
GPU Implementations of Three Different Key-Switching Methods

for Homomorphic Encryption Schemes

Ali Şah Özcan∗

alisah@sabanciuniv.edu

Erkay Savaş
erkays@sabanciuniv.edu

November 2024

Abstract

In this work, we report on the latest GPU implementations of the three well-known methods for
the key switching operation, which is critical for Fully Homomorphic Encryption (FHE). Additionally,
for the first time in the literature, we provide implementations of all three methods in GPU for leveled
CKKS schemes. To ensure a fair comparison, we employ the most recent GPU implementation of the
number-theoretic transform (NTT), which is the most time-consuming operation in key switching, and
evaluate the performance across two fully homomorphic schemes: BFV and CKKS. Furthermore, we
highlight the advantages and shortcomings of the three methods in the context of leveled HE schemes,
and discuss other aspects such as memory requirements. Our GPU implementation is integrated
with HEonGPU Library and delivers up to a ×380 improvement in execution time compared to the
Microsoft SEAL Library. Since key switching is a specialized form of the external product common
in many HE schemes, our results are directly relevant to time-intensive homomorphic operations such
as relinearization and rotation. As homomorphic rotation is one of the most dominant operations in
bootstrapping, our results are also applicable in bootstrapping algorithms of BFV, BGV and CKKS
schemes.

Keywords: Homomorphic Encryption, GPU Acceleration, External Product, HEonGPU

1 Introduction

Homomorphic Encryption (HE) is a family of encryption schemes, which facilitate performing complex
computations over encrypted data without using the secret key. HE is one of the most powerful pri-
vacy enhancing technology, which finds numerous practical applications from privacy-preserving machine
learning to private information retrieval to private set intersection among many others. Especially, in
finance and medical domain, where data privacy is of utmost concern and therefore highly regulated, HE
can play an enabler role for the benevolent processing of private data.

Until 2009, there existed so called partially homomorphic encryption schemes such as Paillier [1],
Damgard-Jurik [2] and ElGamal [3] that provided support for only one homomorphic operation: either
addition or multiplication.Gentry’s 2009 work [4] introduced the first fully operational homomorphic
encryption (FHE) scheme based on ideal lattices. The key innovation that truly enabled FHE, however,
was not just the ability to perform both addition and multiplication (as in somewhat homomorphic
encryption schemes, SHE), but the use of bootstrapping to refresh ciphertexts and allow for unlimited
operations over ciphertext. Following Gentry’s groundbreaking work, more practical HE schemes were
developed, particularly those based on the Learning with Errors (LWE) problem and its ring variant
(RLWE) [5]. Some of these are classified as somewhat homomorphic encryption (SWHE) schemes, which
can only evaluate circuits of limited depth.

In RLWE-based HE schemes, introducing a small amount of noise during public key generation or
plaintext encryption is essential for security. As homomorphic computations are performed, this noise
gradually increases, resulting in ciphertexts that contain errors. It is critical to control the noise level
to ensure that it remains small enough to allow for accurate decryption and recovery of the original
plaintext. Modern advanced HE schemes such as BFV [6] [7], BGV [8], CKKS [9], FHEW/TFHE [10,11],

∗Developer and corresponding author

1

and GSW [12] have adopted common strategies to address the noise increase resulting from nonlinear
homomorphic encryption operations. These schemes employ decomposition technique that converts a
ciphertext component into a vector of small entries before multiplying it with a public key, which is
used during homomorphic evaluation operations. This approach effectively controls the noise growth,
maintaining computation accuracy and preserving efficiency of homomorphic operations.

Over time, many HE schemes have undergone continuous optimization, with the most notable im-
provement being the utilization of the residue number system (RNS), which leads to RNS variant of
these schemes [13, 14]. This shift has replaced multi-precision modular arithmetic with more efficient,
hardware-friendly multi-modulus arithmetic, greatly improving both efficiency and performance. Several
CPU-based open-source software libraries, such as Concrete [15], HEAAN [16], HElib [17], Lattigo [18],
Microsoft SEAL [19], OpenFHE [20] and PALISADE [21], implement HE schemes, incorporating various
optimizations to enhance their practicality and efficiency. Despite substantial advancements, deploying
current HE implementations in large-scale practical applications, such as cloud computing, remains a
daunting challenge. This is primarily due to the high computational demands and excessive memory and
IO requirements of involved mathematical operations in HE schemes. While there have been improve-
ments in algorithms and theoretical foundation pertaining to HE schemes, a performance gap still exists
between HE capabilities and the needs of real-world applications. A promising solution to this issue is
the use of hardware accelerators. By utilizing parallel architectures such as GPU [22–25], FPGA [26],
and ASIC [27], we can achieve significant performance enhancements, making HE implementations more
practical and efficient.

The external product, a commonly employed operation by many HE schemes for key switching,
rotation and relinearization, is defined as the function RQ ×Rℓ

Q̃
→ RQ̃, where RQ is a polynomial ring

andRℓ
Q̃
stands for vector of polynomials of size ℓ. Simply put, it consists in high number of multiplications

of very high degree polynomials with large coefficients. In this work, we focus on the the key switching
operations (relinearization, rotation, and key switching) for the CKKS and BFV schemes, and provide
state-of-the-art GPU implementations for three efficient methods for key switching in the literature.
They will be referred to as Method I [28, 29], Method II [28, 29], and Method III [30] in this paper. It is
important to note that while Method I and Method II are often referred to as hybrid key switching [29],
we treat them as distinct methods in this work due to implementation differences.

Our implementation of the three methods are accessible in the open-source GPU library1 “HEonGPU”-
[31], which consists in high performance implementations of all operations of the CKKS and BFV schemes
bar bootstrapping. The library harnesses the power of NVIDIA GPUs through the Compute Unified De-
vice Architecture (CUDA) [32] programming model. Our primary goal is to asses their performance on
a recent GPU device with thousands of cores and excessive parallel computing capacity. We explain
the details of the three methods, compare their timing and memory efficiencies and discuss advantages
and/or disadvantages of each method. Our results indicate that, although Method III is generally recom-
mended for timing efficiency, our results demonstrate that the method we refer to as Method II is more
advantageous on the GPU, particularly for large ring sizes and large coefficient moduli. Furthermore, we
highlight the inefficiencies of Method III in leveled variants of HE schemes, as well as the additional key
requirements for each level. The key switching options offered in HEonGPU Library deliver up to a ×380
speedup compared to the same operation performed on a high-performance CPU using the Microsoft
SEAL implementation.

The rest of the paper is organized as follows. In Section 2, we provide background information
on the mathematical foundations, including polynomial rings, their arithmetic, and the residue number
systems. We also explain the basic operations of the CKKS and BFV schemes. Additionally, in Section 2,
we describe the implementation of the external product algorithm used for the relinearization process,
focusing on Method I. Section 3 offers a more detailed explanation of the relinearization process using
Method II and Method III. We present the specifics of our GPU implementation and, in Section 4,
provide and discuss the implementation results. Finally, Section 5 concludes the paper by summarizing
the findings of our work.

2 Preliminaries

This section presents the notation used throughout the paper and explains multiplication in the polyno-
mial RQ using number theoretic transform (NTT), as to how residue number system (RNS) enables a

1https://github.com/Alisah-Ozcan/HEonGPU

2

https://github.com/Alisah-Ozcan/HEonGPU

fast implementation and helps noise control. We also give the background on the functions of BFV and
CKKS HE schemes and introduce the basic method for relinearization.

2.1 Notation

Let N,Q ∈ Z+ and N is a power of 2. RQ ∈ ZQ/ ⟨XN + 1⟩, meaning the set of polynomials with integer
coefficients of degree less than N , where the coefficients are in modulo Q. We define a polynomial
a = ∑N−1

i=0 ai ⋅Xi ∈ RQ as vector of coefficient (a0, a1, a2, . . . , aN−1) ∈ ZN
Q . We use the notation, ∣a∣Q, to

define the reduction of an integer in modulo Q. ∥a∥ represents ℓ∞-norm of coefficient vector of a. ⌈⋅⌉, ⌊⋅⌋,
and ⌈⋅⌋ indicates rounding up, rounding down, indicates, and rounding to the nearest integer, respectively.
The symbols +,− and × (or just ⋅) denote addition, subtraction, and multiplication, respectively, in either

ZQ or RQ. By a
$← S, we denote that a is uniformly sampled from the finite set S. Finally, e← χ denote

a random sampling from the distribution χ, which is usually specified with mean and standard deviation
values, µ and σ, respectively.

