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Abstract
In a single secret leader election (SSLE) protocol, all par-

ties collectively and obliviously elect one leader. No one else
should learn its identity unless it reveals itself as the leader.
The problem is first formalized by Boneh et al. (AFT’20),
which proposes an efficient construction based on the De-
cision Diffie-Hellman (DDH) assumption. Considering the
potential risk of quantum computers, several follow-ups focus
on designing a post-quantum secure SSLE protocol based on
pure lattices or fully homomorphic encryption. However, no
concrete benchmarks demonstrate the feasibility of deploying
such heavy cryptographic primitives.

In this work, we present Qelect, the first practical constant-
round post-quantum secure SSLE protocol. We first adapt
the commitment scheme in Boneh et al. (AFT’23) into a
multi-party randomizable commitment scheme, and propose
our novel construction based on an adapted version of ring
learning with errors (RLWE) problem. We then use it as a
building block and construct a constant-round single secret
leader election (crSSLE) scheme. We utilize the single instruc-
tion multiple data (SIMD) property of a specific threshold
fully homomorphic encryption (tFHE) scheme to evaluate our
election circuit efficiently. Finally, we built Qelect from the
crSSLE scheme, with performance optimizations including a
preprocessing phase to amortize the local computation run-
time and a retroactive detection phase to avoid the heavy zero-
knowledge proofs during the election phase. Qelect achieves
asymptotic improvements and is concretely practical. We
implemented a prototype of Qelect and evaluated its perfor-
mance in a WAN. Qelect is at least two orders of magnitude
faster than the state-of-the-art.

1 Introduction

Permissionless consensus [29, 34] is a novel primitive that
powers blockchains and decentralized applications. A key
building block is to elect leaders among a group of nodes
without fixed membership in a fair, unique, and secret way.

Fairness [7] is crucial for Sybil-proofness, ensuring that each
node is elected with the same probability, even if some par-
ties are malicious.1 Uniqueness ensures that a single leader
is elected at a time to avoid ambiguity. Unpredictability (or
secrecy) refers to a privacy property stating that the leader’s
identity is unknown to the public until the leader announces
itself. Achieving all these properties is challenging, and most
existing systems fail to achieve secrecy or uniqueness. For in-
stance, VRF-based cryptographic sortition [22] does not guar-
antee uniqueness, whereas Ethereum’s randomness-beacon-
based scheme does not guarantee secrecy.

Recent works tackled this challenge with a primitive called
Single Secret Leader Election (SSLE) [3, 5, 7, 12, 13, 18,
20, 23, 32]. However, most practical schemes in the litera-
ture [5, 12, 13, 23] are based on cryptographic assumptions
(such as DDH) vulnerable to quantum adversaries, who can
break these SSLE by recovering secret keys from public to-
kens. Considering that SSLE is to be run in a highly adversar-
ial environment, the demand for a post-quantum version natu-
rally arises, especially following the recent success of stan-
dardization by NIST. While prior works [7,20] and [5, section
5] have presented post-quantum schemes using lattices and
Fully Homomorphic Encryption (FHE), they are theoretical
and provide no concrete implementation. It remains open
whether using such heavy cryptographic machinery to build
practical SSLE schemes is feasible.

In this paper, we present Qelect, a novel and highly opti-
mized FHE-based scheme, taking a substantial step towards
practical post-quantum blockchain protocols.

1.1 Existing Works and Challenges
Several works [5, 7, 20] proposed post-quantum SSLE con-
structions, but none is practical. We briefly recall representa-
tive schemes to show their challenges and provide background
for our solution. We use G to denote the number of leader
candidates, which is typically less than a few thousands.

1We assume that each node has the same amount of stake as in prior
works [5, 7]. We note that this does not trivialize the problem.

1



The original post-quantum scheme by Boneh et al. [5, Sec-
tion 5] uses threshold FHE (tFHE) to draw a random leader
from a list of registered users. Specifically, users register by
uploading a tFHE ciphertext encrypting a secret ki. To elect a
leader, users evaluate an optimized circuit to compute G ci-
phertexts with a random one encrypting 1 and others encrypt-
ing 0. Then, they take the inner product of the ciphertext vec-
tor and the said binary vector and reveal the decryption. The
user whose secret is revealed knows they have been elected,
but nobody else knows whose the revealed secret is. While the
scheme described so far is efficient (the circuit is optimized
to have only O(log logG) multiplicative depth), it is vulner-
able to what they called the modification attack due to the
malleability of tFHE ciphertext (a form of chosen-ciphertext
attacks). To prevent this, users need to attach proofs for the
well-formedness of FHE ciphertexts, making the protocol
much less practical (according to [14], for a ring with dimen-
sion 32768, a single such proof takes minutes.) Moreover,
the tFHE ciphertext for registration needs a sufficient noise
budget, which further harms the efficiency of such proofs [8].

Freitas et al. [20] proposed a scheme that prevents the
modification attack by hashing the secrets in FHE so that
the secrets cannot be recovered from the output. The draw-
back is that the FHE circuit they construct requires extensive
homomorphic multiplications (O(G2)).

Recently, Boneh et al. [7] introduced a post-quantum se-
cure solution based on the ring learning with errors (RLWE)
assumption, following the paradigm of the original DDH
solution in [5]. The core primitive is a post-quantum re-
randomizable commitment (RRC) scheme, which uses shuf-
fling and randomization to break the linkage between scheme
outputs and inputs. Unfortunately, their scheme involves
users sequentially shuffling and re-randomizing a list of G
commitments, thus incurring O(G) round complexity. More-
over, RLWE-based randomization suffers from the buildup
of noises, so users need to re-register after a certain number
of randomization operations. These factors greatly limit their
performance in real-world networks.

Technical challenges. Observe that modification attacks are
possible for two reasons: first, the tFHE ciphertext encrypting
user secrets is inherently malleable (allows homomorphic
operations); second, the scheme reveals the leader’s secret
directly. Together, what is akin to a chosen-ciphertext attack is
possible. The scheme in [5] fixes the malleability by attaching
proofs of well-formedness, which is expensive. The scheme in
[20] avoids this by hashing the secret in the FHE circuit, which
leads to an inefficient circuit. The scheme in [7] achieves
a similar effect by randomizing commitments to secrets in
FHE, requiring sequential computation by each user, leading
to linear round complexity and super-linear noise build-up.

One lesson learned from existing works is that although
tFHE is the most promising direction in constructing a post-
quantum secure SSLE protocol, there are several technical
challenges in designing a practical one. First, it is essential

to keep the depth of the FHE circuit low so that the local
computation is light. Second, we must avoid zero-knowledge
proofs on the critical path of the protocol, as they can be pro-
hibitively expensive. Third, since SSLE will be run in WAN,
the communication rounds and the bandwidth consumption
should be minimized.

In this work, we address these challenges and propose
Qelect. Compared to prior works, Qelect achieves asymp-
totic improvements as summarized in Table 1 with constant
rounds of communications, linear local homomorphic opera-
tions, and an FHE circuit of only logarithmic multiplicative
depth. More importantly, Qelect is the first protocol with con-
cretely practical implementation.

1.2 Our Solution
Qelect is constructed in a modular fashion. First, we present
the new Multi-party randomizable commitment (MPRC)
scheme that features low (constant) round complexity and
small noise build-up. Then, using MPRC as a building block,
we present a constant-round SSLE scheme (crSSLE) in the
honest-but-curious model. crSSLE features optimized circuits
that take full advantage of the SIMD (Single Instruction Mul-
tiple Data) operations of our tFHE scheme and have a low
multiplication depth. Finally, we augment crSSLE with mali-
cious security and obtain Qelect while avoiding heavy proofs
for FHE evaluations.

In this section, we present an overview of each component
and its improvement over existing works; we will present a
step-by-step walk-through in § 4.
System model. We assume a synchronous network with G
parties connected by pairwise authenticated communication
channels. In principle, Qelect can be built using a τ-ouf-of-G
tFHE scheme, but such schemes are not practical for large G
currently (c.f. § 6.2.3). We focus on G-out-of-G tFHE instead.
Note that this model implies that all G parties remain online,
or progress (liveness) is lost trivially.
Multi-party randomizable commitment. We present a
new primitive we call multi-party randomizable commitment
(MPRC) that can randomize commitments without commu-
nication. MPRC allows users to compute a commitment c to
a message m; anyone can add randomness to c via a local
procedure to get randomized commitment c′; multiple such
c′ can be combined to get a single commitment c′′ to m. In
addition to satisfying binding and hiding, MPRC guarantees
unlinkability, stating that an aggregated commitment c′′ can-
not be linked to the original version c as long as one of the
users adds enough entropy.

MPRC can be viewed as a generalization of the re-
randomizable commitment (RRC) in [5, 7], but with several
advantages: first, MPRC has constant round complexity as
opposed to O(G) thanks to the local randomization proce-
dure; second, the final noise grows only logarithmically with
the number of parties as opposed to superlinear; third, our
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Table 1: Asymptotic cost comparison across SSLE protocols that offer post-quantum security. G is the number of parties, q≥ G
is the plaintext modulus, N is the ring dimension of underlying tFHE scheme. For the RLWE based RRC scheme in [7], the
local computation work only involves normal multiplications in plaintext. For the multi-election column, we consider whether a
scheme could be easily extended to elect multiple leaders in one round. *Notice that for larger party size (G≥ 128), we could
reduce the communication round to 3. **The constructions in [5, 7] could not be trivially generated to multi-election, while the
work [20] that implements a sorting algorithm in FHE circuit involves a scaling circuit to make it suitable for multi-election, of
which the authors leave the concrete arithmetic circuit design to future works. ***The work in [5] suffers from modification
attack, and thus they need each party to generate a heavy proof of knowledge of its initial input.

Commu.
Round

Commu.
Cost

FHE Multiplication Depth Homomorphic
Multiplication
Operations

Randomness
Beacon

Modification
Attack***Single

Election Multi-Election**

tFHE-based in [5] 2 O(G) O(log logG) O(logG) Yes Yes
tFHE-based

in [20] 2 O(G) 16 Ω(logG) O(G2) Yes No

RLWE-based
in [7] G O(G2) 0 0 Yes No

Our work (§ 6.2.2) 6* O(G) logq+2 logq+N +G No No

MPRC primitive allows the commitment to convey a message,
as opposed to just all-zeros, which could be of independent
interest in other applications.

Constant-round single secret leader election. The parallel
randomization feature of MPRC enables a constant-round
single secret election scheme, which we call crSSLE.

In crSSLE, each party commits to its secret via MPRC and
uses the commitment as its identity in an election. To elect
a leader from a set of identities, all parties derive a common
ciphertext encrypting a random value u ∈ ZG and expand it
into G “indicator ciphertexts” with the u-th one encrypting
one, while all others encrypting zero. Next, each party locally
randomizes the commitments from all parties (using MPRC)
and homomorphically evaluates an inner product between
the indicator ciphertexts and the randomized commitments,
selecting the u-th randomized commitment while hiding u
from all. Finally, all parties combine their local results as
the final output. Users then use MPRC to verify whether the
revealed commitment corresponds to their secret, and if so,
they reveal the secret to claim the leadership. This step is
standard in SSLE schemes.

crSSLE satisfies all three properties (uniqueness, fairness,
and unpredictability) under the honest-but-curious setting
where users follow the protocol honestly but try to glean
more information. Unpredictability is achieved, as the final
output cannot be linked to inputs due to randomization, and
that u is hidden by FHE. Fairness is satisfied because crSSLE
guarantees that u is uniformly random. Uniqueness is satisfied
because exactly one commitment will be chosen.

The performance optimization of crSSLE involves taking
full advantage of the SIMD operations supported by the tFHE
scheme we use. Specifically, we adapt the Brakerski/Fan-
Vercauteran (BFV) scheme [9, 19] into a threshold fash-
ion [6, 28]. By leveraging the SIMD property of BFV, we can

efficiently evaluate the election circuit on multiple data en-
crypted in one ciphertext and amortize our computation time
across multiple rounds. Asymptotically, the local computation
only takes O(G) homomorphic operations. With 215 = 32768
parties, the multiplication depth of our FHE circuit could be
as low as 18.

Qelect: our SSLE protocol with malicious security. Fi-
nally, we augment crSSLE to deal with malicious users and
obtain our final construction Qelect. Two types of deviation
are possible: first, an attacker can send maliciously crafted
messages, potentially derived from received messages, to ma-
nipulate the election results; second, an attacker can send
malformed messages (e.g., random noise) to prevent progress.
They are handled differently in Qelect.

First, we present a novel technique to prevent the adaptive
crafting of inputs based on received messages. While the stan-
dard commit-and-reveal can work (each party first publishes
the hash value of their messages before releasing the actual
messages), they add communication rounds. We use a local
random sampling method that avoids additional communica-
tion. The idea is that each party hashes the received messages
to sample a subset of them to aggregate. Under proper param-
eters, the probability where the attacker can guess the correct
subset before crafting its message is negligible. This trick ap-
plies to the first and second broadcast, and saves two rounds
of broadcasts compared to standard commit-and-reveal.

Since we operate in G-out-of-G setting, the model inher-
ently assumes the participation of all parties, but a malicious
user can send arbitrarily malformed messages. For instance,
they can send random noise so that the final output cannot be
opened by any user—no leader will be elected. While sending
malformed messages is hard to prevent (without heavy cryp-
tographic proofs), we observe that SSLE is typically used in
blockchain protocols with the ability to penalize misbehav-
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ior when irrefutable proof is presented. E.g., with Proof of
Stake such as Ethereum, parties deposit collateral to join the
protocol, and their collateral can be programmatically taken
away upon detection of misbehavior. This ability is known
as slashing [10] and is widely supported by production sys-
tems. Qelect is designed to catch the senders of malformed
messages after the fact, so they can slashed.

Qelect thus executes on an efficient optimistic path by de-
fault; A pessimistic path is invoked when the protocol fails to
elect a leader. The pessimistic path identifies the misbehaving
nodes, removes their right to participate in future elections,
and confiscates their collateral. Because stalling the election
is the best thing an adversary can do, and such misbehavior
can be detected and punished, there is a strong disincentive to
cheating in the first place.
Implementation and evaluation. We are the first to present
an implementation of a post-quantum secure SSLE protocol,
which is implemented in ∼3K lines of C++. Since there is
currently no efficient Distributed Key Generation (DKG) for
the tFHE protocol we use, our implementation and benchmark
assume an efficient centralized trusted setup.

With party size G≤ 2048, the local evaluation of our FHE
circuit could finish within seconds. Since none of the prior
post-quantum [5, 7, 20] SSLE constructions offer concrete
benchmarks, we compare our protocol with them in Table 1
regarding the asymptotic cost and other security aspects. We
assert that our approach achieves a near-optimal round com-
plexity with lightweight local computations while preserv-
ing the same level of security guarantees as previous works.
To highlight, with the rigorous implementation and concrete
benchmarks, the asymptotic cost of our protocol is free from
large hidden constants.

