parameter  k(1)=O(s+m(1)) and  positive integer s+m(1) 

≤m(2)≤s+m(k)k(1), even parameter l(2) and constants d(2), d(2)≥d(1)/μ(1)  and μ(2) 

where 1≤μ(2)≤2. She selects the subset Q(1)={ α(1, 1),  α(1, 2),..., α(1, m(2))}    of  

Cartesian product of {1,2,..., s+m(1)} and {1,2,..., k(1)} of cardinality m(2), 

m(2)=O((s+m(1))μ(2)). Alice will work with graph Q(1)DSs+m(1),k(1)(R) t,  R=K[z1, z2, ..., 

zs+m(1), zα(1,1),  zα(1, 2),  ...,  zα(1, m(2))].  She selects parameters to create momentum graphs 
2D1, 

2D2 ,..., 
2Dl(2)  of the temporary graph Q(1)DSs+m(1),k(1)(K) t. 

      Alice will use 2Dj(K[z1, z2, ..., zs+m(1) , zα(1, 1),  zα(1, 2),  ...,  zα(1, m(2))]), 

J=1, 2,..., l(2) which are special momentum graphs of QDSs+m(1), k(1)(R) t , R= K[z1, z2, 

..., zs , zα(1),  zα(2),  ...,  zα(m(1))]) defined by equations of  2D1, 
2D2 ,..., 

2Dl(2) with coeffi-

cients from K but with the point set Rs+m(1)+m(2) and line set Rk(1)+m(1+)m(2). 
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      She selects  tuples a(2, 1), a(2, 2),...., a(2, l(2)), b(2, 1), b(2, 2),..., b(2, l(2)) with 

coordinates  from K[z1, z2, ..., zs+m(1)]  such that den (a(2, i)b(2, i))=O((s+m(1))d(2)). 

Alice constructs the transformation  F2=F(a(2, 1), a(2, 2),...., a(2, l(2)), b(2, 1), b(2, 

2),..., b(2, l(2)), g(1), 2D1, 
2D2,..., 

2Dl(2)) of Ks+m(1)+m(2)  where g1 is the tuple (G1(z1), 

G1(z2),..., G1(zs+m(1)). She  selects  the pair of  H2, H2’ϵ
s+m(1)+m(2)EG(K)  such that 

(H2H2’, (K*)s+m(1)+m(2)) is  identity permutations.   

       She selects L=L2 from AGLs+m(1)+m(2)(K)  of density O(1) and forms 

G2=H2F2L2. 

    The density of the standard form of  the map G2 will be determined as O((s+m(1)) 

d(2)) or O((s+m(1)+m(2)) d(2)/μ(2)).The map G2 has a multiplicative trapdoor accelerator 

T2    which is extension of T1  via adding  Q(1) of cardinality m(2), parameters k(1), 

l(2) equations of  Q(1)DSs+m(1) ,k(1) (K), tuples a(2.1), a(2, 2),...., a(2, l(2)), b(2, 1), b(2, 

2),..., b(2, l(2)), momentum graphs 2D1, 
2D2,..., 

2Dl(2) and  transformations  H2 , H2’,  

L2.  

     Alice takes parameters d(3), d(3) ≥d(2)/μ(2),  μ(3),  1 ≤μ(3))≤2, k(2) of size 

O(s+m(1)+m(2))  and m(3) of size   O( (s+m(1)+m(2))μ(3) such that s+m(1)+m(2)   ≤ 

m(3)≤(s+m(1)+m(2))k(2). She takes even parameter l(3) and selects subset Q(2)={ 

α(2, 1),  α(2, 2),..., α(2, m(3))}     of Cartesian product of {1, 2,...., s+m(1)+m(2)} and  

{1, 2, ..., k(2)}. 

Alice will work with graph Q(2)DSs+m(1)+m(2),k(2)(R) t,  R=K[z1, z2, ..., zs+m(1)+m(2), zα(2,1),  

zα(2, 2),  ...,  zα(2, m(3))].  She selects parameters to create momentum graphs 3D1, 
3D2 ,..., 

3Dl(3)  of the temporary graph Q(2)DSs+m(1)+m(2), k(2)(K) t. 

Alice forms  tuples a(3, 1), a(3, 2),...., a(3, l(3)), b(3, 1), b(3, 2),..., b(3, l(3)) with co-

ordinates  from K[z1, z2, ..., zs+m(1)+m(2) ]  such that                                                       

den (a(3, i)b(3, i))=O((s+m(1)+m(2)+m(3))d(3). Alice constructs the transformation  

F3=F(a(3, 1), a(3, 2),...., a(3, l(3)), b(3, 1), b(3, 2),..., b(3, l(3)), g(2), 3D1, 
3D2,..., 

3Dl(3)) of Ks+m(1)+m(2)+m(3)  where g(2) is the tuple (G2(z1), G2(z2),..., G2(zs+m(1)+m(2)). 

          She  selects  the pair of  H3, H3’ϵ
s+m(1)+m(2)+m(3)EG(K)  such that (H3H3’, 

(K*)s+m(1)+m(2)+m(3)) is  identity permutation.   

      She selects L=L3 from AGLs+m(1)+m(2)+m(3)(K)  of density O(1) and forms 

G3=H3F3L3. 