2.2 Multiplication in RQ with Number Theoretic Transform

To compute c = a ⋅ b, where a, b, c ∈ Rq we can use NTT, which is a form of Discrete Fourier Transform
(DFT), in O(N log(N)). Using the negacylic NTT algorithm, the polynomial multiplication can be
performed as follows

c = INTT (NTT (a) ⊙NTT (b)mod q), (1)

where ⊙ stands for the element-wise (or Hadamard) multiplication of NTT (a) and NTT (b), which are
vectors of N elements, each. The N -point negacyclic NTT and negacyclic INTT operations can be defined
as follows:

āi =
n−1

∑
j=0

ajψ
i×j mod q, i ∈ {0,1,2, . . . ,m − 1} (2)

ai =
n−1

∑
j=0

ājψ
−i×j mod q, i ∈ {0,1,2, . . . ,m − 1} (3)

The definition of negacyclic NTT requires the existence of a NTT friendly prime q ∈ Z+ where q ≡ 1
mod 2N and a constant value (2N -th root of unity) ψ ∈ Zq. ψ has to satisfy both conditions ψ2N ≡ 1
mod q and ψi ≠ 1 mod Q ∀i < 2N .

When a polynomial a ∈Rq is represented using its coefficients, it is said to be in the coefficient domain.
If it is represented by the vector ā = NTT (a), then we say it is in the NTT or the value domain.

2.3 Residue Number System (RNS)

The Chinese Remainder Theorem (CRT) suggests that an integer X ∈ [0,Q) can be written with Eq. 4,

∣X ∣Q = ∣
ℓ−1

∑
i=0

∣xi ⋅Q−1i ∣qi ⋅Qi∣
Q

, (4)

where Q = ∏ℓ−1
i=0 qi, xi = X mod qi, and Qi = Q

qi
for i ∈ [0, ℓ − 1]. Here, the set of pairwise coprime

integers Bℓ
Q = {q0, q1, . . . , qℓ−1}, is known as the base in the RNS representation of large integers. Also,

the reduction with respect to moduli in the RNS base maps integers to [−qi/2, qi/2], an operation often
referred as the centered reduction. Alternatively, X ∈ [0,Q) can be represented using Eq. 5 for some
integer κ.

X =
ℓ−1

∑
i=0

∣xi ⋅Q−1i ∣qi ⋅Qi − κ ⋅Q, (5)

where we have,
ℓ−1

∑
i=0

∣xi ⋅Q−1i ∣qi ⋅Qi < ℓ ⋅Q. (6)

In particular, as the sum exceeds Q by at most (ℓ − 1) ⋅Q, we have κ ≤ ℓ − 1.
Any integer X ∈ ZQ has a unique RNS representation via its residues by the moduli in the base

vector Bℓ
Q. As a result, operations such as addition, subtraction, multiplication, and division modulo M

3

can be performed concurrently with smaller moduli in Bℓ
Q without using multi-precision arithmetic if the

elements of Bℓ
Q are chosen as single-precision integers. Computing residues with respect to Bℓ

Q, known
as RNS-based decomposition, is illustrated in Eq. 7.

h(X) ↦ (x0, x1, . . . , xℓ−1), where xi =X mod qi, (7)

where h ∶ RQ ↦ Rℓ is known as decomposition function. The inverse operation, which retrieves X, is
known as composition, for which we use Eq. 4, and is denoted as X = h−1(x0, x1, . . . , xℓ−1). RNS-based
operations can be summarized as follows:

• Modular Addition/Subtraction: Given two numbers X,Y ∈ RQ represented in RNS by their
residues [x0, x1, . . . , xℓ−1] and [y0, y1, . . . , yℓ−1] respectively, the calculation of Z = X ± Y mod Q is
performed as zi = xi ± yi mod qi, where i = 0,1, . . . , ℓ − 1.

• Multiplication: In the same manner, Z =X ×Y mod Q is calculated as zi = xi × yi mod qi where
i = 0,1, . . . , ℓ − 1.

• Division: If gcd(Y,Q) = 1, Z = X ÷ Y mod Q is calculated as zi = xi × (Y)−1qi mod qi where
i = 0,1, . . . , ℓ − 1.

Also, RNS supports operations such as base extension and base conversion. In base extension, an

integer X < Q in Bℓ
Q can be represented in a larger base Bℓ̃

Q̃
= Bℓ

Q ∪ {qℓ, qℓ+1, . . . , qℓ̃−1}, where Q̃ =
Q×∏ℓ̃−1

i=ℓ qi. To this end, the residues of X with respect to each new modulus are calculated xi =X mod qi
for i = ℓ, . . . , ℓ̃ − 1.

Base conversion, on the other hand, transforms an RNS representation of an integer into another, by

changing the base vector, namely Bℓ
Q →Br′

P ′ , where B
r′

P ′ = {p′0, . . . , p′r′−1} and P ′ = ∏
r′−1
i=0 p′i. For accuracy

of all integers in ZQ, we should have Q ≤ P ′. However, depending on the range of integers represented
one can also consider conversion to a smaller base.

Both base extension and base conversion operations necessitate the accurate calculation of the pa-
rameter κ in Eq. 5. There are two methods to compute this parameter: i) the exact calculation and ii)
the approximate calculation. The exact calculation method, first proposed in [33] [34], can be described
as follows. The residue xre with respect to the modulus qre is computed as

xre = ∣X ∣qre =
RRRRRRRRRRR
∣
ℓ−1

∑
i=0

∣xi ⋅Q−1i ∣qi ⋅Qi∣
qre

− ∣κ ⋅Q∣qre
RRRRRRRRRRRqre

, (8)

where qre is known as the redundant modulus and κ ≤ qre. If xre is known (or pre-calculated) in addition
to the residues in the main RNS base, we can determine the value of κ, which is essential to perform
both base extension and conversion. To this end, Eq. 8 can be first rearranged into

∣κ ⋅Q∣qre =
RRRRRRRRRRR
∣
ℓ−1

∑
i=0

∣xi ⋅Q−1i ∣qi ⋅Qi∣
qre

− ∣X ∣qre
RRRRRRRRRRRqre

. (9)

When both sides of Eq. 9 are multiplied by ∣Q−1∣
mre

, we obtain

∣κ∣qre =
RRRRRRRRRRR
∣Q−1∣

qre
⋅
⎛
⎝
∣
ℓ−1

∑
i=0

∣xi ⋅Q−1i ∣qi ⋅Qi∣
qre

− ∣X ∣qre
⎞
⎠

RRRRRRRRRRRqre
(10)

As κ ≤ qre, we finally have

κ =
RRRRRRRRRRR
∣Q−1∣

qre
⋅
⎛
⎝
∣
ℓ−1

∑
i=0

∣xi ⋅Q−1i ∣qi ⋅Qi∣
qre

− ∣X ∣qre
⎞
⎠

RRRRRRRRRRRqre
(11)

Consequently, if an additional modulus qre is kept alongside those in Bℓ
Q, κ can be exactly calculated,

and thus the residues with respect to all moduli in both Bℓ̃
Q̃
or Br′

P ′ . The operation is repeated for every

modulus in the new RNS base.
While this method enables the exact calculation of κ, its operational cost can be high due to the

requirement of a redundant modulus. Alternatively, the approximate method can be employed, which

4

has a minimal error rate [35]. Similar to the previous method, the objective of this method is to calculate
the value of κ for new moduli in the base extension and base conversion operations. Instead of using
a redundant base, the approximate method utilizes floating-point arithmetic. The residue ∣X ∣qnew for a
new modulus qnew can be written as

xnew = ∣X ∣qnew =
RRRRRRRRRRR
∣
ℓ−1

∑
i=0

∣xi ⋅Q−1i ∣qi ⋅Qi∣
qnew

− ∣κ ⋅Q∣qnew

RRRRRRRRRRRqnew

. (12)

Then, we have

κ =
⎡⎢⎢⎢⎢⎢

∑ℓ−1
i=0 ∣xi ⋅Q−1i ∣qi ⋅Qi

Q

⎥⎥⎥⎥⎥⎦
. (13)

since Qi = Q
qi
, Eq. 13 can be rearranged as

κ =
⎡⎢⎢⎢⎢⎢

∑ℓ−1
i=0 ∣xi ⋅Q−1i ∣qi

qi

⎥⎥⎥⎥⎥⎦
. (14)

Once κ is determined, xnew can be calculated by using Eq. 12. Naturally, since floating-point arith-
metic is employed, certain error is introduced in the calculations. However, the error rate can be minimized
with appropriate base selection. Further details regarding the error rate are available in [35].