Compared with the DDH-based schemes [5, 23], our local
computation is two to three orders of magnitude slower than
the estimation given in [23], which could be seen as the over-
head introduced by post-quantum security. To compare with
the state-of-the-art post-quantum scheme [7] (which does not
have an implementation), we made a generous estimation
of its performance by only taking the time of propagating
messages into account (i.e., assuming computation does not
take time) with parameters set to minimize their message size.
Under the same network setting, our scheme is at least two
orders of magnitude faster than [7]. Hence, we claim that our
implementation is the first practical SSLE protocol that offers
post-quantum security.

Contributions
• Qelect is the first practical post-quantum SSLE scheme. We

reported on its construction and implementation. We plan
to open-source the code.

• We evaluated the performance of Qelect in LAN and WAN
settings. Qelect is at least two orders of magnitude faster
than the state-of-the-art [7].

• Our asymptotically and concretely efficient construction
of multi-party randomizable commitment (MPRC) is of
its own interest, with applications where shuffled output
should remain hidden until opened by the sender, such as
anonymous sealed-biding and multi-party shuffling.

2 Related Work

In the original work of [5], three different approaches are
proposed to solve the SSLE problem: the first one is to use
indistinguishable obfuscation to hide the election problem
that takes in all public keys of the users and outputs a ran-
dom token encrypted via the elected leader’s public key. The
second approach leverages threshold fully homomorphic en-
cryption to evaluate a block cipher to get a randomness and
uses that randomness to perform an inner product with all
winner tokens. The final approach, the most practical and well-
studied one, denoted directly as BEGH, relies on the DDH
assumption: every user generates a Diffie-Hellman commit-
ment, attaches it to a public list containing commitments of all
other users previously registered, and shuffles the whole list
before broadcasting. A random commitment is selected via a
randomness beacon and the leader opens the commitment as
the proof of winning.

Later on, two works strengthen the security definition of
SSLE: [12] forwards the universally composable definition
based on the original game-based model and [13] formalizes
the attack model in the presence of adaptive corruptions. The
former work proposes a construction based on public key
encryption with keyword search which is realized via pair-
ing under symmetric external Diffie-Hellman assumption and
achieves better on-chain efficiency. The later work mainly
follows the path of BEGH but keeps track of two different
lists of commitments, such that one is used for shuffling sim-
ilar to BEGH while the other is used for secret-updating so
that the adversary who adaptively corrupts the user gains no
information for other rounds.

Functionality-wise, both works [3, 20] consider the non-
uniform stake distribution. [3] realizes the SSLE protocol
via oblivious selection in the generic MPC model, which
consumes O(logG) rounds of communication, where G is
the total number of users in the committee, and brings only
O(logS) overhead to the protocol, where S is the total amount
of stake. [20] constructs SSLE protocol with nearly no over-
head for non-uniform stake distribution, but relies on an expen-
sive FHE circuit that needs to evaluate comparison, selection,
and domain transformation of a uniform random number.

One of the latest works [7] formally adapts the BEGH
method in a post-quantum setting, and abstracts the scheme
into re-randomizable commitment (RRC) primitive plus a
shuffling protocol. They realize the RRC primitive from lat-
tices based on the (ring) learning-with-errors ((R)LWE) as-
sumption. However, compared to the original BEGH scheme
which takes a single round of shuffling performed by the pre-
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vious leader during the election, its post-quantum adaption
needs O(G) sequential shuffling for every round of election
due to the inherent noise issue of (R)LWE.

A recent blog post [32] proposes a potential analog of
Whisk based on commutative super-singular isogenies [11],
which is believed to be post-quantum secure.

3 Preliminary

Notations. Let D denote an arbitrary distribution, B denote
the binary distribution (i.e., uniformly random over {0,1}).
An element u is uniformly sampled from space Z when u $←−Z,
and drawn from the distribution D when u←D or u←r D
with random coin r. When invoking an interface f , we say y $←−
f (x) is the output of the randomized algorithm f given input
x, and y′← f (x) is the output of the deterministic algorithm.
For a vector x⃗ (or simply x), we use x⃗[i] to represent the i-th
element of this vector. We use e⃗i to present a one-hot vector
with value one on index i. Let R := Z[X ]/(XN + 1) denote
the 2N-th cyclotomic ring where the ring dimension N is a
power-of-two, and Rq := R /qR , for some prime q ∈ Z s.t.
q mod 2N = 1. We also use the vector of the coefficients to
denote a ring element, i.e., a ∈ Rq = ∑i∈[N] aiX i,ai ∈ Zq, can
be specified by the vector a⃗ (or simply a) where a⃗[i] := ai.

We use a few syntax sugar to simplify notation. We write a
vector of N elements as a string of N symbols, and use ∥ (con-
catenation) to concatenate vectors. E.g., the vector of N zeroes
is denoted as 0N ; the N-dimension vector (u,0, · · · ,0) is de-
noted u∥0N−1. We use x to represent a ciphertext encrypting
x (element or vector).

For simplicity, when we say “broadcast”, we mean that
some message is sent to all via pairwise authenticated chan-
nel, i.e., we are not invoking any broadcasting protocol or
assuming a broadcast channel, unless otherwise specified.

The product of two ring elements a,x ∈ Rq is defined by
polynomial multiplication. Using the vector form, ax can be
written as:

a[0] −a[N−1] −a[N−2] ... −a[1]
a[1] a[0] −a[N−1] ... −a[2]
...

...
...

. . .
...

a[N−1] a[N−2] a[N−3] ... a[0]




x[0]
x[1]
...

x[N−1]

.

3.1 Ring Learning With Errors

RLWE assumption. We recall the standard decision ring
learning with error (RLWE) assumption [27]. Let n,q,D,χ
be parameters dependent on λ and n is a power of two. Let
Rq = Zq[X ]/(Xn +1). The ring learning with error (RLWE)
assumption RLWEn,q,D,χ states that it is computationally in-

feasible to distinguish (a,a · s + e) and (a,b), where a $←−
Rq,s←D,e← χ and b $←− Rq.

RLWE-based public-key encryption. In our construc-
tion, we use the RLWE-based short-key public-key encryp-
tion, denoted sRLWE [25, 27]. The “short-key” stands for
the ternary secret key of this scheme, which also has a
fixed small hamming weight h. This feature allows the
scheme to have a smaller public key size than LWE-based
schemes. Looking ahead, the sRLWE public key encryption
scheme will be used to instantiate our multi-party random-
izable commitment scheme. At a high level, the sRLWE
contains four algorithms 1) sRLWE.GenParams(1λ, ℓ,q,σ,h)
which returns the public parameter pprlwe which includes
the ring dimension n of sRLWE, the secret key distribu-
tion D and the error range γ, 2) sRLWE.KeyGen(pprlwe;r)
which outputs a key pair (sk,pk) based on the random coin
r, 3) sRLWE.Enc(pprlwe,pk, m⃗) which outputs a ciphertext
ct := (a,b) encrypting the plaintext message m⃗ under the pub-
lic key pk, and 4) sRLWE.Dec(pp,sk,ct) which decrypts ct
into m⃗ with secret key sk. A more detailed constructions is
given in Appendix A.

In prior works [25,27], with a plaintext space Zq, q= {0,1},
the original RLWE scheme in [25] mainly considers appli-
cations that treat plaintexts decrypted into 0 as valid, and 1
as invalid. Thus, with a small error range β, they define the
zero-plaintext wrong-key decryption property stating that for
any honest secret key, it should be hard to decrypt a random
ciphertext into 0ℓ. However, our error bound γ is specially set,
s.t. ( 4γ+2

q )ℓ = negl(λ), where q is the plaintext modulus and
ℓ can be treated as a small constant used as probability am-
plifier. In this way, we generalize the definition to wrong-key
decryption. I.e., with overwhelming probability, there exists
some slot i ∈ [ℓ] of the decrypted message from a random
ciphertext by any honest secret key that falls out of the error.
This property is crucial in deriving the “binding” property
of our commitment construction introduced in § 5 and we
formalize it as follows. A formal definition of sRLWE and its
proof are deferred to Appendix A.

3.2 Fully Homomorphic Encryption
First constructed by [21], fully homomorphic encryption en-
ables users to perform circuit evaluations on encrypted data,
and lots of progress has been made to improve the effi-
ciency. To accommodate large data sets that go through the
same circuit, we use the Brakerski/Fan-Vercauteran (BFV)
scheme [9,19], and to fit in the setting of multi-party, we adapt
the threshold encryption to BFV [6, 28]. We briefly recall the
definitions of BFV and threshold FHE as follows.

BFV. The BFV scheme consists of algorithms (GenParams,
KeyGen,Enc,Dec), which is essentially the same as in § 3.1.
Different from a normal RLWE scheme, BFV supports Single
Instruction Multiple Data (SIMD) operations to be performed
on the input vector, i.e., all the following operations are per-
formed homomorphically on each element of the input vector
being encrypted.
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• ct ← BFV.Eval(+,{cti}i∈[m]): given a list of cipher-
texts, outputs a single ciphertext ct, s.t., BFV.Dec(ct) =
∑i∈[m]BFV.Dec(cti).

• ct←BFV.Eval(·,ct1,ct2): given two input ciphertexts, out-
puts a single ciphertext ct, s.t., ∀i ∈ [N],BFV.Dec(ct)[i] =
BFV.Dec(ct1)[i] ·BFV.Dec(ct2)[i] .

• ct′ ← BFV.Rotate(ct,k): given an input ciphertexts,
outputs ciphertext ct′, s.t., ∀i ∈ [N],BFV.Dec(ct′)[i] =
BFV.Dec(ct)[i+ k mod N].

Threshold FHE. A threshold FHE scheme [6, 17] not only
allows computation on encrypted data but also threshold en-
cryption. We consider a scheme with the threshold denoted
as τ, s.t., for G parties, each party i holding a secret key share
JmskKi and the common master public key mpk (generated
from tFHE.Setup), given a ciphertext, only when τ parties
gathered together and generate the partial decryptions via
tFHE.ParDec w.r.t. their secret key shares, could they recover
the plaintext message encrypted under that ciphertext via
tFHE.FinDec. We refer readers to Appendix B.2 for algo-
rithm specification.

A threshold FHE scheme normally needs a trusted setup
to distribute the secret key shares, which is also the approach
we take in our benchmark. We use tBFV to denote the thresh-
old BFV scheme used in our construction. tBFV consists of
all the interfaces above (public-key encryption, BFV SIMD
operations, and threshold decryption.)

Helpers algorithms. To facilitate our construction,
we introduce the following helper algorithms for tBFV
based on homomorphic addition and multiplication op-
erations: 1) ct′ ← tBFV.Extract(mpk,ct, i) that extracts
the i-th slot of ciphertext ct, 2) ct′ ← tBFV.Fill(mpk,ct)

that transform a ciphertext of form x∥0N−1 into xN ,

3) ct′ ← tBFV.OblSel(mpk, xN ,{cti}i∈[G],q) that outputs

a new ciphertext ct′ := ctx , and 4) { (⃗x[i])N }i∈[N] ←
tBFV.OblExp( x⃗ ) that expands a ciphertext encrypting a vec-
tor x⃗ of length N into N ciphertexts each encrypting a single
entry of x⃗. The formal specification is given in Appendix B.3
and the last operation BFV.OblExp is given in [1, figure 3].

4 Technical Overview

In this section, we present a bottom-up technical overview,
starting with MPRC, then crSSLE in the honest-but-curious
setting, and finally Qelect.

Multi-party randomizable commitment (MPRC). For
the ease of exposition, we will abstract away the construc-
tion of our MPRC scheme ΠMPRC and use it in a black-box
way for this overview. Recall that MPRC allows users to
compute a commitment c to a witness w; anyone can add
randomness to c via a local procedure to get a randomized
commitment c′=ΠMPRC.Randomize(c); multiple such c′ can

be combined into a commitment c′′ = ΠMPRC.Combine({c′i})
to the same witness w.

The definition and construction of MPRC will be presented
in § 5; we simplified the interface slightly to reduce clutter.

Constant-round single secret leader election. With MPRC
as a building block, we now present a constant-round SSLE
scheme that achieves uniquess, fairness and unpredictability
in an honest-and-curious setting.

Each party k computes a commitment xk to its witness
yk. The election begins with broadcasting their commitments
{xi}i∈[G]. Received commitments are ordered lexicograph-
ically to form an input list X = (x0, . . . ,xG−1). To draw a

random leader, each party k samples and broadcasts uk
$←− ZG.

Users would like to use u :=∑i∈[G] ui mod G to draw a leader
from X . However, they cannot simply output xu, which imme-
diately leaks the leader identity (whoever broadcasts xu at the
beginning) and breaks unpredictability. Therefore, ΠMPRC

is needed to randomize the commitments in the input list
X to get (x′0, · · · ,x′G−1). Second, randomization alone is in-
sufficient because the ordering of commitments remains un-
changed. That is, outputting x′u still immediately reveals the
leader’s identity. Hence, we build a tFHE circuit to hide u
while selecting the u-th commitment from X .

In more detail, each party k proceeds as follows:

• First, party k samples uk and broadcasts (uk ,xk) where xk
is an MPRC commitment to its secret witness yk.

• Then, party k locally evaluates a tFHE circuit that takes
as input a list of ciphertexts {u1 , . . . , uG }, and outputs a
vector of G “indicator ciphertexts”:

1u := (0N , . . . , 1N

u-th element
, . . . , 0N ),

where u = ∑i ui mod G. Note that u is hidden from parties.

• Next, party k locally randomizes the input list into X ′k =
(x′0,k, · · · ,x′G−1,k) where x′i,k = ΠMPRC.Randomize(xi). It
computes the inner product between 1u and X ′k and gets
x′u,k . It broadcasts x′u,k .

• After receiving { x′u,i }i∈[G] from all parties, party k ho-
momorphically evaluate the ΠMPRC.Combine procedure,
which essentially adds them up to get x̄u where x̄u =

∑i∈[G] x′u,i. That is, x̄u is a randomized commitment of party
u, with randomness from all parties.

• Party k then releases a partial decryption of x̄u , denoted
Jx̄uKk. After receiving all partial encryptions, it decrypts and
gets x̄u. If x̄u commits to yk, the party k is elected.

• If elected, party k broadcasts yk to claim the leadership; All
other parties go to step 1 to start the next election (party k
will use a new commitment).

Figure 1 depicts the workflow using an example of G = 4
parties. To summarize, our scheme consists of three main
phases: 1) homomorphically generates a ciphertext encrypt-
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:= value     encrypted as a ciphertext

sample                    , and prepare commitment       ; broadcast both

(broadcast)

(broadcast)

(broadcast)

:= local computation on each party := public to all

homo. addition

homo. expansion

MPRC

homo. inner product

partial decryption

FinDec

(assume  
encrypts 2)

homo. addition

phase 1

phase 2

phase 3

encrypt

Randomize

the winner broadcasts witness     ; all parties 
prepare new randomnesses for the next round 

Figure 1: The workflow of crSSLE for party k assuming G= 4.
Variables with a yellow background are broadcast outputs.

ing the randomness u ∈ ZG that is hidden from all; 2) homo-
morphically expand a ciphertext encrypting u ∈ ZG into G
indicator ciphertexts 1u. 3) homomorphically compute the
inner product between the randomized input lists and 1u. We
present details on how these three phases are efficiently done
with SIMD operations in BFV in § 6.1.