      The density of the standard form of  the map G3 will be determined as 

O((s+m(1)+m(2) d(3)) or O((s+m(1)+m(2)+m(3)) d(3)/μ(3)). The map G3 has a multiplica-

tive trapdoor accelerator T3    which is extension of T2   via adding  Q(2) of cardinality 

m(3), parameters k(2), l(3),  equations of  Q(2)DSs+m(1)+m(2) ,k(2) (K), tuples a(3.1), a(3, 

2),...., a(3, l(2)), b(3, 1), b(3, 2),..., b(3, l(3)), momentum graphs 3D1, 
3D2,..., 

3Dl(3) and  

transformations  H3 , H3’,  L3.  
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     Alice continue the iterative process. She creates G4 , G5, ..., Gr  of the densities of 

kind O(n(i)) β(i), i=4, 5,...., r where n(i) is the dimension of the space of ciphertexts and 

β(i)=d(i)/μ(i) with the multiplicative trapdoor accelerators Ti , i=4,5,..., r respectively. 

      So the final map Gr  of Ks+m(1)+m(2)+…+m(r)   to itself with the multiplicative trapdoor 

accelerator  Tr  has a polynomial density. 

      Recall that d(i)≥d(i-1)/μ(i-1) for i=2, 3,..., r. In the case when these inequalities 

become equalities d(r )/μ (r )=d(1)/(μ(1)μ(2)μ(3)... μ(r)) 

Alice can select d(1)=0 when Gr  has density O(1). Then the output will be pseudolin-

ear map.   The choice of small parameter d(1) will allow her to get sub quadratic map 

of the density O(nλ) with arbitrary  selected λ, λ<1.  Obviously Alice can create the 

map Gr  of prescribed density O(nd) with the multiplicative trapdoor accelerator. 

      Note that Alice can take  Gr L where  L  has degree 1 and density O(n) and  use the 

standard form of transformation of density  

O(n 
d+1

 ) with the multiplicative trapdoor accelerator. 

     Procedure 1.3. (reimage computation for (Gr, Tr)). 

    Assume that   Gj=HjFjLj, j=1,2,...., r and Fj=F(a(1, j), a(2, j),...., a(l(j), j), b(1, j), 

b(2, j),..., b(l(j),j), g(j-1), jD1, 
jD2,..., 

jDl(j))  acting on the affine space jW of dimension 

s+m(1)+m(2)+...+m(j)=n(j). 

      Alice obtained the ciphertext 0c=(0c1, 
0c2,..., 

0cn(r)). She computes Lr
-1(0c) = rc and 

takes its projection rc’ on the first n(r-1) coordinates.  

      Alice computes Lr-1
-1(rc’)= r-1c  and takes its projection  r-1c’  on first  n(r-2) coor-

dinates. She continue this procedure and gets the tuples  1c=(b1, b2, ..., bs, bs+1, bs+2,..., 

bs+m(1)) and 1c’=(b1, b2,..., bs). 

      Alice forms the intermediate tuple (z1, z2,..., zs) and investigates the system of line-

ar equations c1(z1, z2,..., zs)=b1,c2(z1, z2,..., zs)=b2, ..., cs(z1, z2,..., zs)=bs. She gets the 

solution z1=α1, z2=α2,…, zs=αs. In fact (α1, α2,…, αs)= E’(N-1(b1, b2,…,bs)). 

 Alice computes tuples a*(i, 1)=a(1, 1)( α1, α2,..., αs),  b*(i, 1)=b(1, 1)( α1,α2,..., αs), 

i=1, 2,..., l(1)  with coordinates from K. 

        Alice takes graph  1Dl(1) and computes  d(l(1))=Jb*(l(1),1)(
1c). She takes the neigh-

bour  d’(l(1)=Na*(l(1)),1) (d(l(1)) of the point d(l(1) of colour a*(l(1), 1). 

     Alice treats the tuple d’(l(1)) as the line of the graph 1Dl(1). She computes Jb*(l(1)-1),1) 

(d’(l(1))=d(l(1)-1) and its neighbour d’(l(1)-1)=N a*(l(1)-1),1) (d(l(1)-1). Alice continue 

this process and gets d’(1)=N a*(1,1) (d(1)) in the graph 1D1. So she gets e(1)=Jγ(d’(1)), 

γ= (α1,α2,..., αs). 

    The tuple (H1)’(e(1))=r(1) is the solution of the equation H1F1(z1, z2, zs, zs+1, ..., 

zs+m(1))= 1c=(L1)
-1(2c’) which is equivalent to 

 G1(z1, z2, zs, zs+1, ..., zs+m(1))=
2c’. 

Alice considers the equation H2F2(z1, z2, ...., zs, zs+1, ..., zs+m(1), zs+m(1)+1,...,zs+m(1)+m(2))=
 

2c=L2(
3c’). 
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      The first  s+m(1) equations of this system are equivalent to  

H1F1(z1, z2, ...., zs+m(1))=
1c with the solution γ(1)= 

(1α1, 
1α2, …, 1αs+m(1)) obtained due to the knowledge of the trapdoor accelerator.  

       Alice computes the specializations a*(1, 2), a*(2, 2),..., a*(l(2), 2), b*(1, 2),    

b*(2, 2),..., b*(l(2), 2) of a(1, 2), a(2, 2),..., a(l(2), 2), b(1, 2), b(2, 2),..., b(l(2), 2) un-

der the  substitution z1=
1α1, z2=

1α2, …, zs+m(1)=
 1αs+m(1). 