2.3.1 External Product and Gadget Decomposition

There are two important operations during homomorphic computations, which are explained in this
section. The External Product is defined as the function RQ × Rℓ

Q̃
→ RQ, where Q̃ = Q ⋅ P and is

represented with ⊡ operator. Let a ∈ RQ and u = [u1, u2, . . . , uℓ] ∈ Rℓ
Q̃
, the external product of a and

u defined as c̃ = a ⊡ u = ∑ℓ
i=1 bi ⋅ ui mod Q̃ and c = ⌈ 1

P
⋅ c̃⌋ modQ, where h(a) ↦ b = (b1, b2, . . . , bℓ).

The Gadget Decomposition, used here, is essentially the RNS decomposition, which is mentioned in
above as the function h(x) ∶ RQ ↦ Rℓ, where for the gadget vector g = (g0, g1, . . . , gℓ−1) ∈ Rℓ

Q we have

gi = ∣Q−1i ∣qi ⋅Qi. Consequently, For a ∈ RQ and its decomposition h(a) ↦ (a0, a1, . . . , aℓ−1), we have

a =
ℓ−1

∑
i=0

ai ⋅ gi mod Q (15)

2.4 Homomorphic Encryption

Homomorphic encryption (HE) is a cryptographic system that enables operations on encrypted data
without the need for decryption. BFV [6] and CKKS [9] are two of the most commonly used homomorphic
encryption (HE) schemes. Despite their fundamentally different encryption, and decryption methods,
both cryptosystems require a ‘key switching’ operation for rotation and relinearization, the latter of
which is necessary after homomorphic multiplication operations. Before delving into the details of the
switch key operation, it is essential to provide a brief overview of the basic operations in both HE schemes.
Let Q = ∏ℓ−1

i=0 qi, P = ∏π−1
i=0 pi and Q̃ = Q ⋅ P , where ℓ̃ = ℓ + π. Note also that qi ≤ P for ∀qi [6].

SecretKeyGeneration(λ):

sk = s, where s $←R2. (16)

PublicKeyGeneration(sk):

pk = (p0, p1) = (∣−(a ⋅ s + e)∣Q̃ , a), where (a
$←RQ̃), e← χ (17)

EvaluationKeyGeneration(sk):

evki =
⎛
⎝
∣−a′ ⋅ s + s′ ⋅ P ⋅ Q

qi
⋅ ∣(Q
qi
)−1∣

qi

+ e′∣
Q̃

, a′
⎞
⎠

(18)

for 0 ≤ i < ℓ − 1, where s = sk, a′
$← RQ̃, e

′ ← χ. Here, evk can be relinearization, key switching or

rotation keys. If it is a relinearization key, then s′ = s2 or a higher power of the secret key, depending on

5

the ciphertext size. For key switching, it is the new key while for rotation, a permutation of the secret
key, s′ = ϕ(s). Also, note that each part of the evaluation key is written in RNS representation with

Bℓ̃
Q̃
. Finally, the term Q

qi
⋅ ∣(Q

qi
)−1∣

qi
is the RNS gadget for RQ and included for RNS composition with

respect to Q,Since the explanation of the external product in this paper will be presented in the context
of relinearization, the evaluation keys can be rewritten as

rlki =
⎛
⎝
∣−a′ ⋅ s + s2 ⋅ P ⋅ gi + e′∣Q̃ , a

′
⎞
⎠
fori = 0, . . . ℓ − 1. (19)

Encryption(pk,m):

[label=–]BFV:

ct =
⎛
⎝
∣∆ ⋅m +

∣p0 ⋅ u + e1∣Q̃
P

∣
Q

, ∣
∣p1 ⋅ u + e2∣Q̃

P
∣
Q

⎞
⎠
, (20)

where m ∈ Rt, u
$←R2 and e1, e2 ← χ. CKKS:

ct =
⎛
⎝
∣ḿ +

∣p0 ⋅ u + e1∣Q̃
P

∣
Q

, ∣
∣p1 ⋅ u + e2∣Q̃

P
∣
Q

⎞
⎠
, (21)

where m ∈ R, ḿ = encode(m), u $←R2 and e1, e2 ← χ.

Note that we only show the message encoding of the CKKS scheme, which is slightly different than that
of BFV as it encodes messages that are real numbers.

Decryption(sk,ct):

[label=–]BFV:
RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢

t

Q
⋅ ∣ct[0] + ct[1] ⋅ s∣Q

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRt
(22)

CKKS:
∣ct[0] + ct[1] ⋅ s∣Q (23)

Note that we do not show the message decoding operations, which should be normally applied after the
decryption operations.

Addition(ct0,ct1): (ct0[0] + ct1[0], ct0[1] + ct1[1]).

Multiplication(ct0,ct1): ct2 = ct0 × ct1
[label=–]BFV:

ct2[0] =
RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢

t

Q
⋅ ct0[0] ⋅ ct1[0]

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ

ct2[1] =
RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢

t

Q
⋅ (ct0[0] ⋅ ct1[1] + ct0[1] ⋅ ct1[0])

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ

ct2[2] =
RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢

t

Q
⋅ ct0[1] ⋅ ct1[1]

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ
(24)

CKKS:
ct2[0] = ∣ct0[0] ⋅ ct1[0]∣Q

ct2[1] = ∣ct0[0] ⋅ ct1[1] + ct0[1] ⋅ ct1[0]∣Q
ct2[2] = ∣ct0[1] ⋅ ct1[1]∣Q (25)

6

2.4.1 Relinearization Key Generation

Relinearization is an operation used to eliminate the nonlinear term, ct[2], which arises after homomor-
phic multiplication as seen in Eq. 24 and Eq. 25. This requires the encrypted version of the term s2,
known as the relinearization key (rlk), which is evaluation key when s′ = s2; i.e., rlk = evk. There
are two established methods for performing relinearization [6]. The first is dynamic relinearization [6];
however, in this work, we will utilize the second method, referred to as ‘modulus switching’, which aims
to minimize both the time and space required for relinearization. The EvaluationKeyGeneration and
the Encryption functions described above are also formulated according to the second method. The
fundamental principle of this method is that instead of the relinearization key working modulo Q, it
works modulo Q̃. Consequently, s2 is scaled accordingly as shown in the EvaluationKeyGeneration
function.

The relinearization operation is performed as follows

ct2[0] =
RRRRRRRRRRRR
ct2[0] +

⎡⎢⎢⎢⎢⎢

ct2[2] ⋅ rlk[0]
P

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ
, (26)

ct2[1] =
RRRRRRRRRRRR
ct2[1] +

⎡⎢⎢⎢⎢⎢

ct2[2] ⋅ rlk[1]
P

⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRQ
, (27)

which involves essentially three main operations: i) Number Theoretic Transform (NTT) (and its inverse
iNTT), ii) Hadamard product, and iii) modular division for RNS representation. We can focus on the
multiplication ct2[2] ⋅ rlk[i] where ct2[2] ∈ RQ and rlk[i] ∈ Rℓ

Q̃
for i = 0,1. Direct multiplication is not

possible as they are represented in two different RNS bases. We assume that ct2[2] is in the coefficient
domain while rlk[i] in the NTT domain as the latter is pre-computed. Recalling that ct2[2] is represented
in the RNS base with Bℓ

Q, we can decompose each element of its RNS representation with respect to

Bℓ̃
Q̃
, resulting in ℓ × ℓ̃ polynomials2. Consequently, they can be multiplied by the relinearization keys

rlk[i] and composed into the RNS base Bℓ̃
Q̃

thanks to the way the relinearization keys are prepared.