Malicious security and Qelect. A malicious user can break
crSSLE in two ways: 1) they can craft messages so the adver-
sary is more likely to win; 2) they can broadcast garbage to
disrupt the election. We handle them differently as follows.

In the first case, an adversary can break fairness and un-
predictability. For instance, a malicious party k can wait to
receive others’ ui and send k −∑i̸=k ui ; Similar attacks are
possible in the second and third broadcasts. A standard fix is
commit-and-reveal: add a round of broadcast of the hash of
ui before broadcasting ui . This does not increase the round
complexity (still constant), but it adds three round trips.

We present an optimization that avoids two of the three
round trips, assuming G is reasonably large (e.g., G ≥ 128)
and there is an honest majority among users. The idea is to
use local randomness to choose a subset of received broad-
cast messages for aggregation. We illustrate this idea on the
aggregation of ui , and the same trick could also be applied to

x′u,i . As in crSSLE, all parties broadcast {ui }i∈[G]. Instead of
aggregating all of them to get u, each party locally computes
rs ← H({ui }i∈[G]) and use rs to choose a random subset S
for aggregation, i.e., u = ∑i∈S ui. This defeats the above at-
tack because the adversary cannot predict the subset with
non-negligible probability under proper choice of parameters.
However, this method does not apply to the last broadcast
since we need all G partial decryptions to recover the plain-
text. One additional round of commit-and-reveal is necessary.

Another type of attack involves broadcasting invalid
(garbage) ciphertexts to contaminate the final output. To pre-
vent this, a naive approach is to let all parties generate ZKP
of 1) well-formedness of the initial ciphertext ui , 2) honest
evaluation of intermediary commitment x′u,i and 3) honest
partial decryption Jx̄uK. Previous post-quantum secure SSLE
works [5, 7, 20] all follow this approach, which leads to im-
practical performance.

In Qelect, we observe that the blockchain protocols that
will use SSLE typically have built-in ways to penalize misbe-
havior after the fact (i.e., slashing [10], which underpins the
security of many production systems, including Ethereum), so
we present a protocol to identify senders of malformed mes-
sages. Specifically, if no user claims the leadership, the pro-
tocol launches the following retroactive detection phase: 1)
parties are asked to broadcast the randomnesses used to com-
pute ui and x′u,i in the previous election; everyone can verify

the correctness of received ui and x′u,i by reconstructing
them from other messages and the randomness. The senders
of inconsistent messages are slashed. 2) parties are asked to
generate a relatively lightweight zero-knowledge proof for
the correctness of their partial decryption Jx̄uKi and broadcast
it to all. Parties who cannot generate a valid proof are slashed.
Note that this protocol is only revoked when no leader is
elected (i.e., no one is able to open the final commitment x̄u),
so it is not on the critical path of Qelect.

Summary. The modifications to crSSLE can be summarized
as follows, assuming a reasonably large party size (G≥ 128)
and a malicious adversary corrupting less than G/2 parties:

• After the first broadcast, all parties use H({ui }) to select a
subset to aggregate and get u .

• Similarly, after the second broadcast, parties apply the
subset-sampling technique using H{ x′u,i } to compute the
final commitment x̄u .

• Before broadcasting partial decryption, every party pub-
lishes H(Jx̄uKk).

• If the election gets aborted due to no one can claim the
leadership, invoke the retroactive detection phase.

A complete description of the Qelect protocol and discus-
sions on practical concerns will be presented in § 6.2.
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5 Multi-party Randomizable Commitment

In this section, we present a primitive called multi-party ran-
domizable commitment (MPRC), which serves as the key
building block in our post-quantum constant-round single-
leader election schemes.

At a high level, the goal is to allow a set of parties to
randomize a given commitment in parallel without network
communication. Specifically, upon receiving a commitment
c from a sender, each other party k can randomize c inde-
pendently and produce a randomized commitment c′k, all of
which can then be aggregated to form a final output c′′ that
can be opened with the original witness of the sender. At the
same time, given two original commitments c0,c1 and a final

commitment c′′ of cb, b $←− {0,1}, a PPT adversary cannot
decide b, as long as one of the parties is honest.

We formalize our goal with the following definition and
present a post-quantum secure construction based on sRLWE
defined in § 3.1. Notice that in [5], the authors propose a
DDH-based commitment scheme, which is later abstracted as
a primitive called re-randomization commitment (RRC) with
a post-quantum secure construction. We provide a detailed
comparison between our primitive and RRC in Remark 5.1.

Definition 5.1 (Multi-party Randomizable Commitment
(MPRC)). For G parties, an MPRC scheme ΠMPRC consisting
of algorithms: (Gen,Commit,Randomize,Combine,Verify)
is defined as follows.

• ppC
$←− Gen(1λ, ·)): generate the public parameter for the

commitment scheme based on the security parameter.

• (c,w) $←− Commit(ppC,m): given the public parameter ppC
and a message m, output a commitment c together with its
corresponding witness w.

• c′ $←− Randomize(ppC,c): given a commitment c, provide a
randomized new commitment c′.

• c′′← Combine(ppC,{c′i}): given a list of ≤ G randomized
commitments, deterministically aggregate them into a new
randomized commitment c′′.

• {0,1} ← Verify(ppC,c′′,w,m): given a randomized com-
mitment, a secret witness and a message m, output 1 if c′′ is
indeed a commitment of m w.r.t. witness w, and 0 otherwise.

Denote the message space as M , and the witness space
as W , an MPRC scheme also needs to satisfy the following
properties:

• Multi-party Binding: for any PPT algorithm A , let

ppC
$←− Gen(1λ, ·), for any message m ∈ M , for any

(c,w) $←− Commit(ppC,m), denote the set C = {c′ |
c′ $←− Randomize(ppC,c)}. For any set CG ⊆ C s.t.
|CG| ≤ G, let c′′ ← Combine(ppC,CG), let (w′,m′ ̸=
⊥) ← A(c,m,c′′), Pr[Verify(ppC,c′′,w,m) = Verify(ppC,
c′′,w′,m′)] = negl(λ).

• Unlinkability: for any PPT adversary A0,A1, let ppC
$←−

Gen(1λ, ·), for any message m0,m1 ∈ M , for any (c0,

w0)
$←− Commit(ppC,m0),(c1,w1)

$←− Commit(ppC,m1),

denote the set C0 = {c′0 | c′0
$←− Randomize(ppC,c0)} and

C1 = {c′1 | c′1
$←− Randomize(ppC,c1)}. For any C ′0,G ⊆

C0,G ⊆ C0,C ′1,G ⊆ C1,G ⊆ C1, s.t. |C0,G|, |C1,G| ≤ G, let

(st,C ′′0,G,C ′′1,G)
$←− A0(c0,c1,C ′0,G,C ′1,G), where |C ′′0,G| =

|C ′0,G|, |C ′′1,G| = |C ′1,G| serving as the maliciously crafted
randomized commitments outputted by the corrupted par-

ties replacing the subset C ′0,G,C ′1,G. Let b $←− {0,1}, c′′b ←
Combine(ppC,C ′′b,G ∪ Cb,G\C ′b,G), Pr[A(st,c′′b) = b] ≤ 1

2 +

negl(λ).

Construction. We first observe that with a public-key en-
cryption scheme based on sRLWE (§ 3.1), for a key pair
(pk,sk), encrypting some message under pk “commits” to
the corresponding sk since only the correct secret key can
decrypt to a valid message based on the wrong-key decryp-
tion property. One caveat is that encryption of m = 0⃗ is not
a binding commitment to the secret key. Given public key
pk := (α,β = αsk+ e) with some noise e and ciphertext
encryption m, one could easily craft different sk′ such that
αsk′−β≈ 0, breaking the multi-party binding property. This
is easily fixed, by using the random coin r as the witness,
which is used to generate the secret key sk in sRLWE.KeyGen.

MPRC is built on this idea. We present a construc-
tion based on sRLWE in Algorithm 1. To commit to a
message, ΠMPRC.Commit outputs a tuple (pk,ct) where

ct
$←− sRLWE.Enc(·,pk, m⃗). To randomize a commitment

(pk,ct), ΠMPRC.Randomize constructs a new ciphertext

ct′
$←− sRLWE.Enc(·,pk,⃗0) encrypting zeros, and return ct′′ =

ct+ ct′ where ct′ would act as a random mask for ct. There-
fore, since ct′ is generated based on local private random coin
and is pseudorandom, any PPT adversary would not be able
to link ct′′ to ct or pk based on the key privacy property of
sRLWE, thus achieves the unlinkability property of MPRC.
To verify, one simply re-generates its secret key sk with the
witness w := r and decrypts the ciphertext ct′′ with sk.

Theorem 5.1. The scheme ΠMPRC specified in Algorithm 1
is a multi-party randomizable commitment scheme defined in
Definition 5.1.

Parameter choice. Concretely, for sRLWE scheme with the
ciphertext space q = 65537, ℓ= 256, n = 1024, we could set
γ= 10000 and thus p= {0,1}, i.e., we could allow decryption
results to be either 0 or 1, while anything out of the error range
will be output as ⊥. Since a sRLWE ciphertext essentially
packs ℓ bits of message, each party would be able to convey a
message from Z2ℓ .

Remark 5.1. In [7], the authors introduce a primitive denoted
as re-randomizable commitment (RRC), generalized from the
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Algorithm 1 Multi-party Randomizable Commitment from
RLWE

1: procedure ΠMPRC.Gen(pp= (1λ,G, ℓ,q,σ,h))
2: pprlwe← sRLWE.GenParams(1λ, ℓ,q,σ,h)
3: if ℓ(1− erf( γ√

4G(2h+1)σ
)) = negl(λ) then

4: return ppC := pprlwe
5: else
6: return ⊥ ▷ all algorithms return ⊥ if ppC =⊥.
7: procedure ΠMPRC.Commit(ppC, m⃗)
8: Choose a random coin r
9: (sk,pk)

$←− sRLWE.KeyGen(ppC;r)

10: ct
$←− sRLWE.Enc(ppC,pk, m⃗)

11: return (c := (pk,ct),w := r)
12: procedure ΠMPRC.Randomize(ppC,c = (pk,ct))

13: ct′
$←− sRLWE.Enc(ppC,pk,⃗0) ∈ Rq×Rq

14: return ct′′ := ct+ ct′

15: procedure ΠMPRC.Combine(ppC,{c′i}i∈[G])
16: return c′′ := ∑i∈[G] c′i ∈ Rq×Rq (normal addition be-

tween ring elements)
17: procedure ΠMPRC.Verify(ppC,c′′,w, m⃗)
18: sk←w D (same as generated in sRLWE.KeyGen)
19: Let m⃗′′[i] = m⃗′[i] ·G mod 2, where m⃗′ ← sRLWE.

Dec(ppC,sk,c′′)
20: return 1 if ∀i ∈ [ℓ], m⃗′′[i] = m⃗[i] , and 0 o.w.

DDH-based commitment scheme proposed in [5]. Briefly,
our commitment scheme differs from them in the following
aspects. 1) For G parties to collectively randomize a com-
mitment, our protocol takes constant communication rounds.
In contrast, the protocol in [7] needs O(G) rounds, which is
impractical in the WAN setting when G is large. 2) Our com-
mitment size is at least Ω(logq) smaller than the one in [7],
where q is the underlying plaintext modulus. 3) The noise of
the final randomized commitment grows logarithmically with
the party size G, while in [7], it grows exponentially with G.
We defer a detailed comparison to Remark C.1.

6 Practical Post-Quantum SSLE from MPRC

With MPRC, we can build a constant-round single secret
leader election (crSSLE). We first present a definition for
crSSLE based on [5] and all its follow-ups [3,7,12,13,18,20]
with explicit interfaces that restricts the communication round
to be constant. We then provide a construction for crSSLE
in § 6.1. Finally, in § 6.2.2, we present Qelect, our SSLE
protocol built on crSSLE with optimizations and retroactive
detection steps to handle malicious adversaries.

Definition 6.1 (Constant-round Single Secret Election
(crSSLE)). Suppose there are G nodes with up to τ of
them being malicious. An crSSLE protocol Π = (Setup,Gen,

ParElect,Elect,Combine,Verify) is defined as follows:

• (mpk,{JmskKi}i∈[G]) ← crSSLE.Setup(pp = (G, ·),1λ):
take as input the public parameter pp and security parameter
1λ; output a master public key mpk, and distribute JmskKi
to each single user i secretly.

• (xk,yk,plk)
$←− crSSLE.Gen(pp,mpk,1λ,mk) : for each

party k, take in public parameter pp, the master public key
mpk, the security parameter 1λ, and a user-specific message
mk; generate the commitment xk serving as the input to the
election protocol, the witness yk, and plk that serves as the
the election randomness.

• ctx′k
$←− crSSLE.ParElect(mpk,{(xi,pli)}i∈[G]) : for each

party k, take in a list of variables {(xi,pli)}; output a single
share ctx′k

which is elected based on public randomnesses
{pli} and locally randomized based on some private coins.

• Jx̄Kk
$←− crSSLE.Elect({ctx′i

)}i∈[G],JmskKk) : for each party
k, take in a list of shares {ctx′i

} and a secret key share
JmskKk; output a single share Jx̄Kk.

• x̄← crSSLE.Combine({Jx̄Ki}i∈[G]): take in a list of shares
{Jx̄Ki}; output the final randomized election result x̄.

• {0,1}← crSSLE.Verify(pp, x̄,y,m) : take in public param-
eter pp, a randomized commitment x̄, a witness y and a
message m; output 1 if y opens x̄ into message m; and 0
otherwise.

A crSSLE also needs to satisfy the following proper-
ties. For any PPT adversary A , let (mpk,{JmskKi}i∈[G])←
crSSLE.Setup(pp = (G, ·),1λ). The adversary A chooses
a corrupted set Wcor, |Wcor| ≤ τ, and then plays the role
of the parties inside Wcor while holding all secret val-
ues of parties in Wcor. Let {(xi,yi,pli)}i∈Wcor

be the pub-

lic and private outputs generated by A , and (xi,yi,pli)
$←−

crSSLE.Gen(pp,mpk,1λ,mi), for i ∈ [G]\Wcor honestly gen-
erated by other parties. For parties in [G]\Wcor, execute
crSSLE.ParElect honestly to get {ctx′i

}i∈[G]\Wcor
. For parties

in Wcor, let A publish {ctx′i
}i∈Wcor

. With all {ctx′i
}i∈[G], par-

ties in [G]\Wcor execute crSSLE.Elect to get Jx̄Ki∈[G]\Wcor
,

and A publishes Jx̄Ki∈Wcor
for the corrupted parties. With all

Jx̄Ki∈[G] published, denote x̄← crSSLE.Combine({Jx̄Ki}i∈[G])
be the final election output. Denote all transcripts as st. A
crSSLE scheme also needs to satisfy the following properties:

• Uniqueness: There exists some j, such that: Pr[crSSLE.(
Verify(pp, x̄,y j,m j) = 1] ≥ 1− negl(λ), and for j′ ̸= j,
Pr[crSSLE.Verify(pp, x̄,y j′ ,m j′ = 0)]≥ 1−negl(λ).