She computes the point d(l(2))=Jb*(2, l(2))(
2c) and line d’(l(2))=Na*(2, l(2))(d(l(2))) of the 

graph  2Dl(2),  computes d(l(2)-1)=Jb*(2, l(2)-1)(d’(l(2)) and vertex d’(l(2)-1)=Na*(2, l(2)-

1)(d(l(2)-1)) of the graph 2Dl(2)-1. Alice continue this process and gets                  

d’(1)=N a*(2,1) (d(1)) in the graph 2D1. So she gets e(2)=Jγ(1)(d’(1)) in this graph. 

The tuple (H2)
’(e(2))=γ(2) is the solution of the equation H2F2(z1, z2, zs, zs+1, ..., zs+m(1), 

zs+m(1)+1,...,    zs+m(1)+m(2) )=
2c=L2(

3c’) which is equivalent to                                       

G2(z1, z2, zs, zs+1, ..., zs+m(1)+m(2))=
3c’. Alice continue this recurrent  process and  gets 

the solution γ(r) of the equation Gr(z1, z2, zs, zs+1, ..., zs+m(1)+m(2)+...+m(k))=
 0c. 

     Remark 5.3. (nonlinear disturbance). In this iterative algorithm instead  of  the 

combination  EN on Ks  one can  take any pseudolinear map Z with  the multiplicative 

trapdoor accelerator at most d with the trapdoor accelerator can be used. 
4.  On the safe delivery of multivariate maps. 

 4.1. On protocols of Noncommutative Cryptography. 

     The following protocol is one of the classical instruments of Noncommutative 

Cryptography. 

 Twisted Diffie-Hellman protocol. 

Similarly Let S be an abstract group which has some invertible elements.  

Alice and Bob poses common element  gϵS and the pair of invertible elements  h, h -1 

from this semigroup.  

Alice selects natural numbers  k(A) and  r(A), she  forms  

h-r(A)gk(A)hr(A)= gA. 

Bob choses  k(B) and  r(B), he forms  h-r(B)gk(B)hr(B)= gB. 

They exchange gA,  gB and compute the collision element X  as  
Ag= h-r(A)gB

k(A)hr(A)  

(Alice )  and  Bg= h-r(B)gA
k(B)hr(B)  (Bob) respectively. 

The security of this scheme is based on the complexity of Power Conjugacy Prob-

lem, adversary has to solve the equation h-xgyhx=b, where b coincides with  gB or gA. 

The complexity of this problem is essentially depends on the choice of highly non-

commutative platform S.   

In the case of platform  S= nES(K) where K=Fq or  K=Zq  this problem is intractable 

even with the use of quantum computer. 

The computational complexity of this protocol is O(n3). 
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If we assume that the  degree of transformations h and g  from nES(K)  is O(1) 

then the complexity of the protocol is O(n). 

Other platforms defined in terms of multivariate cryptography 

and corresponding protocols reader can find in [6], [13], [16], [17] [59], [60], [61]. 

Foundations of Noncommutative Cryptography, description of algorithms and crypt-

analytic results reader can find in [38]-[58]. 
   4.2. Safe  delivery of  transformations of polynomial density O(nd). 

     Let F be the map from (K*)n in Kn  of density O(nd) , 0 ≤ d≤1 such that its re-

striction on (K*) n is injective. Assume that T is a multiplicative trapdoor accelerator of 

F and Alice has the pair (F, T). 

Below please find an examples of the deformation. 

  Example 1.4.  (the case of maps of unbounded degree). 

     Alice and Bob conduct Twisted Diffie-Hellman protocol based on the platform  

nES(K). Assume that the collision map C is given by formula (1).     Correspondents 

can use subsemigroup of nES(K) with generators from the set M={g , h, C}. They use 

open channel to agree on words  wj(C)=( jgi(1), 
jgi(2), …, jgi(s(j))) of length s(j), s(j) ≥ 1 

where jgi(1), jgi(2), ..., 
jgi(s(j)) , j=1, 2, ..., r is the sequence of elements of the alphabet M 

which contains at least one appearance of C. 

Let  jg(C )   are element of nES(K) generated as product of characters of the wj(C). We 

form jh(C) sending xi to jg(C )(xi)a(i, j) where a(i, j) are publicly known elements of K-

{0}. 

 Let  G(C) be the sum  1h(C )+ 2h(C )+... rh(C ).         

Alice can send the tuple (F(x1)+G(C) (x1), F(x2)+G(C)(x2), ... 

F(xn)+G(C)(xn)) to Bob. He is able to restore the map F. 

This ‘’steganographic’’ way of safe delivery of the  multivariate map is secure even in 

the case  r is linear expression from n of size O(n). 

     Example 2.4. (the case of nonlinear transformation of constant degree d).  

Alice takes the collision element C  and nonempty subsets of {1, 2, ...,n} of kind {i(1), 

i(2), ..., i(m)} of cardinality m, 1≤m≤d. 

She form gi as the linear combination  of monomial terms 

 (qi(1))
 a(i, i(1))(qi(2))

 a(i, i(2))...(qi(m))
 a(i, i(m))... xi(1)xi(2)...xi(m) and constant  C(xi)(q1, q2,..., qm) 

with known nonzero coefficients from K. Alice sends (F(x1)+g1, F(x2)+g2,..., 

F(xn)+gn) to Bob. 

     Remark 1.4. Assume that the map F of degree O(n) is not given publicly, Alice 

and Bob use it in the protocol based secure way. 

Adversary may intercept polynomial number of pairs of kind plaintext /ciphertext but 

even this information can be insufficient for restoration of F without the knowledge of 

symbolic type of Z, i. e. lists of nontrivial monomial terms of F(xi) with coefficients 1.  
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    Remark 2. 4. It is known that polynomial system of equations of degree d(n) can be 

rewritten as system of quadratic equations via the method of introducing extra varia-

bles. If degree is unbounded than growth of number of variables does not allow to in-

vestigate resulting quadratic system. In case when the system is not given publicly the 

method of degree reduction can not be used.  
 