Before the multiplication, however, we have to transform ct2[2] into the NTT domain, which requires
ℓ × ℓ̃ NTT operations. As the obtained result is in RQ̃, which is in the NTT domain, we need to convert

it to polynomial domain by 2× ℓ̃ iNTT operations. Finally, all other operations such as division by P are
performed in the coefficient domain. This method is the most classical method, which we refer here as
the Method I.

3 Other Two Methods for Improved Relinearziation Operation

To reduce the number of NTT operations, which contributes to the execution time significantly and
enhance the efficiency of the key-switching operation, two methods are proposed in the literature. In this
section, we expound these two methods, which we refer here as Method II and Method III.

3.1 Method II

In Method II [29], the primes constituting Q can be combined into larger moduli by multiplying several
of them. For instance, if Q = ∏ℓ

i=1 qi with a base vector Bℓ
Q = [q1, q2, . . . , qℓ], combining them allows it

to be written as Q = ∏d
i=1Di with a base vector Bd

Q = [D1,D2, . . . ,Dd], where Di is the multiplication of

distinct subsets of the elements in Bℓ
Q. Note that we have the condition Di ≤ P for ∀Di [28].

Recall that h(x) ∶ RQ ↦ Rℓ and h̃(x) ∶ RQ̃ ↦ Rℓ̃ are RNS gadgets decompositions corresponding to

gadget vectors g = (g1, g2, . . . , gℓ) ∈ Rℓ
Q and g̃ = (g̃1, g̃2, . . . , g̃ℓ̃) ∈ Rℓ̃

Q̃
, respectively. The external product

of a ∈ RQ and u = (ui)0≤i<ℓ ∈ RQ̃ is computed as

a ⊡ u =
ℓ−1

∑
i=0

bi ⋅ ui mod Q̃,

2In other words, we compute decomposition h̃(bi) for i = 0, . . . , ℓ − 1. As bi values are already decomposed with h(a),
this decomposition operation is usually idempotent.

7

where b = h(a). Note that a and u are the nonlinear ciphertext ct2[2] and the relinearization key, rlk,
respectively, for the discussion here. As rlk consists of rlk[0] and rlk[1], the operation described in this
section is repeated twice. As each ui is represented in RNS form with respect to the modulus Q̃, we can
write

a ⊡ u =
ℓ−1

∑
i=0

bi ⋅
ℓ̃−1

∑
j=0

vi,j ⋅ g̃j mod Q̃.

If we can decompose each bi with respect to g̃, then we obtain

a ⊡ u =
ℓ−1

∑
i=0

ℓ̃−1

∑
j=0

βi,j ⋅ vi,j ⋅ g̃j mod Q̃,

where βi,j = bi mod qj for j = 0, . . . ℓ̃ − 1 or βi,j = h̃(bi) for i = 0, . . . , ℓ − 1. When bi < qj for i = 0, . . . , ℓ − 1
and j = 0, . . . , ℓ̃ − 1, we can arrange the equation into

a ⊡u =
ℓ̃−1

∑
j=0

(
ℓ−1

∑
i=0

bi ⋅ vi,j) ⋅ g̃j mod Q̃. (28)

To perform ℓ × ℓ̃ polynomial multiplications bi ⋅ vi,j , we need to convert every bi into the NTT domain

with respect to each qj for j = 0, . . . , ℓ̃−1. This results in the computation of ℓ× ℓ̃ NTT operations, which
is the bottleneck in the computation of the external product.

When Bd
Q is used, the decomposition function can be re-defined as hd(x) ∶ RQ ↦ Rd. Then, Eq. 28

becomes,

a ⊡ u =
ℓ̃−1

∑
j=0

(
d−1

∑
i=0

bi ⋅ vi,j) ⋅ g̃j mod Q̃, (29)

where b = hd(a). To perform the inner products ⟨b ⋅vj⟩ = ∑d−1
i=0 bi ⋅vi,j using NTT, we need to base convert

each bi ∈ RDi for i = 0, . . . d − 1 to the RNS base Bℓ̃
Q̃
. As a result, while it decreases the number of NTT

operations to ℓ̃ × d, Method II introduces d base conversions BDi ↦Bℓ̃
Q̃

for i = 0, . . . d − 1.
Note that since the result of a⊡u is in the NTT domain represented with the RNS base Bℓ̃

Q̃
, we need

2 × ℓ̃ inverse NTT operations, which is the same as the one in Method I.

3.2 Method III

To decrease the number of NTT operations further, the authors in [30] propose a technique that groups

primes both in Bℓ
Q and Bℓ̃

Q̃
into larger moduli such that Q = ∏d−1

i=0 Di and Q̃ = ∏d̃−1
j=0 D̃j , where d < ℓ

and d̃ < ℓ̃. Here, Di = ∏k∈Ii qk and D̃j = ∏k∈Ĩj
q̃k where Ii ⊂ {0,1, . . . ℓ − 1} and Ĩj ⊂ {0,1, . . . ℓ̃ − 1},

respectively. Also, we can re-define the gadget decomposition as hd(x) ∶ RQ ↦Rd and hd̃(x) ∶ RQ̃ ↦Rd̃.
Consequently, we can rewrite Eq. 28 as

a ⊡u =
d̃−1

∑
j=0

(
d−1

∑
i=0

bi ⋅ vi,j) ⋅ g̃j mod Q̃, (30)

where a and u are decomposed into bi and vi,j using the new gadget decomposition maps hd and hd̃,

respectively. Then, one needs to perform d × d̃ polynomial multiplications in R.
However, if we want to use the NTT method for the polynomial multiplication, we need to adopt a

different approach. In Method II, both bi and vi,j are represented in the base Bℓ̃
Q̃
, for which all base

elements are chosen NTT-friendly primes. As a result, in Method II the inner products ⟨b ⋅ vj⟩ are
performed in modulo Q̃ for j = 0 . . . , ℓ̃. However, when we estimate the size of these inner products, we
can easily observe that the result is much smaller than Q̃. Therefore, we can work with much smaller
RNS base.

Let B and B̃ be the upper bounds for the coefficients of bi and vi,j , respectively. Then, we have

B = 1
2
max1≤j≤d{Dj} and B̃ = 1

2
max1≤j≤d̃{D̃j} due to the centered reduction. Next, we obtain the upper

bound B′ for the infinity norm of the inner product as

∥⟨b ⋅ vj⟩∥∞ ≤ ∥b∥∞ ⋅ ∥vj∥∞ ≤ d ⋅N ⋅B ⋅ B̃ < P
′, (31)

8

where P ′ = ∏r′−1
i=0 p′i for a certain set of primes p′i. Subsequently, we can write ⟨b ⋅ vj⟩ ∈ RP ′ . Naturally,

we can write the result of the inner product in the RNS with the base vector Br′

P ′ = {p′0, p′1, . . . , p′r′−1}.
To this end, we need to convert each bi from BDi to Br′

P ′ dynamically while ui can be pre-computed in

the new RNS base. If we elect to work with ν-bit primes p′i for the base Br′

P ′ , then we calculate r′ as

r′ ≥ ⌈ log(2dNBB̃)
ν

⌉ (32)

due to Eq. 31. If r′ < ℓ̃, the new RNS base decreases the number of NTT operations from ℓ × ℓ̃ to d × r′.
Note that in Method III, we also group the primes in Bℓ̃

Q̃
, then we base convert vj . This conversion can

be done in the precomputation stage.
Method III introduces more base conversion and iNTT operations. After the completion of the inner

products ⟨b ⋅ vj⟩, which requires 2 × d × d̃ × r′ Hadamard products, the results are in the RNS base Br′

P ′ .

Thus, we need to perform 2 × d̃ × r′ iNTT operations. Finally, we need to perform 2d̃ base conversions

Br′

P ′ ↦Bℓ̃
Q̃
.