• Unpredictability: Given st and all secrets holding by
Wcor, A outputs an index k ∈ [G]\Wcor, it holds that
Pr[crSSLE.Verify(pp, x̄,yk,mk) = 1]≤ 1

G−|Wcor|
+negl(λ).

• Fairness: For every i ∈ [G]\Wcor, it holds that Pr[crSSLE.
Verify(pp, x̄,yi,mi) = 1] ≤ 1

G−|Wcor|
+ negl(λ), where the

randomness is taken over {pli}i∈[G].
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In § 6.1, we show a plain scheme achieving the above
properties under an honest-but-curious model. The scheme
could easily achieve the same security guarantee under a fully
malicious model by attaching general ZKP to all transcripts.
To avoid the overhead of ZKP, we patch our scheme in a much
lighter way to guarantee unpredictability and fairness with a
malicious adversary in § 6.2.1. And then in § 6.2.2, we present
our main SSLE protocol Qelect with optimizations, which
achieves a relaxed version of the uniqueness property under a
malicious setting. Looking ahead, we claim that an adversary
would either break uniqueness by preventing progress or be
slashed in the next election round.

6.1 crSSLE Construction

This section dives into the details of the three phases in Fig. 1.
Since many steps of the protocol perform the same set of
operations on multiple different values, a key performance
optimization is to pack a whole vector in one ciphertext so we
enjoy the speedup from SIMD operations available in BFV.

Homomorphic randomness generation. The task of this
phase is to generate a ciphertext encrypting randomness u that
is hidden from all. Specifically, a single tBFV ciphertext with
ring dimension N can fit N values in ZG, thus the ciphertext
to generate encrypts u∥0N−1. The most intuitive way to do so

is to let each party k sample uk
$←−ZG and broadcast uk∥0N−1

together with their initial commitments xk. (For simplicity,
let each party k commit to mk := 0N under witness yk.) All
parties can then add up all {ui∥0N−1 }i∈[G] and get a single
ciphertext u∥0N−1 , where u := ∑i∈[G] ui mod G. 2

To optimize, we use all N slots to generate randomness for

many rounds in batches. Each party k samples u⃗k
$←− ZN

G and
generates u⃗k . After aggregation, the resultant ciphertext is u⃗
where u⃗[i] =∑ j∈[G] u⃗ j[i] mod G. During the l-th round of the
protocol, the parties extract the l-th slot of u⃗ into u⃗[l]∥0N−1

via tBFV.Extract defined in § 3.2. The communication cost
of publishing u⃗k and the local computation of aggregating
them could be amortized across multiple (at most N) rounds.
The only overhead introduced is by invoking tBFV.Extract,
which is relatively negligible.

Homomorphic expansion. Given u∥0N−1 the output
from the previous phase, this step expand it into 1u :=
(0N , . . . , 1N

u-th element
, . . . , 0N ). We first transform u∥0N−1

into a ciphertext e⃗u encrypting the one-hot vector e⃗u :=
(0, . . . , 1

u-th elem.
, . . . ,0), then expand e⃗u into 1u. The latter

transformation can be done with tBFV.OblExp given in [1,
figure 3]. We thus show how to achieve the former.

2We assume that the plaintext modulus q = G which is generally not the
case since q is a prime and we normally consider G to be a power-of-two in
our benchmarks. We discuss this issue in Appendix E.

For simplicity, we assume that the ring dimension N
is greater than G, which is ideally the largest possible
value for u. We first use tBFV.Fill defined in § 3.2 to
“fill” u∥0N−1 and get uN . We then compute a ciphertext
ctv encrypting the vector {0,1, . . . ,N} and compute ct′ ←
tBFV.Eval(+,ctv,−uN ). ct′ encrypts i− u in slot i; in par-
ticular, it encrypts 0 in slot u. With the plaintext modulus for
tBFV scheme to be of a prime q, based on Fermat’s little theo-
rem, raising ct′ to the power of q−1 would yield a ciphertext
(1, . . . , 0

u-th elem.
, . . . ,1) . To get what we want (i.e., e⃗u ), we ho-

momorphically subtract 1 from all slots from the previous ci-
phertext. For G≥N, we repeat the aforementioned steps ⌈G

N ⌉
times, each with ctv,i encrypting (iN, iN+1, . . . ,(i+1)N−1),
for i ∈ [⌈G

N ⌉].
Asymptotically, this construction takes logN rotation and

addition operations to get the ciphertext uN via tBFV.Fill, and
log(q−1) levels to raise it slot-wisely to the power of q−1.
Once again, by evaluating tBFV.OblExp adapted from [1,
figure 3], we can expand e⃗u into 1u, concluding this phase.

Homomorphic randomized commitments aggregation.
After executing the above two steps, each party should hold
u⃗b. By invoking ΠMPRC.Randomize(·) with private coins on
the initial input list {xi}i∈[G], each party k would derive its
own randomized commitments {x′i,k}i∈[G], which are essen-
tially sRLWE ciphertext ∈ Rq×Rq that can be represented as
vectors of its coefficients. It then encrypts commitments into
G corresponding tBFV ciphertexts { x′1,k , . . . , x′G,k } and per-

form inner product with 1u to derive a fresh ciphertext x′u,k ,
and broadcasts it. After receiving the randomizations from all
parties { x′u,1 , . . . , x′u,G }, all parties sum them up into a single
ciphertext x̄u , where x̄u = ∑i∈[G] x′u,i, and release the partial
decryption as Jx̄uKk. After combining all partial decryptions,
each party k recovers the underlying x̄u and learns if itself is
elected by checking ΠMPRC.Verify(·, x̄u,yk,mk) = 1.

Summary. To recap, the l-th instance of election involves
three rounds of broadcasting. In the first round, each party k
publishes its initial commitments xk and a ciphertext u⃗k , fol-
lowed by the local computation to first homomorphically de-
rive the randomness u⃗ = ∑i∈[G] u⃗i and then obliviously select
the encrypted randomized commitment for xu where u = u⃗[l],
denoted as x′u,k . In the second round, each party k publishes

x′u,k and homomorphically adds up { x′u,i }i∈[G] into x̄u . In
the last round, each party uses its secret key share for the
tBFV scheme to release a partial decryption of x̄u , denoted
as Jx̄uKk, which allows them to recover the final randomized
commitments of party u.

Under an honest-but-curious setting, the uniqueness prop-
erty mainly relies on the multi-party binding property of the
underlying MPRC scheme. I.e., as long as the incurred noise
by homomorphically aggregating all randomized commitment
shares {Jx̄uKi}i∈[G] does not overflow, the final randomized
commitment could still be opened by its corresponding wit-
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Algorithm 2 crSSLE Construction

1: procedure crSSLE.Setup(pp= (G,τ,q,σ,h),1λ)
2: ppC←ΠMPRC.Gen(1λ,G, ℓ,q,σ,h)
3: (pptBFV,mpk,{JmskKi}i∈[G]) ← tBFV.GenParams(

1λ,G,τ) ▷ parse pptBFV = (t,N, ·), which contains all
required parameters for threshold BFV FHE scheme

4: Let rm := q mod G, choose t̄ s.t. ( rmq )t̄ = negl(λ)

5: Append (ppC,pptBFV) to pp
6: return (mpk,{JmskKi}i∈[G])

7: procedure crSSLE.Gen(pp = (ppC,pptBFV, ·),mpk,1λ,
mk) ▷ we treat mk as all zeros for crSSLE scheme.

8: u⃗k
$←− ZN

q

9: u⃗k
$←− tBFV.Enc(mpk, u⃗k)

10: (xk,yk)
$←−ΠMPRC.Commit(ppC,mk)

11: return (xk,yk, u⃗k )

12: procedure crSSLE.ParElect(mpk,{(xi, u⃗i )}i∈[G])
13: ct⃗u,← tBFV.Eval(+,{ u⃗i }i∈[G])
14: ctu← tBFV.Extract(mpk,ct⃗u) ▷ extract the

j-th slot out of all N slots in the j-th round, if amortized
across multiple rounds.

15: uN ← tBFV.Fill(mpk,ctu) ▷ where u = ∑i∈[G] u⃗[ j]

16: x′i
$←−ΠMPRC.Randomize(ppC,xi), i ∈ [G]

17: x′i
$←− tBFV.Enc(mpk,x′i), i ∈ [G]

18: x′u,k ← tBFV.OblSel(mpk, uN ,{ x′i }i∈[G],q)

19: return x′u,k
20: procedure crSSLE.Elect({ x′u,i }i∈[G],JmskKk)

21: x̄u ← tBFV.Eval(+,{ x′u,i }i∈[G])

22: Jx̄uKk := tBFV.ParDec( x̄u ,JmskKk)
23: return Jx̄uKk

24: procedure crSSLE.Combine({Jx̄uKi}i∈[G])
25: x̄u← tBFV.FinDec({Jx̄uKi}i∈[G]),
26: return x̄u

27: procedure crSSLE.Verify(pp, x̄u,y,m)
28: return ΠMPRC.Verify(pp, x̄u,y,m)

ness. The unpredictability property could be shown in a hy-
brid manner based on the semantic security of tFHE and the
unlinkability of the embedded MPRC scheme. The fairness
property is simply achieved as long as there exists one honest
party i that supplies a random election randomness pli. A
formal proof is deferred to Appendix D.1.

Theorem 6.1. Given G parties, for any PPT honest-but-
curious adversary corrupting ≤ G− 1 parties, the crSSLE
construction given in Algorithm 2 is a constant-round single
secret leader election defined in Definition 6.1.

Compared to the tFHE-based scheme in [5], our construc-
tion is resistant to modification attacks and has a very differ-
ent circuit design. Moreover, [5] does not present a concrete
circuit, so the concrete efficiency is unknown. A detailed
comparison is deferred to Remark D.1.

6.2 Qelect

Qelect augments crSSLE with malicious security. This sec-
tion describes the changes made to crSSLE to obtain Qelect.

A malicious adversary could deviate in two ways. First,
it could craft messages (after seeing all others’ messages)
so that the final aggregated result favors the adversary. We
call this kind of attack aggressive attack and will present
solutions in § 6.2.1. Second, the adversary can send garbage
or equivocate to prevent progress. We call this kind of attack
passive attack and address it in § 6.2.2 with a retroactive
detection phase.

6.2.1 Preventing Aggressive Attacks

Recall that in Algorithm 2, there are three rounds of broad-
cast: 1) the ciphertexts { u⃗i }i∈[G] encrypting some random-
nesses, 2) the ciphertexts { x′u,i }i∈[G] encrypting each party’s
randomized commitment for the leader, 3) the partial decryp-
tion shares {Jx̄uKi}i∈[G]. After receiving those messages, the
local computation is to only homomorphic add them up cor-
respondingly on line 13, 21, and 25. Since those aggregations
are all deterministic, the adversary could fix the aggregation
result in favor of itself and craft its broadcast message by
reversing the procedure after seeing all others’ outputs. For
instance, a malicious party k can wait to receive others’ u⃗i

and send kN −∑i̸=k u⃗i ; Similar attacks are possible in the
second and third broadcasts. This kind of misbehavior breaks
the fairness and unpredictability of SSLE.

A standard solution would be commit-and-reveal: Before
publishing a message, each party first broadcasts the hash of
it as a “commitment” to the message. They will not broad-
cast the actual message before receiving all commitments.
This commitment can be built from collision-resistant hash
functions. In this way, the adversary is forced to generate its
messages independently without seeing others’.

Specifically, given a collision resistance hash function H,
in the first round of broadcast of crSSLE, each party publishes
H( u⃗i ) before releasing u⃗i to guarantee that the aggregated
result on line 13 in Algorithm 2 is still random. Similarly, in
the second round of broadcast, each party publishes H( x′u,i )

before releasing x′u,i so that the final commitment ciphertexts
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on line 21 are random. Finally, before broadcasting the par-
tial decryption result Jx̄uK, each party also publishes its hash
value H(Jx̄uK) as the “commitment”. Hence, the distribution
of the decryption results x̄u (line 25) would be uniformly
random from the plaintext space, where the randomness is
taken over { u⃗}i∈[G]. Together, this guarantees the fairness
and unpredictability of SSLE.

This approach, however, doubles the communication round,
which dominates our runtime since local computation is
lightweight. Now, we present a solution to minimize the over-
head. The idea is to bring in new randomness after the ad-
versary has chosen its message. Let H be a hash function;
after receiving the messages from all parties, they use the
hash value of received messages as randomness to sample a
subset S ⊂ [G], s.t., |S | = G/2. The aggregation procedure
only takes the messages inside the subset S as inputs. As a
result, the adversary only gets to learn which messages will
take effect in the aggregation after it crafts the message. With
poly(λ) number of queries to H but O(2G) possible subsets
S , as long as G is large enough, we claim that the aggrega-
tion result is still “random” given the potentially malicious
messages sent by the adversary. In the following claim, we
detail the above high-level intuition to accommodate the first
and second rounds of broadcast of crSSLE (i.e., the outputs
of crSSLE.Gen and crSSLE.ParElect).

Claim 6.2 (Random-subset). Given a collision-resistant
hash function H and a threshold FHE scheme tFHE. De-
note the plaintext space as P , closed under addition. For
any PPT adversary A , let G be the total number of par-
ties. Denote the corrupted set as Wcor, |Wcor| < G/2. Let
A play the role of parties in Wcor in the following pro-

cedure. All honest parties i ∈ [G]\Wcor samples xi
$←− P

and generate the ciphertext cti := xi . The adversary crafts
{cti}i∈Wcor

and broadcasts to all. Let hs = H({cti}i∈[G]) be
the encoding of a subset S ⊂ [G], |S | = G/2. Let ct ←
TFHE.Eval(+,{cti}i∈S ). For any A making at most poly(λ)
queries, for any x,x′ ∈ P , we have |Pr[TFHE.Dec(msk,ct) =
x]−Pr[TFHE.Dec(msk,ct) = x′]| = negl(λ), where the ran-
domness is taken over {xi}i∈[G]\Wcor

.

With the above claim, the probability of any PPT adversary
being able to tamper with the distribution of u⃗ and the leader’s
randomized commitment in favor of A is negligible. Notice
that this “random-subset” approach does not work for the
third round of broadcast (i.e., releasing the partial decryptions
as the outputs of crSSLE.Elect) because we assume a G-out-
of-G scheme and all partial decryption shares are required to
recover the underlying plaintext. Thus, the last broadcast will
always adapt the commit-and-reveal approach.

To conclude, the above changes augment crSSLE with fair-
ness and unpredictability against malicious users, i.e., the ad-
versary can, at best, mount DoS attacks and break uniqueness.
For small G, this is achieved in 6 round of communication
and 4 for large G with honest majority.