5. Obfuscations  of the algorithms in terms of Lie Geometries and their temporal analogue.                                                          

Missing definitions on Lie and Weyl  geometries theory reader can find in [18] or [ 

19], [20]. 

   Let Xn(F) be a simple Chevalley group over the field F with the corresponding 

Coxeter-Dynkin diagram Xn (An, Bn, Cn, Dn, E6, E7, E8, F4, G2) . We can consider the 

geometry  Г(Xn, F) of this defined by the following way. 

  Let U + be the unipotent subgroup of Xn(F) generated by root subgroups correspond-

ing to positive root of the root system with the diagram Xn and U-   be the subgroup 

generated by root subgroups corresponding to negative roots. Assume that at Pi, i=1, 

2,..., n  are standard maximal subgroups, i. e. maximal subgroups of Xn(F) containing 

U +. Geometry Г(Xn(F)) is the disjoint union of left cosets (Xn(F):Pi)=Гi , i=1, 2,..., n  

with the type function t(gPi)=i and  incidence relation I two elements α and β from Г 

of different type are incident if and only if the intersection of these cosets is a nonemp-

ty set.  

    Let Si be the orbit  (U- , Гi ) containing Pi. The  incidence structure i,jS(Xn, F) of I 

restricted onto SiUSj, i≠j is known as cellular Schubert graph. The following state-

ments are proved in [6]. 

   Theorem 1.4.  Cellular Schubert graph  i,jS(Xn, F)  is a Jordan-Gauss graph. 

       Let i,jS(Xn, K)  be some linguistic graph over the commutative ring K symbolically 

equivalent to  jS(Xn, F).  

    Proposition 1.5. Let us consider map introduced above map G=L1F(a1, a2,...., al, 

b1, b2,..., bl, c)L2 in the case of the graph i,jS(An, K).   Assume that  deg a(i)+deg b(i)≤d,  

deg c=d. Then degree of G=G(a1, a2,..., al, b1, b2,..., bl, c) is d. 

     Corollary 1.5. One  can take the temporal graph  i,jS(An, K) t instead of  i,jS(An, K).   

Then the degree of the map will be also bounded by d. 

     Description of the graph i,jS(An, K) in terms of Projective Geometry  is given in  

[22] where public key algorithm based on the  trapdoor accelerator of quadratic multi-

variate bijective map is presented. 

     The trapdoor accelerator is the knowledge on the equations of the linguistic graph 
i,jS(An, K), the tuples a1, a2,...., al, b1, b2,..., bl, description of trapdoor accelerator of the 

map defined by the tuple c and two affine transformations on the space of plaintexts.    
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This multivariate public key  is presented in [6], special case d=2 is considered in [21] 

and [22] .   These cryptosystems  and their generalisation in terms of temporal Jordan-

Gauss graphs can  be used as inputs of iterative Algorithms of Examples 1.2 and 2.2 of 

Section 2. 

      Proposition 2.5. Let us consider map introduced above map G=L1F(a1, a2,...., al, 

b1, b2,..., bl, c)L2 in the case of the graph i,jS(Xn, K) where Xn ϵ {Bn, Cn, Dn}. Assume that  

deg a(i)=1, deg b(i)=1,  deg c≤3. Then degree of G=G(a1, a2,..., al, b1, b2,..., bl, c) is 3.      

       Proposition 3.5. Let K be a commutative ring with nontrivial multiplicative group 

K*. Then  for  defined above F=F(a1, a2,...., al, b1, b2,..., bl, c)  in the case of  graph 
i,jS(Xn, K) where Xn  ϵ {Bn, Cn, Dn} and densities of ai, bi  and c are of size O(s α), O(s α) 

and  O(s 3α). Then  den F has size O(s 3α). 

     Proposition 4. 5. Let us consider introduced above map F=F(a(1), a(2),...., a(l), 

b(1), b(2),..., b(l), c, D1, D2,..., Dl) in the case of the graph i,jS(An, K) t where  K is a 

commutative ring with nontrivial multiplicative group K*. Assume that the  densities 

of a(i), b(i)  and c are  of size O(s α(i)), O(s β(i)) and  O(sγ)   such that 0≤α(i)+β(i)≤d and 

γ≤d for some d, d≥0.  Then   den F has size O(s d). 

      Proposition 5. 5. Let K be a commutative ring with nontrivial multiplicative group 

K*. Then  for  defined above F=F(a1, a2,...., al, b1, b2,..., bl, c)  in the case of  graph 
i,jS(Xn, K) where  densities of ai, bi  and c are of size O(1),  then  den F has size O(1). 

       The implementation of the public key algorithm based on the i,jS(An, K) based 

multivariate map F of Proposition 8  with the multiplicative trapdoor accelerator  is 

presented in [23]. The substitution of i,jS(An, K)t instead of  i,jS(An, K) leads to essential 

obfuscation of the cryptosystem. 

    This multivariate public key can be used as input of iterative Algorithms of Exam-

ple 1.3  of  Section 3. 

   Remark 1.5. In each case of last 3 written above statements we can take temporal 

Jordan - Gauss graph  i,jS(Xn, K)t  instead of i,jS(Xn, K) and get multivariate map with 

similar properties. 