3.3 Comparison of Three Methods for External Product

Table 1 below compares the numbers of NTT, INTT, Hadamard product, and base conversion operations
required for all three methods. The numbers of both NTT operations and Hadamard products decrease
in Method II while the method incurs extra base conversion operations. As the based conversion is not
necessarily an expensive operation, Method II is expected to accelerates the external product significantly
for large value of N and Q. On the other hand, the overhead of Method III is more substantial. While it
further decreases the number of NTT operations, it may significantly increase the numbers of Hadamard
product, iNTT and base conversion operations depending on the values of ℓ̃, d̃, and r′. In a CPU
implementation of Method II reported in [30] for large values of N and Q, the authors report that
Method III leads to significant speedup values over Method II. The advantage of Method III heavily
depends on the extent the forward NTT operations dominates the execution time of the external product.
As we show in the next section, where we present our GPU implementation results of all three methods,
its advantage may disappear when NTT operations are accelerated using the parallel architecture of GPU
devices.

Table 1: The number of NTT, iNTT, Hadamard product, and base conversion Operations

Method NTT INTT H.P. Base Conv

I ℓ × ℓ̃ 2 × ℓ̃ 2 × ℓ × ℓ̃ -

II d × ℓ̃ 2 × ℓ̃ 2 × d × ℓ̃ d

III d × r′ 2 × d̃ × r′ 2 × d × d̃ × r′ d + 2d̃

4 Experimental Results and Comparison

Table 2: System Specifications

Feature CPU GPU
Model Ryzen 9 7950X3D GeForce RTX 4090

of Cores 16(32 Threads) 16384
Frequency 4.20 GHz 2.520 GHz

RAM 128 GB 24 GB
Bandwidth - 1.01 TB/s

•••••• Operating system and version: Ubuntu 22.01
CUDA version: 12.4

This section presents the results of the GPU implementations of three relinearization methods, based
on approaches described in previous sections. These implementations, available within the HEonGPU Li-

9

brary3, are compared both against each other and with the Microsoft SEAL implementation of Method I.
Unlike prior work [30], where only CKKS versions of Methods II and III were evaluated, this study
implements all three external product methods for both BFV and CKKS schemes, demonstrating execu-
tion time results across various levels in the leveled CKKS implementation. Method II shows substantial
speedup for larger modulus Q and N , although its advantage diminishes as computations progress, often
requiring a switch to Method I at higher levels. Meanwhile, Method III presents specific limitations,
necessitating careful application. System specifications for these experiments, including both GPU and
CPU configurations, are shown in Table 2 to illustrate the GPU’s performance advantage over Microsoft
SEAL, a highly optimized CPU implementation of BFV and CKKS schemes.

CUDA optimization strategies are thoroughly applied to the relinearization operations in HEonGPU
to reduce memory latency and optimize computational resource utilization. Using fast memory hierar-
chies, such as registers and shared memory, minimizes global memory access time, while coalesced memory
access patterns further enhance memory bandwidth efficiency. Instruction-Level Parallelism (ILP) en-
ables the concurrent execution of independent instructions, maximizing processing unit efficiency during
the relinearization computation. Carefully optimized thread and block configurations ensure optimal
GPU occupancy and balanced workload distribution. The design philosophy emphasizes minimal kernel
launches to reduce overhead, a critical strategy for large data size. Furthermore, HEonGPU Library
leverages a state-of-the-art GPU Number Theoretic Transform (NTT) [36] available on GitHub,4 which
includes batch NTT support for polynomial artihmatic.

Given that BFV and CKKS follow distinct approaches, they utilize different parameters such as the
size of primes and RNS bases. In BFV, essentially the ratio of Q

t
determines the noise budget. Hence,

after multiplication and relinearization operations, BFV can perform additional multiplications if the
budget allows, without requiring further operations. Hence, it is efficient to use as few primes as possible,
where all primes should fit in word size of the computer. Therefore, the SEAL library always uses 59-bit
primes for the RNS base Bℓ

Q. Naturally, we use large primes for our RNS in our BFV implementations.
Conversely, as CKKS operates on a leveled basis, after multiplication and relinearization operations,

CKKS necessitates rescaling (modulus division) operation, thereby enabling further multiplications by
dividing the error in the least significant bits. In CKKS, precision is affected by the bit lengths of the
primes in the RNS base Bℓ

Q. Also, the number of primes in the RNS base determines the multiplicative
depth of the circuit under homomorphic evaluation. This basically means that one can compromise
precision for circuit depth or vice versa. Therefore, CKKS can use different number of primes in Bℓ

Q

for the same Q depending on the desired circuit depth or precision. In our implementation results, we
sometimes report for two different precision of the CKKS scheme.

4.1 Execution Timing Results

Recall that Ii and Ĩj are distinct subsets of primes in the RNS bases Bℓ
Q and Bℓ̃

Q̃
, respectively. Namely,

Di = ∏k∈Ii qk and D̃j = ∏k∈Ĩj
qk for i = 0, . . . , d − 1 and j = 0, . . . , d̃ − 1. For sake of simplicity, we assume

I = ∣Ii∣ = ∣Ĩj ∣ for all values of i and j. In particular, Di = ∏I−1
k=0 qiI+k. Recall also that the term r′ denotes

the number of primes in the new base Br′

P ′ in Method III, namely P ′ = ∏r′−1
i=0 p′i, where ν-bit primes are

used in Br′ . As small values of r′ decrease the number of NTT operations (see Table 1), we prefer working
with larger single precision primes in Br′ . In particular, we employ ν = 60 in our implementations.

Table 3 presents and compares the timings of three relinearization methods for the CKKS scheme
for three different ring dimensions, logN ∈ {14,15,16} commonly used for homomorphic encryption
applications, and up to five different values of I ∈ {2,3,4,5,6}. We do not present the timing results
for lower ring dimension values such as N ∈ {212,213} as neither Method II nor Method III offers any
advantage over Method I. Similarly, we do not include timings for all values of I when Q is the product
of only few number of primes (i.e., small values of ℓ). In the table, the “Precision” column indicates the

bit lengths of the moduli in the RNS bases Bℓ
Q and B̃ℓ̃

Q. The “Level” column indicates the depth of the
circuit that can be homomorphically evaluated as the employed CKKS scheme is leveled. Particularly,
Level ≤ ℓ− 1, as one prime qi should be dropped off from Bℓ

Q after every level. That there are more than
one levels for each ring dimension and that the number of levels increases with N in Table 3 calls for
detailed explanation.

The security level of the lattice-based schemes is mainly determined by the values of N and Q. But,
in the practical implementations of the CKKS and BFV schemes, we encrypt the public keys using a

3https://github.com/Alisah-Ozcan/HEonGPU
4https://github.com/Alisah-Ozcan/GPU-NTT

10

https://github.com/Alisah-Ozcan/HEonGPU
https://github.com/Alisah-Ozcan/GPU-NTT

Table 3: Comparison of Execution Times of Three Relinearization Methods for CKKS on GPU (in µs)

Scheme logN Precision Level Method I Method II Method III Speedup

CKKS

14 32 bit
8

(I, ℓ̃, ℓ, r′) (-,10,9,-) (2,11,9,-) (2,11,9,5)
1.02 / 0.62

Time 97.4 95.6 157.4

7
(I, ℓ̃, ℓ, r′) (-,9,8,-) (3,11,8,-) (3,11,8,7)

0.98 / 0.71
Time 84.1 85.7 118.8

15

40 bit

18
(I, ℓ̃, ℓ, r′) (-,20,19,-) (2,21,19,-) (2,21,19,5)

1.72 / 1.49
Time 903.7 525.1 605.8

17
(I, ℓ̃, ℓ, r′) (-,19,18,-) (3,21,18,-) (3,21,18,7)

1.95 /1.48
Time 792.9 405.6 537.0

16
(I, ℓ̃, ℓ, r′) (-,18,17,-) (4,21,17,-) (4,21,17,9)

1.93 / 1.37
Time 651.1 336.7 474.4

15
(I, ℓ̃, ℓ, r′) (-,17,16,-) (5,21,16,-) (5,21,16,11)

1.80 / 1.23
Time 571.2 316.8 465.7

14
(I, ℓ̃, ℓ, r′) (-,16,15,-) (6,21,15,-) (6,21,15,13)

1.54 / 0.92
Time 505.4 326.8 548.8

30 bit

23
(I, ℓ̃, ℓ, r′) (-,25,24,-) (2,26,24,-) (2,26,24,5)

1.69 / 1.75
Time 1547.6 918.3 883.5

22
(I, ℓ̃, ℓ, r′) (-,24,23,-) (3,26,23,-) (3,26,23,7)