6.2.2 Retroactive Detection for Passive Attacks

Now that we have ruled out the possibility of biasing elections
to the attacker’s advantage, we consider attacks with the sole
goal of disrupting (i.e., aborting) elections. Since the G-out-
of-G model inherently assumes participation from all parties
(or DoS is trivial), the attacker must participate but can send
arbitrary messages. However, the attacker’s hands are tied:
if they equivocate (sending different messages to different
honest parties) when they are supposed to broadcast, their
signatures on conflicting messages are irrefutable evidence of
malice. Thus the only concern left is the attacker broadcasting
malformed messages. For instance, if the attacker broadcasts a
random noise or a noise-overflowed ciphertext, all operations
performed on this message will produce overflowed noise and
contaminate the underlying plaintext. As a result, the protocol
output would not be a valid commitment to any party. This
will break the uniqueness guarantee in the sense that no one
can claim the leadership.

If any party observes no valid leader is elected, they can
complain and cause the protocol to enter a retroactive detec-
tion phase to identify senders of malformed messages. If no
misbehavior is detected, the party who complains is slashed.

A naive attempt is asking all parties to present proofs when
someone complains: a proof for the well-formedness of uk ,
the correct evaluation of randomized commitments x′u,k , and
a proof for the correct partial decryption Jx̄uKk. We note that
this is already an improvement over schemes (e.g., [7]) where
similar proofs are always required.

We present a method to avoid the first two proofs, which
are the heaviest ones, as follows. We observe that FHE
evaluation is deterministic if the random coins are known.
Thus, parties are asked to reveal the randomnesses used for
tBFV.Enc on line 9 and 17, and the randomness used for
ΠMPRC.Randomize on line 16. Anyone could deterministi-
cally reconstruct u⃗k and x′u,k to verify if they are consistent
with the messages received during the election phase. Since
all messages are signed, any inconsistency immediately con-
stitutes evidence of malice. As a further optimization, parties
only need to reveal the seed that generates those random-
ness. Revealing the randomness will not affect secrecy since
new randomness is generated independently of the long-term
secrets for each election.

This optimization does not apply to the last proof (the proof
for partial decryption) since it would involve leaking the long-
term secret key shares for the tFHE scheme. With extensive
works on efficient proof systems for (t)FHE encryption and
decryption [2, 8, 14, 26, 30], this proof is relatively efficient.
We stress that the retroactive detection is only invoked when
no leader is elected, thus it is not on the critical path of Qelect.

After detecting misbehavior with irrefutable evidence, the
offender can be slashed in the same way as existing consensus
protocol [10]: Confiscate its collateral and remove it from
future participation.
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Putting everything together. With the augmentation to
crSSLE presented in §§ 6.2.1 and 6.2.2, we obtain Qelect.
A formal specification of Qelect and the security proof of
the following theorem are deferred to Appendix D.3 in the
interest of space.

Theorem 6.3. Given G parties, for any fully malicious PPT
adversary corrupting less than G/2 parties, Qelect is an SSLE
protocol defined in Definition 6.1.

6.2.3 Practical Considerations

We discuss some practical concerns specific to our protocol.
For general issues, such as node churn, adding new parties
and weighted elections, we claim the same as in [5].

Trusted setup and the threshold. tFHE schemes require
a setup phase to generate decryption key shares. We adopt
the tFHE scheme in [6] that relies on the 0,1-linear-secret-
sharing scheme (LSSS). We favor LSSS over the standard
Shamir secret-sharing scheme for three main reasons. First,
performance-wise, LSSS has a lightweight decryption algo-
rithm that only involves additions (without Lagrange interpo-
lation). Second, since only additions are performed in the final
decryption, the noise bound is linear to the party size instead
of exponential in Shamir secret sharing. Importantly, a recent
work [15] shows some security limitations of Shamir-secret-
sharing-based tFHE. However, there is currently no efficient
Distributed Key Generation (DKG) for the fFHE protocol we
use. Our implementation assumes a centralized trusted setup.

We use performance numbers from [17] to guide our choice
of τ, the threshold. One consideration is that the key share
size grows exponentially in

(G
τ

)
in LSSS. For large G such as

215, the key share size for τ = G−2 is around 66TB, but only
100KB if τ = G. For small G such as G≤ 16, we could have
τ = G/2 with key share size≤ 0.2GB. A similar trend applies
to the runtime of the trusted setup as shown in [17, section
5.2]. The key distribution process takes several hours for
G−3≤ τ≤ G and large G≤ 215. For τ = G, the setup time
is mainly quadratic in G: less than an hour for G = 215 and
less than 5 minutes with G ≤ 8192. On the other hand, as
claimed in [17], the decryption time is dominated by the
partial decryption, which does not grow with

(G
τ

)
and only

takes ∼ 0.01 second.
Therefore, we focus on the G-out-of-G setting that scales to

a larger number of parties. For small-scale settings (G≤ 32),
a more aggressive threshold (e.g., τ = G/2) can be used.

Preprocessing phase. We present an optimization where
the first broadcast message (i.e., u) is generated during the key
generation. The trusted dealer who is responsible for distribut-
ing the {JmskKi}i∈[G] could generate κ ciphertexts { u⃗( j) } j∈[κ]
during the setup, replacing the ciphertext aggregated from all
{ u⃗i }i∈[G]. In this way, the parties neither need to broadcast
and aggregate the initial encrypted randomnesses nor need to

prove the well-formedness of u⃗i by sending its underlying
randomness in detection phase.

Concretely, with N = 32768,κ = 16, the trust setup could
prepare initial randomness for 219 rounds with little overhead.
As they are consumed, parties could keep generating u⃗ with-
out relying on the trusted key dealer. For the parameter we
choose, it takes around 30 minutes for all parties to locally
aggregate { u⃗i }i∈[G] into u⃗ , which provides enough random-
nesses for N rounds, where N is the ring dimension. Thus,
all parties could prepare u⃗ for the next N election instances
while participating in the current N instances in parallel.

Performance estimation of the pessimistic path. The run-
time of retroactive detection is dominated by the proof gen-
eration and verification time for partial decryptions. Based
on [14], it takes approximately minutes to generate such
a proof and a similar amount of time to verify. Thus, for
G = 128, it takes more than 4 hours to finish for a party to
verify all others’ proofs. Details on the performance estima-
tion are relegated to Appendix D.4. We also point out that
if a party gets slashed, the remaining parties must perform a
trusted setup again.

To avoid disrupting the blockchain consensus protocol,
the protocol continues with a new set of G parties while the
current set finishes retroactive detection. This is consistent
with the deployment model of Whisk [23]: In Ethereum, the
number of validators is huge (over one million at the time
of writing in January 2025), so SSLE is executed among a
small subset of validators rotated on a schedule (e.g., daily).
A similar strategy can be taken in Qelect, where the next
scheduled set of G parties enter the early protocol while the
current set finishes the retroactive detection protocol.

7 Benchmark

We implement Qelect protocol (modulo the pessimistic path
in § 6.2.2) in C++ (will be released as open source). Our
implementation uses the SEAL [33] library for basic BFV
FHE operations. We benchmark these schemes on AWS EC2
c6i.2xlarge instances with 8 vCPU, 16GB RAM and Intel
Xeon Scalable processors.

Parameters and setup. We run experiment with a party size
from {4,8,16,32,64,128,256,512,1024,2048,4096,8192,
16384,32768}, with the following parameters for the under-
lying tBFV scheme: ring dimension N = 32768, plaintext
modulus q = 65537, ciphertext modulus Q that logQ = 720.
The parameters for the sRLWE scheme used in ΠMPRC are:
ring dimension n = 1024, plaintext modulus p = 2, cipher-
text modulus q′ = 65537, error distribution with σ = 0.5,
hamming weight of secret keys h = 32. For all the schemes
ΠMPRC,crSSLE,Qelect, we have the security parameter λ≥
80. The size of the final ciphertext and its partial decryption
is approximately 983 KB. For G = 128, each party needs to
send 126.83MB data in each broadcast. The choice of τ is
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Figure 2: Runtime of Qelect adapted from crSSLE under
LAN and WAN setting. It is important to note that the x-axis
grows exponentially with each tick, and thus the underlying
trend between runtime (both local computation time and com-
munication time) and group size is linear, which matches our
asymptotic estimates. We also plot the Ethereum block inter-
val as a reference to illustrate the practicality of our protocol.

application-based and tuneable. In our benchmark, we set
τ = G, which means that every party needs to receive partial
decryption from all other parties before it can decrypt.

For the local area network (LAN) setting, we put all in-
stances under the AWS us-east-2 region (Ohio). For the wide
area network (WAN) setting, we distribute all instances uni-
formly under AWS us-east-2, us-west-1 (California), eu-west-
1 (Ireland), and ap-southeast-1 (Singapore). The available
network bandwidth in LAN varies from∼4.95 Gbps to∼9.53
Gbps, and the available network bandwidth in WAN varies
from ∼160 Mbps to ∼530 Mbps.

Computation time of Qelect. Fig. 2 demonstrates our local
computation time for each party in the Qelect protocol, the
communication time in a LAN setting (shown as the blue
shaded area), and the communication time in a WAN setting
(shown as the purple shaded area). The runtime grows linearly
with the group size, and the communication time dominates
the total runtime. Moreover, the local computation with G≤
2048 could be finished within 10 seconds.

Comparison with non-post-quantum secure works. Post-
quantum secure protocols are usually slower than classical
ones. We first compare to existing classical schemes to offer
a perspective on the cost of post-quantum security in Qelect.

The most practical DDH-based SSLE protocol is intro-
duced in [5] and a variant is implemented in Whisk [23].
Based on the estimation given in [23], the local computation
is dominated by the generation of shuffling proof, around
880ms and at least two orders of magnitude faster than ours.
And as in [5], they only need a single round of one-to-all
broadcast of message size around 16KB based on the imple-

Figure 3: The total runtime Qelect based on crSSLE and the
SSLE protocol in [7]. Referring to Fig. 2, we could see that
both works have the runtime grow linearly with the group
size, while [7] has a more rapid trend.

mentation detail in [23], while our protocol requires three
rounds of all-to-all broadcast during the election phase.

Another line of SSLE uses MPC [3]. The runtime is domi-
nated by O(logG) rounds of communications. The main ad-
vantage of [3] is that it can handle unbalanced weight elections
efficiently: With the total weight of all parties to be S, the total
cost grows logarithmically in S, instead of linearly as in DDH-
based protocols [5, 7]. Based on their benchmark [3, Table
2], for 128 parties, the runtime under LAN setting is > 80s
and > 317s under WAN, which is 3x-7x higher than ours.
However, similar to the DDH-based protocol, the construc-
tion in [3] can tolerate a fully malicious adversary corrupting
up to G−1 parties and can guarantee liveness as long as there
exists an honest majority staying in the protocol.

Comparison with the latest post-quantum SSLE [7]. In
the line of post-quantum secure SSLE, we take the SOTA
work [7] as our baseline for comparison. In Fig. 3, we first
benchmark ourQelect protocol with G≤ 128 under both LAN
and WAN settings. And for the RRC-based protocol in [7], as
previously mentioned, the local computation in their protocol
only involves some matrix multiplication and shuffles in plain,
and we generously omit their local computation time. Since
their RRC scheme is based on RLWE, we set the correspond-
ing parameter as the same in our sRLWE defined in § 3.1, with
n= 1024,q′ = 65537, ℓ= 256. As claimed [7, section 5], they
have m = Ω(logq), so we set m = logq = 16 to give them an
additional comparative advantage. With G = 128, each party
then needs to broadcast 8.38 MB to the other parties in their
protocol. While in Qelect, each party only broadcasts 983 KB
to each other. Moreover, they need the broadcast to be taken
sequentially. Therefore, in Fig. 3 we see that the total runtime
of their protocol grows much more promptly than ours, and
we are at least two orders of magnitude faster.
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A Definitions and Proofs for sRLWE

We present the changes we made for the sRLWE construction
we use and refer readers to [25, 27] for other details.

• pprlwe = (n, ℓ,q,σ,D,γ) ← sRLWE.GenParams(1λ, ℓ,q,
σ,h) : all parameters set accordingly as in [25]
and set the error range γ s.t. ( 4γ+2

q )ℓ = negl(λ) and
ℓ · (1 − erf( γ√

2(2h+1)σ
)) = negl(λ); output pprlwe :=

(n, ℓ,q,σ,D,γ) as the public parameter for sRLWE scheme.

• (sk,pk)
$←− sRLWE.KeyGen(pprlwe;r) : same as in [25]

• ct= (a,b) $←− sRLWE.Enc(pprlwe,pk, m⃗) : same as in [25]

• m⃗ ← sRLWE.Dec(pprlwe,sk,ct = (a,b)) : Compute a′ =
ask ∈ Rq. Let d⃗[i] = bi − a′i for i ∈ [ℓ], decrypt m⃗[i] = 0 if d⃗[i] ∈ [0,γ]∪ [q− γ,q]

1 if d⃗[i] ∈ [q/2− γ,q/2+ γ]
⊥ o.w.

, for i ∈ [ℓ].

We provide the formal definitions and proofs for the cor-
rectness, CPA security, key privacy properties of our scheme
sRLWE as mentioned in § 3.1.

Theorem A.1. Assuming the hardness of RLWE,
sRLWE needs to satisfy correctness, CPA security,
and key privacy as defined in [25, 27]. And it also
needs to satisfy wrong-key decryption such that, for
any λ > 0,q = poly(λ),σ > 0, any randomness r, and
pprlwe = (n, ℓ,q,σ,D,γ) ← sRLWE.GenParams(1λ, ℓ,q,
σ,h),(sk,pk) ← sRLWE.KeyGen(pprlwe;r), for any mes-

sage m⃗ ∈ Bℓ, let ct
$←− sRLWE.Enc(pprlwe,pk, m⃗), for any

(sk′, ·) $←− sRLWE.KeyGen(pprlwe), let m⃗′ ← sRLWE.Dec(
pprlwe,sk

′,ct), we have Pr[∀i ∈ [ℓ], m⃗′[i] ̸=⊥] = negl(λ).

Proof. • Correctness: similar to the arguments in [25] and
Theorem 5.1, for a single ciphertext, we have random 2h+1
Gaussian noises masking the underlying messages. Thus,
we could treat the resulted noise as drawing from the dis-
crete Gaussian distribution (0,

√
2h+1σ). Based on the

condition ℓ · (1− erf( γ√
2(2h+1)σ

)) = negl(λ), which is a

union bound on ℓ, all ℓ noises will be bounded by γ, which
satisfies our correctness property.

• CPA security: same as the original RLWE encryption in [27]
under the RLWEn,q,D,χσ

assumption.

• Key privacy: similar to the argument in [25], with pk =
(α,β). we observe that (a = αx + e1,b = βx + e2 +
t) ≈c (a,b′ = β′ + t) based on RLWEn,q,D,χσ

, where x ∈
D,e1,e2 ∈ χσ and β′

$←− Rq. And since (a,b′) acts as a one-
time pad for masking the encoded message t, it obviously
achieves key privacy, we conclude that the original scheme
by outputing (a,b) as the ciphertext also achieves key pri-
vacy.