      We define symplectic homomorphism of the linguistic graph In(K) of type r, s, m  

given by equations (1) as the map obtained by deleting of some coordinates of point 

(x1, x2,…., xs+m), and line [y1, y2,…, yr+m] with indexes from of kind {s+i(1), s+i(2), …, 

s+i(l)} and {r+i(1}, r+i(2), …, r+i(l)}  respectively, where J={i(1), i(2), …, i(l)} are 

nonempty subset of {1, 2, …,m} such that deletion of equations  with right hand sides  

fi(j) and and coordinates  indexes {1, 2,…, s}U[1, 2, ,,,, r} which do not appear in re-

maining equations lead  to a new linguistic graph. 

We refer to the image of symplectic homomorphism as symplectic quotient. Truncated 

Schubert graph  QDSs,r(K) is a symplectic quotient of Jordan-Gauss graph QDSs,r(K). 



28 

Note that the each subset J={m, m-1, ...m- k},  1<k<m defines the symplectic homo-

morphism of In(K). 

     Note that some quotients of graphs i,jS(An, K) can be used in iterative algorithms of 

Examples 1, 2, 3 instead of graphs QDSs,r(K). 

      Orbits of U- on Г(Xn, F) are vector spaces of kind Fk, k≥0. Invariant cosets  gPi  

where g is  Coxeter element, i.e.  the element of Weyl group with maximal length of 

irreducible decomposition into standard generators,  can be treated as 0-dimensional 

subspaces. These orbits are in one to one correspondence with elements of Weyl ge-

ometry Г(W). Let Sα be orbit corresponding to αϵ Г(W) of dimension d(α). Two  ele-

ments x ϵ Sα and y ϵ Sβ  can be incident only in the case when α is incident to β in Weyl 

geometry Г(W).  For each flag {α, β} of Г(W) we consider I(α, β) which is the re-

striction of I on Sα U Sβ .      

     Proposition 5.5. The incidence structure I(α, β) with point set 

 F d(α) and line set F d(β) is a Jordan-Gauss graph. 

       Let  K be a commutative ring with the unity. Temporal geometry Г(Xn, K)t, t=1, 

2,....  is the disjoint union of  K d(α) together with the totality of temporal Jordan-Gauss 

graphs  I(α, β, K) t . We say that xϵK d(α)  and yϵK d(β) are incident in momentum t=i 

if αIβ and x, y is an edge of the graph  I(α, β, K) t /t=i. 

       Let {α,β} be standard flag of rank 2 , i.e   α=Wi , β=Wj  where i≠j. We consider the 

reverse walk of kind  α, β, γ(1), γ(2), ..., γ(l), β, α. It means that αIβ,  βIγ(1), γ(1)Iγ(2), 

..., γ(l)Iβ in the Weyl geometry W(Xn). 

     We consider the sequence of incidence structures  1I=(Kd(α), Kd(β), I(α, β, K) t /t=1), 
2I=(Kd(β), Kd(γ(1)),   I(β, γ(1), K)t /t=2), 3I=(Kd(γ(1)), Kd(γ(2)),   I( γ(1), γ(2), K)t /t=3), 

(Kd(γ(2)), Kd(γ(3)),  4I=( I( γ(2), γ(3), K)t /t=4), ..., l+2I=( (Kd(γ(l)), Kd(β)),   I( γ(l), γ(β), K)t 

/t=l+2), l+3I=( Kd(β)),  Kd(α), I( γ(β), γ(α), K)t /t=l+3). 

      Let (s(j), r(j), m(j)) be the type of linguistic graph jI, j=1, 2, ,..., l+3. The pair a(j)ϵ 

Ks(j),   b(j)ϵ Kr(j) defines the colour of  jI. Let c be the colour of the point of 1I (or the 

line in l+3I). 

     We define  the circular walk with jumps starting in pϵ Ks(j) and ending in p’ϵ Ks(j) as 

the following sequence of vertices of Г(Xn, K)t : 

p,   v1=Ja(1)(p), u1=Nb(1)(v1), v2=Ja(2)(u1), u2=Nb(2)(v2), …, vl+3=Ja(l+3)(ul+2), 

ul+3=Nb(l+3)(vl+3), u’l+3=Jc(ul+3).   

    We  denote the above presented circular walk with jumps  as C(p, a(1), b(1), a(2), 

b(2), ..., a(l+3), b(l+3), c, I1, I2, ...., Il+3).  

         Let us consider the commutative ring R=K[z1, z2,..., zm], m=d(α) and s=s(1). We 

consider graphs  I1(K[z1, z2,..., zm]), I2 (K[z1, z2,..., zm]), ...., Il+3 (K[z1, z2,..., zm]), 

special element z=(z1, z2,..., zm) from  (K[z1, z2,..., zm]) d(α) and colours A(j)ϵ K[z1, z2,..., 

zs])s(j),   B(j)ϵ K[z1, z2,..., zs])r(j)   and D=(D1, D2,…, Ds)ϵ K[z1, z2,..., zs])s 
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and create the sequence as C=C(z, A(1), B(1), A(2), B(2), ..., A(l+3), B(l+3), D, I1, I2, 

...., Il+3).  Assume that  

u=( D1(z1, z2,..., zs ), D2(z1, z2,..., zs ),…, D2(z1, z2,..., zs ), Hs+1(z1, z2,..., zs,  zs+1, zs+2 ,…, zm 

), Hs+2(z1, z2,..., zs,  zs+1, zs+2 ,…, zm ),       …, Hm(z1, z2,..., zs,  zs+1, zs+2 ,…, zm ). 