2.18 / 1.90
Time 1420.2 652.1 746.0

21
(I, ℓ̃, ℓ, r′) (-,23,22,-) (4,26,22,-) (4,26,22,9)

2.32 / 1.86
Time 1321.0 569.7 708.9

20
(I, ℓ̃, ℓ, r′) (-,22,21,-) (5,26,21,-) (5,26,21,11)

2.32 / 1.65
Time 1213.4 522.3 733.5

19
(I, ℓ̃, ℓ, r′) (-,21,20,-) (6,26,20,-) (6,26,20,13)

2.24 / 1.52
Time 1097.6 491.0 720.7

16

43 bit

37
(I, ℓ̃, ℓ, r′) (-,39,38,-) (2,40,38,-) (2,40,38,5)

1.75 / 1.64
Time 7564.8 4315.9 4605.9

36
(I, ℓ̃, ℓ, r′) (-,38,37,-) (3,40,37,-) (3,40,37,7)

2.20 / 1.97
Time 7129.7 3241.6 3611.2

35
(I, ℓ̃, ℓ, r′) (-,37,36,-) (4,40,36,-) (4,40,36,9)

2.60 / 2.32
Time 6707.4 2581.8 2887.7

34
(I, ℓ̃, ℓ, r′) (-,36,35,-) (5,40,35,-) (5,40,35,11)

2.78 / 2.38
Time 6337.0 2281.4 2666.5

33
(I, ℓ̃, ℓ, r′) (-,35,34,-) (6,40,34,-) (6,40,34,13)

2.72 / 2.20
Time 5960.0 2194.8 2710.5

36 bit

43
(I, ℓ̃, ℓ, r′) (-,45,44,-) (2,46,44,-) (2,46,44,5)

1.80 / 1.77
Time 10472.4 5837.7 5907.8

42
(I, ℓ̃, ℓ, r′) (-,44,43,-) (3,46,43,-) (3,46,43,7)

2.33 / 2.19
Time 9946.5 4274.4 4548.0

41
(I, ℓ̃, ℓ, r′) (-,43,42,-) (4,46,42,-) (4,46,42,9)

2.73 / 2.49
Time 9446.2 3458.4 3798.2

40
(I, ℓ̃, ℓ, r′) (-,42,41,-) (5,46,41,-) (5,46,41,11)

2.84 / 2.47
Time 8956.3 3151.0 3619.9

39
(I, ℓ̃, ℓ, r′) (-,41,40,-) (6,46,40,-) (6,46,40,13)

3.03 / 2.59
Time 8477.9 2800.9 3271.9

larger modulus Q̃ = Q × P , where P = ∏ℓ̃−1
i=ℓ qi. Therefore, for the security level calculation we need to

consider Q̃, which should not change for the targeted security level. Recall that P > ∀qi for Method I
and additionally P > ∀Di in Methods II and III. Consequently, while a single prime P , which are larger
than all values of qi, is sufficient for Method I (i.e., ℓ̃ = ℓ + 1), we may need to use multiple primes for
Methods II and III depending on the value of I. When ℓ̃ > ℓ + 1, we need to use a smaller Q, which
also implies a reduced number of levels or a lower multiplicative depth.For instance, when N = 215 and
I = 4 for 40-bit precision, the number of levels for Methods II and III will be reduced to 16 while for
Method I it remains the highest possible value of 18 (see Table 3). Normally, for the same security level,
all three methods should use the same Q̃. However, to ensure a fair comparison, we selected parameters
that provide the same multiplication capacity, keeping Q constant while allowing Q̃ to vary based on
the chosen P value. As a result, the security level provided by Q̃ in Method II and Method III is lower
than the 128-bit security level achieved by Method I. Nevertheless, in all our experiments, we guarantee
a minimum security level of approximately 110 bits for all configurations. It is worth reiterating that the
parameters for Method II and Method III were selected with lower security levels solely to allow for a
fair comparison with Method I.

11

Table 4: Comparison of Execution Times of Three Relinearization Methods for BFV on GPU (in µs)

Scheme logN logQ Method I Method II Method III Speedup

BFV

13 162 bit
(I, ℓ̃, ℓ, r′) (-,4,3,-) (2,5,3,-) (2,5,3,5)

0.84 / 0.61
Time 25.6 30.3 42.0

14 381 bit
(I, ℓ̃, ℓ, r′) (-,8,7,-) (2,9,7,-) (2,9,7,5)

1.01 / 0.72
Time 62.6 61.7 86.4

15 822 bit

(I, ℓ̃, ℓ, r′) (2,16,14,-) (2,16,14,5)
1.63 / 1.21

Time 302.2 405.8

(I, ℓ̃, ℓ, r′) (3,17,14,-) (3,17,14,7)
1.86 / 1.25

Time 265.0 394.5

(I, ℓ̃, ℓ, r′) (-,15,14,-) (4,18,14,-) (4,18,14,9)
1.92 / 1.19

Time 492.5 256.4 412.5

(I, ℓ̃, ℓ, r′) (5,19,14,-) (5,19,14,11)
1.98 / 1.20

Time 248.7 409.1

(I, ℓ̃, ℓ, r′) (6,20,14,-) (6,20,14,13)
1.74 / 0.98

Time 282.7 503.6

16 1702 bit

(I, ℓ̃, ℓ, r′) (2,31,29,-) (2,31,29,5)
1.73 / 1.46

Time 2478.1 2947.0

(I, ℓ̃, ℓ, r′) (3,32,29,-) (3,32,29,7)
2.29 / 1.89

Time 1877.7 2269.7

(I, ℓ̃, ℓ, r′) (-,30,29,-) (4,33,29,-) (4,33,29,9)
2.51 / 1.98

Time 4294.3 1708.1 2168.2

(I, ℓ̃, ℓ, r′) (5,34,29,-) (5,34,29,11)
2.79 / 2.23

Time 1541.9 1924.8

(I, ℓ̃, ℓ, r′) (6,35,29,-) (6,35,29,13)
2.58 / 2.21

Time 1667.1 1939.7

Table 5: Comparison of Relinearization timings for BFV and CKKS on CPU (Microsoft SEAL) and GPU
(in µs)

Scheme logN
CPU GPU Speedup - (CPU Method I)/GPU

Method I Method I Method II Method III Method I Method II Method III

BFV

12 480 22.4 25.6 32.4 21.43 18.75 14.81
13 1634 25.6 30.3 42.0 63.83 53.93 38.90
14 12128 62.6 61.7 86.4 193.74 196.56 140.37
15 76856 492.5 248.7 409.1 156.05 309.03 187.87
16 588018 4294.3 1541.9 1924.8 136.93 381.36 305.50

CKKS

12 477 37.8 40.1 46.7 12.62 11.90 10.21
13 1641 41.8 46.0 53.5 39.26 35.67 30.67
14 14563 84.1 85.7 118.8 173.16 169.93 122.58
15 169829 1321.0 569.7 708.9 128.56 298.10 239.57
16 1215753 9446.2 3458.4 3798.2 128.70 351.54 320.09

In the rightmost (“Speedup”) column of Table 3, the speedup value of Methods II and III over
Method I are given, respectively. Methods II and III offer speedup only for ring dimensions N = 215

and N = 216. For every configuration, Method II offers better performance than Method III except for
one case when N = 215 for 30-bit precision and Level value of 23. One expected observation is that we
generally obtain higher speedup values for larger values of I. However, the advantage disappear when
I ≥ 5 for relatively smaller values of ℓ (also larger values of r′). Another is that speedup values tend to be
higher for the lower of the two precision values listed in the table. This is also expected as lower precision
means higher ℓ values resulting in more NTT operations in Method I. This also means more room for
Methods II and III to accelerate the relinearization operation.

In Table 4, we present the execution times of all three methods for the BFV scheme for four different
ring dimensions N ∈ {213,214,215,216} and up to five different values of I ∈ {2,3,4,5,6}. As our BFV
implementation is not leveled, we used a fixed size modulus Q for a ring dimension in our experiments
to maintain the same noise budget. For this, we need to use larger Q̃ values for Methods II and III. For
instance, in Table 4, when N = 15 and we use a 822-bit Q with ℓ = 14 prime values of about 59 bits.
While the value of ℓ̃ = 15 in Method I, ℓ̃ ∈ [16,20] in Methods II and III depending on the value of I. As
in the case of CKKS, Method I provides higher level of security than the other two methods. In all our
experiments, we ensure a minimum security level of about 110 bit.