• Wrong-key decryption: based on RLWEn,q,D,χσ
assump-
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tion, we have (a,b = βx+ e2 + t)≈c (a,b′ = β′+ t) where

β′
$←− Rq, without knowing sk. Thus, for sk′ ̸= sk, b′ acts

as a random mask to a′′ := ask′ and d⃗ would appear to be
pseudorandom. Then each element d⃗[i] fall within the er-
ror range for a valid decryption of {0,1} with probability
4γ+2

q , which yields ( 4γ+2
q )ℓ = negl(λ) for a valid decryption

without ⊥.

B Related Materials for Fully Homomorphic
Encryption

B.1 BFV Encoding

As mentioned in § 3.2, BFV scheme [9,19] consists of the fol-
lowing PPT algorithms: GenParams(1λ),KeyGen(pp),Enc(
pp,pk,m),Dec(ppBFV,sk,c) as a normal PKE scheme. BFV
is unconditionally correct and sound and satisfies the stan-
dard semantic security (IND-CPA) as a FHE scheme based
on RLWE assumption.

Given a polynomial from the cyclotomic ring Rq =
Zq[X ]/(XN + 1), where the ring dimension N is a power-
of-two, s.t. q ≡ 1 mod 2N and q is the plaintext modulus,
the BFV scheme encrypts it into a ciphertext consisting of
two polynomials, each of which in RQ = ZQ[X ]/(XN + 1)
for some ciphertext modulus Q > q.

Notice that in § 3.2, we mentioned that the input message,
which is a vector, would be encoded to an ring element via
INTT before encryption, and similarly, after decryption, the
ring element would be decoded back to a normal vector. We
now present this encoding (decoding) in more details.

Given a message m⃗ = (m1, . . . ,mN) ∈ ZN
q . BFV first en-

codes the messages into a polynomial y(X) = ∑i∈[N] yiX i−1

s.t. m j = y(ζ j), ζ j := ζ3 j
mod t, and ζ is the 2N-th primitive

root of unity of t. This encoding can be done via a linear
transformation represented as matrix multiplication, and this
procedure is wrapped as INTT. When we say a BFV cipher-
text has N slots, we mean that it could encode a vector of
length N, of which each element mi is a Zq element. Hence,
we could directly assume BFV.Enc takes ZN

q as input, and
BFV.Dec outputs ZN

q , with encoding and decoding embedded
implicitly.

As mentioned in § 3.2, BFV scheme [9, 19] consists of
the following PPT algorithms: GenParams(1λ),KeyGen(pp),
Enc(pp,pk,m),Dec(ppBFV,sk,c) as a normal PKE scheme.
BFV is unconditionally correct and sound and satisfies the
standard semantic security (IND-CPA) as a FHE scheme
based on RLWE assumption.

Given a polynomial from the cyclotomic ring Rq =
Zq[X ]/(XN + 1), where the ring dimension N is a power-
of-two, s.t. q ≡ 1 mod 2N and q is the plaintext space, the
BFV scheme encrypts it into a ciphertext consisting of two

polynomials, each of which in RQ = ZQ[X ]/(XN + 1) for
some ciphertext modulus Q > q.

Notice that in § 3.2, we mentioned that the input message,
which is a vector, would be encoded to an ring element via
INTT before encryption, and similarly, after decryption, the
ring element would be decoded back to a normal vector. We
now present this encoding (decoding) in more details.

Given a message m⃗ = (m1, . . . ,mN) ∈ ZN
q . BFV first en-

codes the messages into a polynomial y(X) = ∑i∈[N] yiX i−1

s.t. m j = y(ζ j), ζ j := ζ3 j
mod t, and ζ is the 2N-th primitive

root of unity of t. This encoding can be done via a linear
transformation represented as matrix multiplication, and this
procedure is wrapped as INTT. When we say a BFV cipher-
text has N slots, we mean that it could encode a vector of
length N, of which each element mi is a Zq element. Hence,
we could directly assume BFV.Enc takes ZN

q as input, and
BFV.Dec outputs ZN

q , with encoding and decoding embedded
implicitly.

B.2 Formal Definition of Threshold FHE
We present a formal definition of threshold fully homomor-
phic encryption based on [6], which considers the access
structure to be simply τ-out-of-G, where G is the total number
of parties.

Definition B.1. For G parties, a τ-threshold fully homo-
morphic encryption (tFHE) scheme consists of algorithms
(GenParams,Enc,Eval,ParDec,FinDec) defined as follows:

• (mpk,{JmskKi}i∈[G])
$←− tFHE.GenParams(1λ,D,G,τ):

takes in the security parameter 1λ, a depth bound D of the
homomorphic circuit, the total number of parties G and the
threshold τ; outputs a master public key mpk and the secret
key shares {JmskKi}i∈[G].

• ct
$←− tFHE.Enc(mpk, m⃗): takes in the master public key

mpk and the message m⃗; outputs the ciphertext ct.

• ct′← tFHE.Eval(C,{ct}): takes in the circuit C and a list of
ciphertext {ct} serving as the inputs of the circuit; outputs
the encrypted evaluation results. Notice that for simplicity,
we treat C := {+, ·}, which is basic addition or multiplica-
tion.

• Jm⃗′Ki
$←− tFHE.ParDec(ct,JmskKi): takes in a ciphertext ct

and a secret key share JmskKi; outputs the corresponding
partial decryption Jm⃗Ki.

• m⃗′← tFHE.FinDec({Jm⃗′Ki}): takes in a list of partial de-
cryptions {Jm⃗′Ki}; outputs the plaintext message m⃗′ if
|{Jm⃗′Ki}| ≥ τ and ⊥ otherwise.

A tFHE scheme also needs to satisfy the following prop-
erties (note that in [6], they require more properties such as
compactness, simluation security and IND-security. Since our
construction and proofs mainly rely on the semantic security,
we refer readers to the original paper [6] for more details):
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• Correctness: for (mpk,{JmskKi}i∈[G])
$←− tFHE.

GenParams(1λ,D,G,τ), for any {m⃗1} and any cir-

cuit C with depth ≤ D, let cti
$←− tFHE.Enc(mpk, m⃗i),

and ct′ ← tFHE.Eval(C,{cti}), denote M := {Jm⃗′K j |
Jm⃗′K j

$←− tFHE.ParDec(ct′,JmskKi)}, for any M ′ ⊆ M ,
s.t. |M ′| ≥ τ, we have: Pr[tFHE.FinDec({Jm⃗′Ki}i∈M ′) =
C({m⃗i})]≥ 1−negl(λ).

• Semantic security: for (mpk,{JmskKi}i∈[G])
$←− tFHE.

GenParams(1λ,D,G,τ), for any PPT adversary A1,A2,

let (Wcor, m⃗0, m⃗1,st) ← A1(mpk), let b $←− {0,1}
and ct′

$←− tFHE.Enc(mpk, m⃗b), it holds that
Pr[A2(st,ct

′,{JmskKi}i∈Wcor
) = b]≤ negl(λ).

B.3 Helper Algorithms
We formalize the helper algorithms that will be used in our
constructions and the pseudocode is provided in Algorithm 3.

• ct′ ← tBFV.Extract(mpk,ct, i): given the master public
key of tBFV, the input ciphertext ct encrypting the vec-
tor x⃗ := {v0,v1, . . . ,vN−1}, and the index i; output a final
ciphertext ct′ encrypting the vector x⃗′ s.t. x⃗′[i] = vi and 0
otherwise.

• ct′← tBFV.Fill(mpk,ct): given the master public key of
tBFV and the input ciphertext ct encrypting the vector
(v,0, · · · ,0) ∈ ZN

q ; output a final ciphertext ct′ encrypting
the vector (v, · · · ,v) ∈ ZN

q .

• ct′ ← tBFV.ToPowerEncode(mpk,ct): given the master
public key of tBFV and a ciphertext ct encrypting the vector
v∥0N−1, where v ∈ Zq; outputs a ciphertext encrypting a
unit vector x⃗ ∈ BN , s.t. x⃗[v] = 1 and 0 otherwise.

• ctres ← tBFV.OblSel(mpk,ct,{cttok,i}i∈[G],q): given the
master public key of tBFV, the input ciphertext ct encrypt-
ing a unit vector x⃗ ∈ BN

q , s.t. x⃗[v] = 1 and 0 otherwise,
v ∈ [G], a list of ciphertexts {cttok,i}i∈[G] representing the
inputs, and the plaintext modulus q; output a final ciphertext
ctres := cttok,v.

• {cti}i∈[N] ← tBFV.OblExp(ct): given an input cipher-
texts, output a list of ciphertext {cti}, s.t., ∀ j ∈ [N],
BFV.Dec(cti)[ j] = BFV.Dec(ct)[i].

C Related Materials for MPRC

Remark C.1. In [7], the authors introduce a primitive de-
noted as re-randomizable commitment (RRC), which is gen-
eralized from the DDH based commitment scheme pro-
posed in [5]. RRC in [7] is defined with four algorithms
(Setup,Commit,Randomize,Test), which correspond to the
definitions of (Gen,Commit,Randomize,Verify) in Defini-
tion 5.1, while we have one more algorithm Combine used
for aggregating commitments from all parties. The high-level

Algorithm 3 Helpers algorithms based on tBFV

1: procedure tBFV.Extract(mpk,ct, i)
2: ctext

$←− tBFV.Enc(mpk, e⃗i)
3: ct′← tBFV.Eval(·,ct,ctext)
4: ct′← tBFV.Rotate(mpk,ct′, i) ▷ Rotate the

extracted i-th value to the first slot
5: return ct′

6: procedure tBFV.Fill(mpk,ct)
7: for i ∈ logN do
8: Let rotation offset k = N

2i+1

9: cttmp← tBFV.Rotate(ct,k)
10: ct← tBFV.Eval(+,ct,cttmp)

11: return ct
12: procedure tBFV.ToPowerEncode(mpk,ct)
13: ct′← tBFV.Fill(mpk,ct)
14: Initialize a vector v⃗ = {0,1,2, . . . ,q}
15: ctv

$←− tBFV.Enc(mpk, v⃗)
16: ct′′← tBFV.Eval(+,ctv,−ct′)
17: for i ∈ [logq] do
18: ct′′← tBFV.Eval(·,ct′′,ct′′) ▷ Raise to power of

q−1 of ciphertext ct′′ slot-wisely
19: return ct′′

20: procedure tBFV.OblSel(mpk,ct,{cttok,i}i∈[G],q)
21: {ctb,i}i∈[G]← tBFV.OblExp(ct)
22: Initialize a ciphertext ctres encrypting all zeros
23: for i ∈ [G] do
24: ct′i← tBFV.Eval(·,ctb,i,cttok,i)
25: ctres← tBFV.Eval(+,ctres,ct

′
i)

26: return ctres

ideas both consider the public key or the ciphertext of a
(R)LWE encryption scheme as a commitment to the under-
lying secret key. To prevent maliciously crafted trivial secret
keys, we both treat the randomness used to sample the secret
key as the witness to guarantee that the secret keys would
be honestly generated. Regarding the security definition, our
multi-party binding and unlinkability properties are similar to
the binding and unlinkability properties in [7, section 6], but
w.r.t. the combined commitments. We identify our differences
as follows.

1. We allow Commit interface to take a message m⃗ ∈ {0,1}ℓ
and output a sRLWE ciphertext encrypting m⃗ as part of
the initial commitment, while [7] only considers the pub-
lic key generated from the secret witness as the initial
commitment. Therefore, the “binding” property of our
scheme states that a commitment should bind to both the
secret key and the message. I.e., an adversary should not
be able to come up with a different secret-key-message
tuple that passes the Verify oracle defined in Definition 5.1,
while the “binding” property defined in [7] only regards
the secret key, without a message. The functionality of
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our commitment scheme could be useful in applications
such as anonymous sealed-bid auctions [4, 24, 31] and fair
e-lottery [16].

2. For G parties to collectively randomize a commitment, our
protocol takes constant communication rounds. In contrast,
the protocol in [7] needs O(G) rounds, which is imprac-
tical in the WAN setting when G is large. To elaborate
further, in [7], all parties need to invoke Randomize inter-
face sequentially. While in our case, parties can perform
the randomization locally and independently in parallel,

s.t., c′i
$←− ΠMPRC.Randomize(c), and a final aggregation

round outputs c′′←ΠMPRC.Combine({c′i}i∈[G]).

3. It is unclear how to modify the scheme in [7] to support par-
allel randomization. Recall the construction from [7, sec-
tion 5]: With the scheme parameter n,m,q, ℓ,χ (discussed
in more detail later), a sender samples k as a random seed,

and generates v $←−k R ℓ
q as the secret key. It then sam-

ples a $←− R m
q and computes b = a · vT + E,E ← χm×ℓ.

This public key (a,b) is published as the initial com-
mitment. To randomize, one samples a low-norm matrix
R ∈ R m×m, where all coefficients of each single ring ele-
ment is uniformly and independently chosen from {−1,1},
and returns c′ := (R ·a,R ·b) ∈ R m

q ×R m×ℓ
q . A direct ap-

proach of adapting this to our MPRC primitive is to sum
up randomized commitments from multiple parties into
(R′ ·a,R′ ·b) :=(∑i Ri ·a,∑i Ri ·b). However, now R′ would
lose the nice “low-norm” property crucial to their noise
control, and thus the sender might not be able to verify (or
test in their terminology) this commitment.

4. Another direct benefit of our parallel randomization pro-
cedure is that the noise built up in our protocol is much
smaller: the final added Gaussian noise grows logarithmi-
cally with the party size G, while the noise in [7] grows ex-
ponentially with the number of randomization operations
B = G since all G parties need to sequentially perform G
randomization operations.

5. Asymptotically, the construction in [7] would have each
commitment of size O(mℓn logq), where n, ℓ,q are the
same sRLWE parameters we choose in Algorithm 1, while
m = Ω(logq+ (ℓ+ κ)/n) with κ to be some statistical
security parameter. 3 I.e., their public keys consists of m
Rq element each with ring dimention n. In contrast, based
on the security arguments for our tailored sRLWE scheme
defined in § 3.1, 4 we set the public key to be of Rq×Rq,

3Generally, as a Zn
q×Zq LWE sample, m = ω(n logq) based on leftover-

hash lemma. Since a single Rq×Rq RLWE sample could replace n such
Zn

q×Zq LWE samples, [7] is able to set m = Ω(logq)
4The intuition behind is that, for a LWE sample ct = (a,b) ∈ Zn

q×Zq,
we replace the statistical assumption based on leftover-hash lemma into
computational assumption by adding noises to both a,b parts, and make the
ciphertext computationally indistinguishable to pseudorandom. Therefore,
we could reduce the total sample size to m = n. And by replacing LWE with
RLWE, we only need a single Rq element.

i.e., two single ring element. Thus, our commitment size
is only O(n logq), which is at least Ω(logq) smaller.