    We consider the map F=F(A(1), B(1), A(2), B(2), ..., A(l+3), B(l+3), D, I1, I2, ...., 

Il+3) given by 

z1→ D1(z1, z2,..., zs ), z2→ D1(z1, z2,..., zs ),…, zs→ Ds(z1, z2,..., zs ), 

zs+1→ Hs+1(z1, z2,..., zs,  zs+1, zs+2 ,…, zm ),  zs+2→ Hs+2(z1, z2,..., zs,  zs+1, zs+2 ,…, zm ),…,    

zs+2→ Hs+2(z1, z2,..., zs,  zs+1, zs+2 ,…, zm ).   

    Let (N1(z1, z2,..., zs ), N2(z1, z2,..., zs ), …, Nk(z1, z2,..., zs )) be an element from K[z1, 

z2,..., zs ]
 k and G is an endomorphism of K[z1, z2,..., zs ]. We assume that N(G) stands 

for (N1(G(z1), G(z2), ... , G(zk)),   N2(G(z1), G(z2), ... , G(zk)),…,   (Nk(G(z1), G(z2), ... , 

G(zk)). Then the composition of F=F(A(1), B(1), A(2), B(2), ..., A(l+3), B(l+3), D, I1, 

I2, ...., Il+3) and F’=F(A’(1), B’(1), A’(2), B’(2), ..., A(l’+3), B’(l’+3), D’, I’1, I’2, ...., 

I’l+3)  will be written as 

FF’=F(A(1), B(1), A(2), B(2), ..., A(l+3), B(l+3), D, A’(1)(D), B’(1)(D), A’(2)(D), 

B’(2)(D), ..., A(l’+3)(D), B’(l’+3), D’(D)), I1, I2,..., Il, I’1, I’2,..., Il’). 

So we prove the following statement.  

Proposition 5. 5. Let S be a semigroup of  sCS(K). Then the totality  i,j H(Xn, S) of 

transformations of kind F=F(A(1), B(1), A(2), B(2), ..., A(l+3), B(l+3), D, I1, I2, ...., 

Il+3), DϵS    is a subsemigroup in  s+mCS(K). 

Theorem 2. 5. Assume that Xn=An and for F=F(A(1), B(1), A(2), B(2), ..., A(l+3), 

B(l+3), D, I1, I2, ...., Il+3) the conditions deg A(i)+ deg B(i)≤d, i=1,2,...., l, deg D ≤d 

hold. Then deg F≤d. 

      Assume that AGLSs(K) be a semigroup of all endomorphisms of K[x1, x2,..., xs]   

of degree 1. So AGLs(K) is the subgroup of all invertible elements of AGLSs(K). 

     Corollary 2.5.  The maximal degree of elements  of  i,j H(An, AGLSs(K)) satisfying 

conditions of Theorem 1 is d. 

    Let us  consider the binary walk , i. e. the  reverse walk α, β, γ(1), γ(2), ..., γ(l), β, α   

of Weyl geometry where l is odd   and γ(j)=α  if j is odd, γ(j)=β if j is even.                                  

Let i,jB(Xn,  S) be the subsemigroup in i,j H(Xn,  S) consisting of elements correspond-

ing to binary walks.  

    Theorem 3. 5. 

The semigroup  i,jB(Xn, AGLs(K)) is a subgroup of  s+mCG(K). 

    Algorithm 1.5. 

     Let us consider the special cases of the implementation of twisted Diffie-Hellman 

protocol with the platform H =L i,jH(X n, AGLSs(K))(L)-1Assume that  elements g and h 

, h ϵ L i,jB(Xn , AGLs(K)) (L)-1 written  in their standard forms are known publicly. Al-

ice and Bob elaborate the collision element Z in its standard form.  
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    Let us consider some special options in the case of Xn=An.   

a) The densities of L and L-1  are of size O(1), s=O(nα) for α<1. 

We consider the subsemigroup i,jHd(A n, AGLSs(K)) of semigroup  
i,jH(A n, AGLSs(K)) formed by elements  F(A(1), B(1), A(2), B(2), ..., A(l+3), B(l+3), 

D, I1, I2, ...., Il+3) where l=O(1),  densities of  A(i), B(i) and D(i) are of size O(1) and 

the maximal value of  deg(A(i))+deg (B(i)) is the constant d, d>1. Let Bd(A n, 

AGLs(K))=i,jB(Xn, AGLs(K))∩ i,jHd(A n, AGLSs(K)). 

    Alice and Bob take elements g and h  from  Li,jHd(A n, AGLSs)) L
-1.   where  h ϵ 

Li,jBd(A n, AGLs(K)) L-1 . 

 Additionally they  assume that parameters k(A), k(B), r(A) and r(B) are of size O(1). 

In this case the collision element Z of the protocol will have density O(1) and degree 

d. 

  So Alice can take a polynomial transformation G of linear density and nonlinear de-

gree d  with the trapdoor accelerator and send G+Z to Bob. 

In particular Alice can take the subgroup i, j’B(An, 
sCG(K)) and its element of kind 

F’=F(A’(1), B’(1), A’(2), B’(2), ..., A’(l’+3), B’(l’+3), D’, I’1, I’2, ...., I’l’+3) depending 

from l’ and tuples A’(1), B’(1), A’(2), B’(2), ..., A’(l’+3), B’(l’+3), D’ of density O(1) 

and maximal  degree of deg (A’(i))+deg (B’(i)) and deg (D’) equals  d,  d>1.  