12

In Table 4, we observe that Methods II and III provide speedup over Method I for ring dimensions of
N = 215 and N = 216. We also observe that Method II offers more speedup values than Method III. The
table suggests that we obtain better speedup values for N = 216 than N = 215, which is due to the fact
that the former uses a higher value of ℓ. One expected observation is that higher values of I generally
result in higher speedup values; however, up to a certain point. As increasing I also leads to a larger new
RNS base (i.e., higher values of r′), one needs to find an optimum point, which may differ depending on
the specific parameter set including N , Precision, the HE scheme.

0 2 4 6 8 10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

Depth

S
p
e
e
d

U
p

Method I
Method II I=2
Method II I=3
Method II I=4
Method II I=5
Method II I=6

(a) N = 215, 30-bit precision, and various I values. As
the depth increases, performance declines due to the
decreasing number of ℓ values.

0 5 10 15 20 25 30 35 40 45

0.5

1

1.5

2

2.5

3

Depth

S
p
e
e
d

U
p

Method I
Method II I=2
Method II I=3
Method II I=4
Method II I=5
Method II I=6

(b) N = 216, 36-bit precision, and various I values. As
the depth increases, performance declines due to the
decreasing number of ℓ values.

Figure 1: Change in the speed up values of Method II compared to Method I across all depths in CKKS.

In Table 5, we provide the best GPU execution times of all three methods and their comparison to
those of Microsoft SEAL Implementation of Method I with an identical parameter set running on our
CPU. Table 5 suggests that GPU implementation can provide more than two orders of magnitude faster
relinearization operation than a single-thread CPU implementation independent of the relinearization
method used. We observe much higher speedup values for the larger values of N , which also means larger
values of Q and Q̃. This is due to the fact that higher values of Q and Q̃ result in larger ℓ and ℓ̃. This
leads to higher number of NTT computations that can be performed in parallel on GPU. In Method I,
the speedup values fall after N = 214 due to the excessive increase in the number of NTT operations,
some of which are executed serially due to limitations on the GPU device. In Methods II and III, on the
other hand, we always observe increase in speedup values. This can again be attributed to the reduction
in the number of NTT operations. The speedup values confirm that both methods prove to be beneficial
in parallel architectures where NTT operations can be performed concurrently.

In Figures 1a and 1b, we illustrate change in the speedup values of Method II over Method I ob-
tained for the leveled CKKS scheme with N = 215 and N = 216 and 30- and 36-bit precision values for
different levels homomorphic computation, respectively. The horizontal axis shows that the circuit has a
multiplicative depth of around 20 and 40, respectively, for N = 215 and N = 216. Recall that after every
homomorphic multiplication in the leveled CKKS scheme, one modulus from the RNS base is dropped
due to the modulus switching operation. As can be observed from the figures, Method II becomes slower
than Method I after certain number of homomorphic multiplications due to a very low values of ℓ. There-
fore, one needs to consider switching from Method II to Method I during the computation of a deep
circuit. Moreover, in Figure 2a , similar to the behavior observed in Figure 1a and 1b, we present the
variation in speedup values of Method III compared to Method I for a leveled CKKS scheme with N = 215
and 30-bit precision, across different levels of homomorphic computation. As with Method II, it can be
observed from the figures that due to very low ℓ values, Method III becomes slower than Method I after
a certain number of homomorphic multiplications. However, Method III begins to exhibit inefficiencies
at earlier levels compared to Method II. Therefore, it can be concluded that Method II is more efficient
than Method III during the computation of a deep circuit.

In Figures 2b, the normalized key size with respect to Method I of three key switching methods
(Method I, Method II, and Method III) are compared across different I values, with N = 216, for first
level. Method I serves as the reference, maintaining a constant normalized key size regardless of I.

13

0 2 4 6 8 10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

Depth

S
p
e
e
d

U
p

Method 1
Method 3 I=2
Method 3 I=3
Method 3 I=4
Method 3 I=5
Method 3 I=6

(a) This figure illustrates the performance of the
Method 3 compared to the Method 1 across all depths
in CKKS, for N = 215, 30 bit precision, and various I
values. As the depth increases, performance declines
due to the decreasing number of ℓ values.

2 3 4 5 6

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

I

N
o
rm

a
li
z
e
d

M
e
m
o
ry

R
e
q
u
ir
e
m
e
n
t

Method I (Reference)
Method II
Method III

(b) Normalized Key size Comparison of Three Differ-
ent Key Switching Methods with respect to different I
values, for N = 216.

Figure 2: Change in the speed up values of Method II compared to Method I across all depths in CKKS.
Key size of Three Different Key Switching Methods.

This indicates a fixed memory cost that does not adapt to changes in I. On the other hand, Method II
demonstrates significant efficiency gains as I increases, with its key size decreasing from 0.8 at I=2 to
0.2 at I=6. This behavior highlights its suitability for deep circuits, where low memory consumption
is critical. Similarly, Method III exhibits a declining key size as I grows, starting at 1.2 for I=2 and
decreasing to 0.6 for I=6. However, compared to Method II, Method III has a higher initial memory
cost and a slower reduction rate, making it less efficient overall. Consequently, while Method I offers
a consistent baseline and Method III provides moderate improvements, Method II emerges as the most
memory-efficient approach, particularly for deeper circuits with larger I values. This makes Method II
the preferred choice when memory consumption is a critical factor in homomorphic computation.

Finally, we depict the execution time ratios of the various operations in a relinearization operation
for three methods for CKKS in Figure 3. Different colors in the bars indicate the execution rate of each
operation such as NTT, iNTT, base conversion, Hadamard product (H.P.), modular division and the
rest to the overall execution time of the relinearization operation. We group the bars of three methods
depending on the value of I, where the leftmost group of bars is for I = 2 and its value increments from
left to right until I = 6. The leftmost, the middle and the rightmost bars in each group correspond to
Method I, Method II, and Method III, respectively. Even though always I = 1 for Method I, we include a
different bar in each group for Method I, as its parameters has to match those of the other two methods
in each group.

In Method I, NTT is always the dominant operation and a reduction in their number by means of
Methods II and III predictably leads to significant acceleration in the computation of the relinearization
operation. But, one curious observation is that the Hadamard product takes considerable portion of the
execution times despite its low complexity nature. Two important factors account for this unexpected
outcome: i) with its superior parallel computation power, GPU can execute NTT operation in much
shorter amount of time and ii) therefore, the computation becomes more and more memory-bound as
accessing coefficients of the polynomials in the global GPU memory consume a large portion of the
execution time. This explains why further decrease in the number of NTT operation by Method III does
not help accelerate the relinearization operation as the time spent on NTT becomes much less important.
This is somewhat a different result than that in [30], where Method III outperforms Method II on a
single threaded CPU where all NTT operations have to be performed sequentially. Therefore, whether
Method II or Method III is a better option is subject to external factors such as parallel compute capability
of the underlying target device. We expect that target platforms such as GPU and FPGA with extensive
concurrent computation capacity, relinearization operation becomes more of memory or IO-bound than
compute-bound. Therefore, we can claim that Method II tends to benefit much more when there is
parallel computation capability.

14

I II III I II III I II III I II III I II III
0

2

4

6

8

10

12

14

Method

NTT
iNTT
Conv
H.P.
ModDiv
Others

d = 2 d = 3 d = 4 d = 5 d = 6

Figure 3: The execution ratios of each operation in the relinearizarion relative to d for N = 216 and 36-bit
Precision. In the legend, ‘H.P.’, ‘Conv’, and ‘ModDiv’ denotes the Hadamard product, base conversion,
and modulus division operations, respectively. Base conversions are for both RDi →RB′ and RB′ →RD̃i

.

Another disadvantage of Method III is that it requires a different relinearization key for each level in

a leveled implementation of the HE scheme. As we also group the moduli in the RNS base Bℓ̃
Q̃
, it will

change from a level to the next as homomorphic computation progresses. Naturally, the grouping will
also change which necessitates a different relinearization key. For instance, we cannot provide a leveled
implementation of CKKS for N = 216 due to its memory requirements far exceeds the capacity of our
GPU device.