Proof of Theorem 5.1. Multi-party Binding: the high-level
intuition is that the final randomized commitment is basically
the sum of (at most) 2G sRLWE ciphertexts. Thus, as long
as the noise aggregated does not mask out the underlying
message, the corresponding secret key would still be able to
decrypt it. More formally, notice that for one single ciphertext,
sRLWE.Dec would be e1sk− ex− e2, where e1,e,e2 ← χσ,
and sk,x← D are two ternary vectors with fixed hamming
weight h. This can thus be seen as drawing 2h+1 Gaussian
noises, and summing up (at most) 2G such ciphertexts (each
randomized commitment would be a sum-up between two
ciphertexts, and ΠMPRC.Combine sums up all G randomized
commitments) would be equivalent to drawing ≤ 2G(2h+1)
Gaussian noises. Therefore, given a final commitment c′′ with
its corresponding witness w (which is the random coin used to
draw the original secret key sk), the probability of decrypting
into garbage instead of {0,1} is ≤ 1− erf( γ√

4G(2h+1)σ
). For

all ℓ elements, we union bound it to be ℓ(1−erf( γ√
4G(2h+1)σ

))

which is negligible w.r.t. λ based on line 3.
On the other hand, for a random secret key generated

by another random coin r′ ̸= r, the probability of one ele-
ment in the decrypted vector falling into the error range for
valid decryption is 4γ+2

q . And thus the probability for the

decryption result to contain no ⊥ is ≤ ( 4γ+2
q )ℓ = negl(λ)

based on sRLWE.GenParams in § 3.1. Hence, Pr[Verify(
pp,c′′,w,m) = Verify(pp,c′′,w′,m)] = Pr[Verify(pp,c′′,w,
m) = Verify(pp,c′′,w′,m) = 0] + Pr[Verify(pp,c′′,w,m) =
Verify(pp,c′′,w′,m) = 1] ≤ Pr[Verify(pp,c′′,w,m) = 0] +
Pr[Verify(pp,c′′,w′,m) = 1]≤ negl(λ)+negl(λ) = negl(λ).

Unlinkability: given an adversary A that could break the
unlinkability of Algorithm 1 with probability 1

2 +pr, i.e., it has
non-negligible advantage pr, we then construct an adversary
A ′ that breaks the key privacy of sRLWE as follows:

• The challenger first sends (pk0,pk1) to A ′.
• A ′ receives the (m0,m1,Wcor) from A , where Wcor is the

indices of corrupted parties, and passes (m0,m1) to the chal-
lenger.

• The challenger samples b $←− {0,1}, evaluates ctb
$←−

sRLWE.Enc(pkb,mb), and sends ctb to A ′.

• A ′ samples b′ $←− {0,1} and directly sets cb′ := (pkb′ ,ctb).

A ′ then computes c1−b′
$←−ΠMPRC.Commit(pp,m1−b′).

For i ∈ [G], generate c′0,i
$←− ΠMPRC.Randomize(pp,c0),

c′1,i
$←− ΠMPRC.Randomize(pp,c1), and denote C0,G :=

{c′0,i}i∈[G],C1,G := {c′1,i}i∈[G].

A ′ then sends (c0,c1,C ′0,G := {c′0,i}i∈Wcor
,C ′1,G :=

{c′1,i}i∈Wcor
) to A .
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• After receiving C ′′0,G,C ′′1,G from A , A ′ generates c′′ ←
ΠMPRC.Combine(pp,C ′′b′,G ∪Cb′,G\C ′b′,G), and sends c′′ to
A .

• If A outputs 0, A ′ also outputs 0; otherwise, A outputs
{0,1} uniformly random.

If A ′ with probability 1/2 chooses b′ = b, A ′ simulates the
game of unlinkability honestly and thus A should output 0
with probability 1/2+pr. Otherwise, A ′ has probability of
1/2 to guess b correctly. Thus, we have A ′ break key privacy
with probability 1

2 (
1
2 +pr)+ 1

4 = 1
2 +

1
2pr, which has a non-

negligible advantage.

D Complementary Materials for § 6

D.1 crSSLE: Honest-but-Curious Setting

Proof of Theorem 6.1. The uniqueness proof of Algorithm 2
could be broken into the following conditions:

1. Out of t̄ random indices being extracted on line 14, there
exists at least one index that will be mapped in ZG, which
is achieved by the parameter generation process in line 4.

2. After summing up all randomized shares for the leader
i from G parties, the final commitment encrypted under
ctl∈[t̄] derived on line 21 is still a valid commitment of mi
w.r.t. yi, which is based on the multi-party binding property
of the underlying ΠMPRC scheme defined in Algorithm 1.

3. The decryption of ctl∈[t̄] succeeds, which is simply satis-
fied under a honest-but-curious setting so that there would
be at least τ parties supplying their partial decryptions.

The unpredictability could be proved in a hybrid man-
ner. Take the unpredictability game of crSSLE (defined in
Definition 6.1) as H0, we define H1 to let Challenger, in-
stead of outputing {Jx̄′K j} j∈[G]\Wcor

by honestly evaluating
crSSLE.ParElect, sample random RQ×RQ tuple as a tBFV
ciphertext, where Q is the ciphertext modulus of tBFV. H1 is
computationally indistinguishable to H0 based on semantic
security of tBFV. In H2, we let Challenger, instead of out-
puting {Jx′K j} j∈[G]\Wcor

by honestly evaluating crSSLE.Elect,
output random RQ×RQ tuple as the partial decryptions. The
hybrid H2 is computationally indistinguishable to H1 since
for a random ciphertext (a,b) ∈ RQ×RQ, we would have the
b part acting as a random mask to the decryption and thus the
partial decryption is pseudorandom.

It is clear to see that in H2, we have the combine result
x′ to be pseudorandom, which is unrelated to any original
xi∈[G], and this hybrid is computationally indistinguishable
to the security game H0. Therefore, the view of a malicious
adversary leaks no information about the elected leader and
the adversary should not have any non-negligible advantage.

For the fairness, we first observe that as long as the aggre-
gated ciphertext ctpl obtained on line 13 encrypts a uniformly

random index u ∈ ZG, then the fairness property is achieved.
It is clear to see that even if the adversary could craft some
plk∈Wcor

in favor of itself, where Wcor is the corrupted set, as
long as there exists one honest party i who supplies pli, the
aggregated result would be random.

Remark D.1. In [5], the authors design a protocol based
on some threshold FHE, denoted as tFHE, to fulfill the func-
tionality of single secret leader election. As a quick recap,
in their construction, each party k broadcasts a secret value
sk as the initial commitment. All G parties then collectively
and homomorphically generate some randomness used as the
secret key for a PRF, which is embedded in a tFHE circuit. In
each election round, each party invokes a random oracle to
get a common randomness as the input to the PRF. The ho-
momorphic evaluation result of the PRF, denoted as u , where
u ∈ {0,1}logG, would be expanded to 1u and inner product
with the input list { s1 , . . . , sG } to obliviously elect one from
them. In the last phase of the election, all parties would pro-
vide the partial decryptions and recover su in plain. However,
since sk is published in encrypted form at the beginning, only
the elected leader would know su belongs to it.

There are two main differences between the construction
in [5] and our Algorithm 2, detailed as follows.

1. In [5], each party publishes the input initially encrypted
under tFHE. The drawback is that, due to the homomor-
phic property of the scheme, it is possible for an adversary
to launch the modification attack targeted at party k, as
mentioned in [5, section 5]. Briefly, the adversary is able
to derive a tFHE ciphertext of form sk +1 . If after an elec-
tion, sk +1 is revealed and no other parties stands out as
the leader, the adversary would know that itself is actually
the winner and learn sk. This breaks the unpredictability
as defined in Definition 6.1: If in a future round, sk is re-
vealed, this adversary would immediately know that party
k is the leader. To resolve this issue, [5] applies the general
zero-knowledge proof approach which is quite heavy for
any FHE scheme.

On the other hand, our construction does not suffer from
this attack, since at the end of the protocol, only a random-
ized version of the original input is revealed. Based on
the security guarantee of the underlying ΠMPRC scheme,
this output leaks no information about either the original
secrets or the underlying messages. Even though an adver-
sary tries to tweak someone’s input a little bit, it should
not be able to recognize it after randomization.

2. Although our work and [5] both employ the idea of ex-
panding some randomness into a one-shot vector (e.g.,

1u,u
$←− [G]), we design the underlying FHE circuit in a

very different way. Their approach involves a PRF evalua-
tion and a homomorphic expansion, while our construction
consists of a constant-to-power encoding transformation
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and then a similar homomorphic expansion.

The authors of [5] ingeniously design a circuit with
O(log logG) levels of multiplications, while our circuit
is of log(q−1)+2 levels, where G is the number of par-
ties and q is the plaintext modulus of the threshold FHE
scheme. However, due to the extensive use of an outer
product between two vectors, which is not quite SIMD-
friendly, we conjecture that their construction might have
a bigger hidden constant. We will leave a potential imple-
mentation of their scheme as a future work.

D.2 Related Materials for Malicious Security

Claim D.1 (Commit-and-reveal). Given a hash function
H and a threshold FHE scheme TFHE. Denote the plain-
text as P , closed under addition. For any PPT adversary
A , let G be the total number of parties. Denote the cor-
rupted set as Wcor, |Wcor| < G. Let A play the role of par-
ties in Wcor in the following procedure. All honest par-

ties i ∈ [G]\Wcor sample xi
$←− P and generate ciphertexts

cti := xi with the hashed value hi ← H(cti). The parties
∈ [G]\Wcor first publish {hi}i∈[G]\Wcor

, and the adversary pub-
lishes {hi}i∈Wcor

. After seeing {hi}i∈[G], all honest parties pub-
lish {cti}i∈[G]\Wcor

, and the adversary publishes {cti}i∈Wcor

s.t. H(cti) = hi for i ∈ Wcor. For any A making at most
poly(λ) queries to H, let ct′ ← TFHE.Eval(+,{cti}i∈[G]),
for any x,x′ ∈ P , we have |Pr[TFHE.Dec(msk,ct) = x]−
Pr[TFHE.Dec(msk,ct) = x′]|= negl(λ), where the random-
ness is taken over {xi}i∈[G]\Wcor

.

Proof of Claim D.1. We prove this via a hybrid argument.
Hybrid 0 is as given in the claim. In hybrid 1, we manipulate

the hash function by the following: Sample uk
$←− P , and con-

struct the ciphertext c̄t := uk . Let H(c̄t) := H(ctk), where
ctk is the ciphertext originally generated by some honest party
k. Since A can make at most poly(λ) queries, while the ci-
phertext space is exponentially large (not that the ciphertext
modulus Q≥ 2128), the probability that A would notice the
difference is negl(λ). Thus, hybrid 0 is computationally indis-
tinguishable from hybrid 1. In hybrid 2, let the honest party
k publish c̄t instead of ctk in the second round of broadcast.
Since H(c̄t) = H(ctk), hybrid 1 is indistinguishable from hy-
brid 2.

Given H is collision-resistant, the probability of A
finding some new {ct j} j∈Wcor

with the same hash
value but maliciously crafted based on {cti}i∈[G]\Wcor

is negl(λ). Now, in hybrid 2, we could first add up
the ciphertexts generated from honest parties into ct ←
TFHE.Eval(+,{cti}i∈[G]\(Wcor∪{k}) ∪ {c̄t}), and the ones
from the adversary into ctA ← TFHE.Eval(+,{cti}i∈Wcor

).
Notice that ct essentially encrypts some random value u sam-
pled from P , which is masked by uk under c̄t. Then the final
aggregated result is actually ct′← TFHE.Eval(+,ct,ctA).

First consider ctA to be some valid ciphertext, i.e.,
it could be translated into form xA , xA ∈ P , then we
have ct′ := u+ xA , which is fully masked by u and
|Pr[TFHE.Dec(msk,ct′) = x] − Pr[TFHE.Dec(msk,ct′) =
x′]| for any x,x′ ∈ P , as long as uk is randomly chosen
by the honest party k. On the other hand, if ctA is mal-
formed, i.e., it is not a valid ciphertext and the decryp-
tion result would be ⊥ with overwhelming probability. In
other words, we could treat it as a ciphertext with noise
overflowed, then we have Pr[TFHE.Dec(msk,ct′) = x] =
Pr[TFHE.Dec(msk,ct′) = x′] = negl(λ).

Proof of Claim 6.2. There will be only two cases regarding
the composition of the subset S , with |S |= G/2 and |Wcor|<
G/2.

1. If S contains ciphertexts generated all from honest par-
ties, then trivially we have Pr[TFHE.Dec(msk,ct) = x] =
Pr[TFHE.Dec(msk,ct) = x′] = 1/|P | for any x,x′ ∈ P ,
since xi are all chosen uniformly at random.

2. If S contains both ciphertexts from the honest and cor-
rupted parties, then observe that the best thing the adver-
sary can do is to craft c̃t1, . . . , ˜ct|Wcor| in place of the ci-
phertexts generated by the corrupted parties w.r.t. |Wcor|
different subsets S1, . . . ,SWcor

, s.t. the summation results
TFHE.Eval(+,{cti}i∈S j), j ∈ |Wcor| are ciphertexts en-
crypting some specific values pre-determined by the ad-
versary. Since |Wcor|< G/2, the adversary can only target
at O(G) specific subsets, with O(1/2G) many possible
subsets, the probability of the hitting the subsets that the
adversary bets on is negl(G).

On the other hand, if the subset with mixing ciphertexts
from both honest and corrupted parties is not one of the
subsets S j∈[Wcor] that the adversary targets to, then we
could treat the outputs of the adversary as independently
chosen of the honest ciphertexts and are some random
bytes with negl(λ) probability to be valid ciphertexts.
Therefore, the added up results will also be some ran-
dom garbage with 1− negl(λ) probability, and we have
Pr[TFHE.Dec(msk,ct) = x] = Pr[TFHE.Dec(msk,ct) =
x′] = negl(λ) for any x,x′ ∈ P .

The formal algorithm for the patched crSSLE is in Algo-
rithm 4, with differences from Algorithm 2 ighlighted in blue.

Theorem D.2. Given G parties, for any fully malicious PPT
adversary corrupting < G/2 parties, the crSSLE construction
given in Algorithm 4 satisfies the fairness and unpredictability
defined in Definition 6.1.

Proof of Theorem D.2. We use a hybrid argument to prove
the fairness and unpredictability under the case of large G.
The case of mall G follows the same proof. Let A play the
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role of all corrupted parties and the challenger plays the role
of the environment.

• Hyb0 is the initial game defined in Definition 6.1, where
the challenger honestly generates the transcripts on behalf
of all honest parties.

• In Hyb1, change the added up ciphertext ct⃗u on line 16 or 18

into a ciphertext u⃗∗ , where u⃗∗ $←− ZN
G. Based on Claim 6.2

and RLWE assumption, Hyb1 is computationally indistin-
guishable from Hyb0. (For small G, we construct the same
hybrid but argue the indistinguishability based on Claim
D.1 instead. Same for the following point.)