Alice takes element G=L1F’L2 where the densities of L1ϵ AGLs+m(K) and 2ϵAGLs+m(K) 

are of size O(1). In this case the element G will have density O(1) and degree d. Let us 

assume that the map defined by the tuple D has a trapdoor accelerator T.  Then the 

knowledge on the T, the graph i, j’S(Xn(K)), L1, L2 and  A’(1), B’(1), A’(2), B’(2), ..., 

A’(l’+3), B’(l’+3), D’, I’1, I’2, ...., I’l’+3  is a trapdoor accelerator of the map G.  

  Remark 2. 5. We can take L2  of density O(nα),  0<α≤1. In this case the density of 

the map G will be O(nα). 

  Remark 3. 5.  We can create the tuple D’ by the following way. 

          We have to select positive integer  p and parameter k together with the  partition 

of number  s into parts s(1), s(2), ..., s(k) where 1<s(i) ≤p. So s(1)+s(2)+...+s(k)=s.  

Then we can use methods of Section 2 to construct  nonlinear maps Qi_of Ks(i) of pre-

scribed degree d(i),2≤d(i)≤d.   Assume that Qi =Qi(x1, x2, ..., xs(i)) is given by the rule  

xi → iq(x1, x2, ..., xs(i)), i=1, 2,..., k. We can take the tuple D’ as  

(Q1(z1, z2, ..., zs(1)),  Q2(zs(1)+1, zs(1)+2, ..., zs(1)+s(2)),  …, Qk(zs(k-1)+1, zs(k-1)+2, ..., 

zs(1)+s(2)+…+s(k)).      

  b) Let us assume that d is 2 or 3. 

  Then Alice can take arbitrary element   L  from AGLs+m(K). So densities of L and L-1  

are of size O(n). Assume that i,jHd (A n, AGLSs(K)) stands for the subsemigroup  of 
i,jH(A n, AGLSs(K)) formed by transformations of kind F(A(1), B(1), A(2), B(2), ..., 

A(l+3), B(l+3), D, I1, I2, ...., Il+3) with the maximal value of  deg A(i)+deg B(i) equals 

d and l=O(1). 
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    Assume that Bd(An, AGLs(K))=i,jB(Xn, AGLs(K))∩ i,jHd(A n, AGLSs(K)).Alice  selects 

the maps gϵ,i,jHd(A n, AGLSs(K)) and hϵ,i,j Bd(A n, AGLSs(K)). In this case the collision 

element Z of the protocol will be of degree d. 

    After the completion of this protocol in this case Alice can take a polynomial trans-

formation G of degree d  with the trapdoor accelerator and send G+Z to Bob. 

In particular Alice can take the subgroup i, j’B(An, 
sCG(K)) and its element of kind 

F’=F(A’(1), B’(1), A’(2), B’(2), ..., A’(l’+3), B’(l’+3), D’, I’1, I’2, ...., I’l’+3) depending 

from l’ of size  O(1) and maximal  values of deg (A’(i)) + deg (B’(i)) and degree of 

nonlinear D’ equals  d.  

Alice takes element G=L1F’L2 where  L1ϵ AGLs+m(K) and L2ϵAGLs+m(K). In this case 

the element G has degree d. Let us assume that the map defined by the tuple D which 

has a trapdoor accelerator T.   

 Then knowledge on the T, the graph  i, j’S(An(K)), L1, L2 and  A’(1), B’(1), A’(2), B’(2), 

..., A’(l’+3), B’(l’+3), D’, I’1, I’2, ...., I’l’+3  is a trapdoor accelerator of the map G. 

     Remark 4. 5. Alice  can create the tuple D’  of degree d with the trapdoor accelera-

tor via methods of Section 2. 

    Remark 5. 5. Note that  i,jHd(A n, AGLSs(K))< i,jHd(A n, AGLSs(K)). In the  case of 

small parameters d correspondents can use faster protocoldescribed in (a) with g and h  

from  i,jHd(A n, AGLSs(K)) for the safe delivery of general element of degree d with a 

trapdoor accelerator.  
c) The case of Lϵ M(n, K). 

       We define support sup(t) of monomial term t(x1 ,  x 2,..., xn) as its number of varia-

bles xi  in positive powers. The support sup(F)  of the map F written in its standard 

form is the maximal support of its monomial terms. 

   Let us consider the modification of (a)  when L is a pseudorandom element from  

M(n, K), i.e. L(xi)=αxπ(i) where αϵK* and π is a pseudorandom permutation on {1, 2,..., 

n}. Assume that  s=O(nα) for 0<α≤1. We consider the semigroup  i,jH(An, AGLSs(K), β) 

formed by elements of kind F(A(1), B(1), A(2), B(2), ..., A(l+3), B(l+3), D, I1, I2, ...., 

Il+3) such that denA(1)den B(1), den A(2)den B(2), ..., den A(l+3)den B(l+3) are of size 

O(nβ),   D is an element of  AGLSs(K) of density O(nr), r≤min (α, β). Assume that Al-

ice and Bob take generators g and h from i,jH(An, AGLSs(K), β).     In this case the col-

lision element Z of the protocol will have density  O(nβ) and support O(nα).                           

In this case Alice can take a polynomial transformation G of  unbounded degree, den-

sity O(nβ’)  and support  O(nα) with the trapdoor accelerator and send G+Z to Bob.                       

In particular Alice can take the subgroup i, jB(An, 
sCG(K)) and its element of kind 

F’=F(A’(1), B’(1), A’(2), B’(2), ..., A’(l’+3), B’(l’+3), D’, I’1, I’2, ...., I’l’+3) depending 

from l’ of size O(1) and tuples A’(1), B’(1), A’(2), B’(2), ..., A’(l’+3), B’(l’+3) with 
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denA’(i)den B’(i)  of size O(nβ’). She takes tuple D’ of density  O(nβ’) defining bijec-

tive map on Ks. 

      Alice takes element G=L1F’L2 where  L1ϵM(n, K),   and L2ϵAGLs+m(K) has the 

density O(nγ), 0≤γ≤1. In this case the element G will have density O(nγ+β’) and support 

O(nα). Let us assume that the map defined by the tuple D has a trapdoor accelerator T.  

Then knowledge on the T, the graph  i, jS(An(K)), L1, L2 and  A’(1), B’(1), A’(2), B’(2), 

..., A’(l’+3),  B’(l’+3), D’, I’1, I’2, ...., I’l’+3  is a trapdoor accelerator of the map G.  

   Remark 6. 5.  Alice  can create the tuple D’  of the bijective map of density β’  with 

the trapdoor accelerator via methods of Section 3. She can select 0<β’+γ≤2 and work 

with the pseudo quadratic, sub quadratic  or pseudolinear map. 

d) Case of multiplicative trapdoor accelerator. 

Alice can take the subsemigroup i, jB(An, 
sCS(K)) and select  the map  F’=F(A’(1), 

B’(1), A’(2), B’(2), ..., A’(l’+3), B’(l’+3), D’, I’1, I’2, ...., I’l’+3) such that A’(1), B’(1), 

A’(2), B’(2), ..., A’(l’+3),  B’(l’+3) satisfy the conditions of (c) and D’ of density 

O(nβ’) defines the map with the multiplicative trapdoor accelerator  T. She takes ele-

ment EϵsEG(K) with the multiplicative trapdoor accelerator T’, L2ϵAGLs+m(K) of den-

sity O(nγ), γ≤1 and computes the standard form of EF’L2=G of density O(nβ’+γ). Then 

knowledge on the T, T’ , the graph         i, j’S(An(K)), L1, L2 and  A’(1), B’(1), A’(2), 

B’(2), ..., A’(l’+3),  B’(l’+3), D’, I’1, I’2, ...., I’l’+3  is a multiplicative  trapdoor acceler-

ator of the map G.                                                                                                              

For the secure delivery of G from Alice to Bob correspondents can use the protocol 

described in ( c) with the platform i,j’H(An, AGLSs(K), β)   with the output Z1 of density 

O(nβ) and support of size O(n α). Additionally correspondents conduct twisted  Diffie-

Hellman protocol  with the platform s+mES(K) with the output E1.                                                                                                                                         

After the execution of two protocols Alice sends E1Z1+G to Bob and he restores the 

standard form of G. 

6. Conclusions. 

The technique of Jordan-Gauss graphs  and their temporal analogue defined over ar-

bitrary commutative ring K can be used for the construction of bijective multivariate 

map F of prescribed degree d on free module Kn with the trapdoor accelerator  T which 

allows to compute the reimage of given value in a polynomial time.  In the case of d=2 

and 3 such maps can be used for the construction of public keys. 

       If d is a constant larger than 3 we can construct sparce maps of density O(n) with 

the trapdoor accelerator T. So the value of function can be computed in time O(n2). For 

each constant d we can construct the map of degree d, density O(n) and trapdoor ac-

celerator which allows the computation of the reimage in time O(n2). Recall that we 

define the density of F as maximal density of polynomials F(xi) for i=1, 2,..., n. 
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      It is known that there is a special way to increase number of variables and rewrite 

the nonlinear system F(x)=b  as equivalent to it quadratic system in many variables. 

One can select  ‘’sufficiently large’’ d such that corresponding quadratic system is un-

feasible for cryptanalytic investigation. 

     We define sup(t) of monomial term t= t(x1, x2, ...., xn) as the number of variables xi 

in positive power in the expression of  t.  The support of the multivariate map F is  

defined  as maximal value of sup(F) supports of its monomial terms. We can construct 

multivariate maps on Kn with the prescribed density O(nα), , 0 ≤α≤1 and prescribed 

support   O(nβ) with the trapdoor accelerator. We construct multivariate map F of un-

bounded degree with the support n and prescribed density O(nβ) and multiplicative 

trapdoor accelerator. 

   Mentioned above pairs of kind (F, T) can be investigate as potential public key con-

structions of multivariate Cryptography. Alternatively Alice can use her pair (F,  T) in 

different way. She and her trusted partner Bob can use twisted Diffie-Hellman protocol 

with the platform  nES(K), deform the output E via its transformation to polynomial 

transformation  D(E) of Kn. Alice sends F+D(E) to Bob. The security of this asymmet-

ric algorithm  described in Section 1 rests on the security of the selected  protocol. 

      Note that mentioned above pairs (F, T) can be used as stream ciphers when the 

knowledge of T is shared between Alice and Bob. 

     The Section 5 contains the description of temporal geometries of Chevalley type Xn 

defined over commutative ring K. In term of these geometries several subsemigroups 

of corresponding affine Cremona semigroup are defined. In particular large platform 

of Multivariate Cryptography over K is defined in terms of temporal analogue of pro-

jective geometry over the field. We suggest several schemes of use of these semi-

groups for the construction of public keys, protocols of Noncommutative Cryptog-

raphy and asymmetric protocol based cryptosystems.  
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