• In Hyb2, change the added up ciphertexts x̄u on
line 32 or 34 into ciphertexts x̄u∗ , s.t. x̄u∗, ←
ΠMPRC.Randomize(ppC,xu⃗∗[ j]), where j is the number of
the current election round. Notice that the commitment
space of ΠMPRC would be the plaintext space P in Claim
6.2, which is indeed close under addition. Thus, based on
Claim 6.2 and RLWE assumption, Hyb2 is computationally
indistinguishable from Hyb1.

• In Hyb3, change the combined partial decryption into
the result of combining all shares by partially decrypting

x′u∗ , where x′u∗ ← ΠMPRC.Randomize(ppC,xu∗),u∗
$←− [G].

Same as above, we have the commitment space of ΠMPRC

to be the plaintext space P in Claim D.1. Based on the col-
lision resistance property of hash functions and RLWE as-
sumption, Hyb3 is computationally indistinguishable from
Hyb2.

Observe that in Hyb3, the environment faced by the adversary
will elect a leader with uniform probability, which guarantees
the adversary is not able to predict the leader better than ran-
dom guessing. Since it is indistinguishable from the original
game, we conclude that the patched crSSLE in Algorithm 4
achieve fairness and unpredictability under a malicious set-
ting.

Remark D.2. As a quick recap, in the patched scheme we
need the hash function to: 1) hash the initial randomness
ciphertext uk , for some uk ∈ [G] (or hash the whole list of
{ui }i∈[G] into a subset if the party size if large enough, same
below); 2) hash the independently randomized commitment
encrypted as x′u,k (or hash the whole list of { x′u,i }i∈[G] into a
subset); 3) hash the final partial decryption Jx̄uK.

With reasonable ciphertext modulus Q≥ 210, ring dimen-
sion N = 215, and G≤ 215, we have the hash input size of all
hash functions to be ≤ 241. And we also require the output
space of H ′1,H

′
2 to be ≥ 2G, so that it could encode a sub-

set S ⊂ [G]. A standard and qualified candidate is SHA256,
which has the output space to be 256 bits. For larger party size
G > 256, we could easily chain the hashes of SHA256 ⌈ G

256⌉
times, s.t., h1 = H(x) and hi = H(x∥h1∥ . . .∥hi−1), where H
is SHA256 and x is the original input. The final output would
be h1∥ . . .∥h⌈ G

256 ⌉
.

Concretely, for G = 128, the commitment hashes computed
on single ui and x′u,i (input size around few megabytes) could
finish within 0.05 second, and the hashes computed on the
whole transcripts {ui }i∈[G] or { x′u,i }i∈[G] (input size around
hundreds of megabytes) so as to derive the subset encoding
takes less than 0.5 second.

D.3 Formal Protocol of Qelect
Initialized with a tBFV scheme with ring dimension N, denote
each election round as one epoch (denoted as ep), and set N
epochs as one cycle (denoted as c), we present our formal
protocol to handle malicious adversaries as follows.

Preprocessing Phase of Qelect:
1. Let G parties be involved in a trusted setup. Let the

trusted authority first invokes (mpk,{JmskKi}i∈[G])
$←− crSSLE.Setup(pp,1λ). W.l.o.g., we assume that

all evaluation keys are packed in mpk. The trusted au-
thorities also generates G commitments Ci w.r.t. each
JmskKi based on ring-SIS: Ci := a · JmskKi, where
a ∈ R m

q ,m = logq. This serves as the public parame-
ter when generating and verifying the ZKP of partial
decryptions.

It then generates κ ciphertext u⃗ρ

$←− tBFV.Enc(mpk,

u⃗ρ),ρ ∈ [κ], with u⃗ρ

$←− ZN
G. κ could be treated as a

tuneable parameter.

All parties get involved in the setup phase of the zero-

knowledge proof system ZKP: (PK,VK) $←− ZKP.
KeyGen(pp,1λ), with {Ci} attached to both PK,VK.

Each party k receives (PK,VK,mpk,JmskKk,
{ u⃗ρ }ρ∈[κ]).

2. (Broadcast) For each party k, invoke (xk,ep0 ,yk,ep0 , ·)
$←− crSSLE.Gen(pp,mpk,1λ,0N).

Broadcast xk,ep0 to all other parties.

Election Phase at instance ept of Qelect:
1. (Broadcast) For each party k, initializes three random

number generators rng0,k,ept
, rng1,k,ept

, rng2,k,ept
.

Invoke x′u,k ← crSSLE.ParElect(mpk,{(xi,ept ,

·}i∈[G]) (and potentially also H( x′u,k ) if the party
size is small) from line 19 in Algorithm 4.

Broadcast x′u,k (and potentially H2( x′u,k ) if the party
size is small).

2. (Broadcast) For each party k, invoke Jx̄uKk,ept
$←−

crSSLE.Elect({ x′u,i }i∈[G],JmskKk).

Broadcast Jx̄uKk,ept (and potentially H3(Jx̄uKk,ept ) if
the party size is small).
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Algorithm 4 crSSLE Construction with security patches

1: procedure crSSLE.Setup(pp= (G,τ,q,σ,h),1λ)
2: same as in Algorithm 4, but Sample a hash function

H and append it to pp.
3: return (mpk,{JmskKi}i∈[G])

4: procedure crSSLE.Gen(pp = (ppC,pptBFV, ·),mpk,1λ,
mk) ▷ we treat mk as all zeros for crSSLE scheme.

5: u⃗k
$←− ZN

q

6: u⃗k
$←− tBFV.Enc(mpk, u⃗k)

7: (xk,yk)
$←−ΠMPRC.Commit(ppC,mk)

8: if G≥ 128 and |Wcor|< G/2 then
9: return (xk,yk, u⃗k )

10: else
11: hk = H( u⃗k ) and publish (xk,yk,hk)
12: After receiving {hi}i∈[G], publish u⃗k

13: procedure crSSLE.ParElect(mpk,{(xi, u⃗i )}i∈[G])
14: if G≥ 128 and |Wcor|< G/2 then
15: xs = H({ u⃗i }i∈[G])

16: ct⃗u,← tBFV.Eval(+,{ u⃗i }i∈S )▷ S is encoded by
xs

17: else
18: ct⃗u,← tBFV.Eval(+,{ u⃗i }i∈[G])

19: ctu← tBFV.Extract(mpk,ct⃗u) ▷ extract the
j-th slot out of all N slots in the j-th round, if amortized
across multiple rounds

20: uN ← tBFV.Fill(mpk,ctu) ▷ where u = ∑i∈[G] u⃗[ j]

21: x′i
$←−ΠMPRC.Randomize(ppC,xi), i ∈ [G]

22: x′i
$←− tBFV.Enc(mpk,x′i), i ∈ [G]

23: x′u,k ← tBFV.OblSel(mpk, uN ,{ x′i }i∈[G],q)

24: if G≥ 128 and |Wcor|< G/2 then
25: return x′u,k
26: else
27: hk = H( x′u,k ) and publish hk

28: After receiving {hi}i∈[G], publish x′u,k
29: procedure crSSLE.Elect({ x′u,i }i∈[G],JmskKk)
30: if G≥ 128 and |Wcor|< G/2 then
31: xs = H({ x′u,i }i∈[G])

32: x̄u ← tBFV.Eval(+,{ x′u,i }i∈S ) ▷ S is encoded
by xs

33: else
34: x̄u ← tBFV.Eval(+,{ x′u,i }i∈[G])

35: Jx̄uKk := tBFV.ParDec( x̄u ,JmskKk)
36: hk = H(Jx̄uKk) and publish hk
37: After receiving {hi}i∈[G], publish Jx̄uKk

38: procedure crSSLE.Combine({Jx̄uKi}i∈[G])
39: x̄u← tBFV.FinDec({Jx̄uKi}i∈[G])
40: return x̄u

41: procedure crSSLE.Verify(pp, x̄u,y,m)
42: return ΠMPRC.Verify(pp, x̄u,y,m)

3. For each party k, invoke x̄u,ept ← crSSLE.Combine(
{Jx̄uKi,ept}i∈[G]).

4. For each party k, evaluate crSSLE.Verify(pp, x̄u,ept ,
yk,ept ,0

N) and carry out the later steps if re-
sult equals to 1. For the elected leader, generate

(xk,ept+1 ,yk,ept+1 , ·)
$←− crSSLE.Gen(pp,mpk,1λ,0N).

It later broadcasts yk,ept as the proof of the elected
leader and xk,ept+1 as its own new identity.

For all others, xi,ept+1 := xi,ept .

Retroactive Detection Phase for instance ept of
Qelect: (note that this phase will be executed only when
no one claims itself as the elected leader in epoch ept )

1. For each party k, broadcast {rng0,i,ept
, rng1,i,ept

,
rng2,i,ept

,yi,ept}i∈[G] to all others. Re-execute the elec-
tion phase step 1 to reconstruct { x′u,i }i∈[G] and com-
pare them with the transcripts received from the pair-
wise authenticated channel. Slash the corresponding
party if any inconsistency is detected.

2. Based on { x′u,i }i∈[G] reconstructed from all broad-

cast randomnesses in the previous step, reconstruct
the ciphertext x̄u on line 32 (or line 34, depend-
ing on the subset size). For each party k, gen-
erate the proof of the partial decryption in elec-
tion instance ept as πk,ept ← ZKP.Prove(pp,PK, x̄u ,
Jx̄uKk,ept ,JmskKk) and broadcast πk,ept to all via BC.
Slash the corresponding party if a proof is invalid.

3. If all no inconsistency is identified and
all proofs are valid, slash the party i if
crSSLE.Verify(pp, x̄u,yi,ept ,0

N) = 1.

Proof of Theorem 6.3. Notice that the differences between
our final protocol Qelect and the patched version depicted in
Algorithm 4 are that: 1) the generation of u⃗ are extracted into
the preprocessing phase by leveraging a trusted key dealer,
and 2) we consider elections taken place in multiple instances,
and invoke a retroactive detection phase during the ( j+1)-th
election instance if the j-th election instance fails.

Both changes do not affect our security argument and thus
Qelect achieves fairness and unpredictability by following
the same argument as in Theorem D.2. We just prove that
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with the retroactive detection phase, the protocol either satisfy
uniqueness, i.e., there will be one and only one party that
successfully claims the leadership at the end, or identify a
misbehavior and slashes the corresponding party.

Observer that in the retroactive detection phase, all parties
first broadcast (via some reliable broadcast protocol BC) the
randomnesses used in crSSLE.ParElect together with their
commited witness yi. This guarantees that x′u,i is honestly
generated (i.e., not a malformed ciphertext with noise over-
flowed) and the adversary could not equivocate. In the second
broadcast, all parties broadcast (via BC) the proofs of the par-
tial decryptions and guarantees that all Jx̄uKi∈[G] are honestly
generated and the adversary could not equivocate. Together,
the final commitment x̄u recovered locally from each party
would either be consistent and valid (i.e., binding to some
party’s witness) across all parties, or a misbehavior (sending
malformed ciphertext instead of x′u,i or incorrect partial de-
cryption share to undermine the plaintext) should be identified
with the corresponding party being slashed.

Thus, based on the wrong-key decryption property of
MPRC, with a valid x̄u, we would have one and only one
party being able to claim the leadership, while the probability
of the adversary being able to come up with another witness
that also passes the ΠMPRC.Verify is negligible.

To summarize, with the security patches and Claim 6.2, we
achieve fairness and unpredictability, and with the retroactive
detection phase, Qelect either achieve uniqueness or misbe-
haved parties would be punished by having their stake slashed.

D.4 Estimating Partial Decryption Runtime

In the formal protocol depicted in Appendix D.3, each
party needs to generate a proof of the honest partial de-
cryption in the retroactive detection phase if no leader is
elected and the adversary could not be tracked by other
ways. Based on our implementation details in § 7, the re-
lation of partial decryption is defined as R(JmskK,ct, p) : p←
tBFV.ParDec(ct,JmskK). Concretely, we have ct := (a,b) ∈
R 2

Q′ ,JmskK ∈ {−1,0,1}N , p ∈ RQ′ , and the proof involves
proving that p = aJmskK+b+e+esm, where e is some small
noise and esm is the large smudging noise which is around 40
bits under our parameter set [6], and Q′ ≈ 120 bits.

For a rough estimation, we refer to the work [14] that
greatly improves the efficiency of the range proof of esm.
For ring dimension N = 213 = 8192, Q′ = 218, each party
needs 17 seconds to generate the proof and 18 seconds to
verify [14, Table 2]. Based on the trend shown in [14, Table
4], for ring dimension N = 215 = 32768, the proof generation
and verification time would both blow up to > 160s. There-
fore, for G = 128, naively each party needs 5.7 hours to finish
the partial decryption check by verifying all others’ proofs.

Assuming honest majority, we could let each honest party ran-
domly choose 3G/4 and only verify their proofs, which gives
us the probability of omitting the proof of that adversary who
misbehaves to be G/2

(1/4)G/2 = 1/2122. In this way, the runtime
reduces to 4.3 hours.

E Plaintext Mismatch Issue for Homomorphic
Randomness Generation

When plaintext modulus q ̸= G, addition modulo G is not
trivial, because the additions performing on tBFV ciphertexts

are modulo q: if all parties sample u⃗ $←− ZN
q , the aggregated

random value u would be in Zq.
The high-level idea of mapping it back to ZG is to treat the

plaintext modulus q=K ·G+rm as K chunks with rm leftover
values. And we instantiate a vector {0,1, . . . ,K ·G}, encrypts
it into ctv and use ctv to perform the homomorphic expan-
sion procedure. The resulted ciphertexts {ctb,i}i∈[G] would
have ctb,u encrypt 1N if u ∈ [K ·G] and 0N for the others; if
u ∈ [K ·G+1,q], then all of them would encrypt 0N . After ho-
momorphic randomized commitments aggregation, the final
output would encrypt a valid commitment with probability
q−rm

q . Fortunately, for party size G to be also a power-of-two,

this probability is q−1
q and thus the failure probability of no

one being elected is 1
q < 1

216 for q = 65537.
To ensure that there would exist at least one random-

ness mapped to [G] with overwhelming probability (≥ 1−
negl(λ)), instead of homomorphically expanding only the
first slot of ctpl, we let all parties expand the first t̄ slots, s.t.
1/qt̄ = negl(λ). Thus, eventually there would be t̄ final cipher-
texts being published, out of which at least one would be a
valid randomized commitment with overwhelming probability
and others might be all zeros if the corresponding randomness
is not within [KG]⊆ Zq. Since the evaluation process of FHE
circuit is deterministic, all parties would agree on the same set
of the final t̄ ciphertexts, they could then easily pick a single
commitment based on some pre-determined ordering.

Regarding the SSLE protocol Qelect defined in § 6.2.2,
if we apply the idea of letting the trusted authority directly
prepare κ ciphertexts each encrypting a vector u⃗ ∈ ZN

G, we
could avoid this t̄ blow-up. Alternatively, with q = 65537 and
G < q being a power-of-two, the probability of having the
aggregated u not able to map back to ZG is 1

216 , which is
already sufficient for most real-world applications. And we
could simply accommodate the overhead of preparing a new
u′ if, with probability 1/216, no one gets elected.
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