4.2 Benchmarking Results for Hybrid Homomorphic Encryption

Hybrid Homomorphic Encryption (HHE) combines symmetric key encryption with HE. Data is encrypted
using a symmetric key encryption algorithm to produce compact ciphertexts. The symmetric key is then
encrypted using an FHE scheme, enabling homomorphic decryption of the ciphertext resulting in another
ciphertext of the same message encrypted under the HE scheme. This hybrid design significantly reduces
the ciphertext size compared to directly using FHE for data encryption, addressing one of the primary
challenges of fully homomorphic systems.

Table 6: PASTA-3 Execution times in ms (single thread CPU and single GPU with default stream) and
noise budget of the small HHE use case in the SEAL and HEonGPU libraries with different key-switching
methods (security level = 128 bit).

Cipher logN Plain
SEAL HEonGPU Speedup

Method I Method I Method II SEAL vs HEonGPU Method I vs Method II
Modulus Time R.N.B. Time R.N.B. Time R.N.B. S1 S2

PASTA-3
14 65537 4677.28 96 bit 48.54 77 bit 44.79 37 bit 104.42 1.08
15 65537 20404.89 525 bit 126.72 492 bit 106.28 445 bit 191.99 1.19
16 786433 114632.33 1331 bit 713.20 1306 bit 493.73 1263 bit 232.17 1.44

R.N.B.: Remaining Noise Budget

In this work, we use homomorphic decryption of PASTA-3 symmetric key scheme [37] as a bench-
mark to compare the performances of Method I and Method II for a relatively complex homomorphic
computation on GPU. The results are given in Table 6. The runtime results demonstrate a significant
performance advantage of the HEonGPU library over the CPU implementation. For logN = 14, the GPU
implementation of Method II provides a speedup value of ×104.42 over CPU implementation. Also for
logN = 14, Method II is 1.08 faster than Method I on GPU. For a larger ring dimension, logN = 16, the

15

advantage of the GPU implementation becomes more prominent, Method II on GPU is 232.17 times faster
than Method I on CPU. Method II is now 1.44 faster than Method I on GPU for this ring dimension.

The remaining noise budget (R.N.B.), which indicates the noise budget left for further homomorphic
operations after homomorphic decryption, depends on particular key-switching method, specific set of
RNS base, and the library. CPU implementation of SEAL maintains a relatively higher R.N.B. due to its
parameter choices. For instance, when logN = 14, SEAL achieves 96 bits of R.N.B by utilizing Q = 397
bits and P = 41 bits with Method I. In the same case, HEonGPU achieves 77 bits of R.N.B by utilizing
Q = 378 bits and P = 60 bits with Method I. The primary reason SEAL achieves a higher R.N.B is its
use of a larger Q. As demonstrated in Table 6, in Method II, increasing P inherently reduces Q, which
subsequently leads to a decrease in the R.N.B.

5 Conclusion

We evaluated the state-of-the-art GPU implementations of three existing key switching methods for the
RNS variants of the CKKS and BFV schemes. Although time efficiency was our primary focus, we also
asses their memory efficiency and their general perfomance in the leveled implementation of the CKKS
scheme. Our detailed analysis indicate that Method II emerges as a stronger candidate for GPU imple-
mentations, particularly in scenarios involving large ring sizes and modulus coefficients. This is primarily
due to its ability to better utilize the parallel processing power of GPUs. Moreover, our implementation
demonstrates significant performance improvements, providing up to a 380× speedup in key switching
operations compared to the CPU-based Microsoft SEAL library. Some of our results also suggest that
there are cases or instances of key switching operations where Method I can be preferred such as the
final set of homomorphic operations in the leveled computation. These results highlight the potential
of GPUs, as well as other accelerators such as FPGAs and ASICs, for optimizing fully homomorphic
encryption schemes. The findings underscore the growing importance of hardware-accelerated solutions
in the development of high-performance homomorphic encryption libraries.

Acknowledgement

This work is supported by the European Union’s Horizon Europe research and innovation programme
under grant agreement No: 101079319.

References

[1] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Advances
in Cryptology (EUROCRYPT). Springer, 1999, pp. 223–238.

[2] I. Damg̊ard and M. Jurik, “A generalisation, a simplification and some applications of paillier’s
probabilistic public-key system,” in Public Key Cryptography, 4th International Workshop on
Practice and Theory in Public Key Cryptography, PKC 2001, Cheju Island, Korea, February 13-15,
2001, Proceedings, ser. Lecture Notes in Computer Science, K. Kim, Ed., vol. 1992. Springer,
2001, pp. 119–136. [Online]. Available: https://doi.org/10.1007/3-540-44586-2 9

[3] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” in
Advances in Cryptology (CRYPTO). Springer, 1985, pp. 10–18.

[4] C. Gentry, “Fully homomorphic encryption using ideal lattices,” Ph.D. dissertation, Stanford Uni-
versity, 2009.

[5] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,”
Cryptology ePrint Archive, Paper 2012/230, 2012, https://eprint.iacr.org/2012/230. [Online].
Available: https://eprint.iacr.org/2012/230

[6] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” IACR
Cryptology ePrint Archive, vol. 2012, p. 144, 2012, accessed pages 4, 6. [Online]. Available:
https://eprint.iacr.org/2012/144

16

https://doi.org/10.1007/3-540-44586-2_9
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/144

[7] Z. Brakerski, “Fully homomorphic encryption without modulus switching from classical
GapSVP,” Cryptology ePrint Archive, Paper 2012/078, 2012. [Online]. Available: https:
//eprint.iacr.org/2012/078

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without
bootstrapping,” ACM Transactions on Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014,
accessed pages 4, 5.

[9] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic of approximate
numbers,” in International Conference on the Theory and Application of Cryptology and Information
Security. Springer, 2017, pp. 409–437, accessed page 4.

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast fully homomorphic encryption
over the torus,” Cryptology ePrint Archive, Paper 2018/421, 2018, https://eprint.iacr.org/2018/421.
[Online]. Available: https://eprint.iacr.org/2018/421

[11] L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic encryption in less than
a second,” Cryptology ePrint Archive, Paper 2014/816, 2014, https://eprint.iacr.org/2014/816.
[Online]. Available: https://eprint.iacr.org/2014/816

[12] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based,” Cryptology ePrint Archive, Paper
2013/340, 2013, https://eprint.iacr.org/2013/340. [Online]. Available: https://eprint.iacr.org/2013/
340

[13] J.-C. Bajard, J. Eynard, A. Hasan, and V. Zucca, “A full RNS variant of FV like
somewhat homomorphic encryption schemes,” Cryptology ePrint Archive, Paper 2016/510, 2016,
https://eprint.iacr.org/2016/510. [Online]. Available: https://eprint.iacr.org/2016/510

[14] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS variant of
approximate homomorphic encryption,” Cryptology ePrint Archive, Paper 2018/931, 2018,
https://eprint.iacr.org/2018/931. [Online]. Available: https://eprint.iacr.org/2018/931

[15] “Concrete: Tfhe compiler that converts python programs into fhe equivalent,” https://github.com/
zama-ai/concrete, 2022, accessed page 3.

[16] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Heaan,” https://github.com/snucrypto/HEAAN, 2016,
accessed page 3.

[17] S. Halevi and V. Shoup, “Helib - an implementation of homomorphic encryption,” https://github.
com/shaih/HElib/, accessed Feb 2014.

[18] EPFL-LDS and T. I. SA, “Lattigo v5,” Online: https://github.com/tuneinsight/lattigo, November
2023, accessed page 3.

[19] “Microsoft seal,” https://github.com/Microsoft/SEAL, 2020, accessed page 3.

[20] A. A. Badawi, A. Alexandru, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise,
S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio, C. Pascoe, Y. Polyakov, I. Quah, S. R.V.,
K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe:
Open-source fully homomorphic encryption library,” Cryptology ePrint Archive, Paper 2022/915,
2022, https://eprint.iacr.org/2022/915. [Online]. Available: https://eprint.iacr.org/2022/915

[21] Y. Polyakov, R. Rohloff, G. W. Ryan, and D. Cousins, “Palisade lattice cryptography library (release
1.11.5),” https://palisade-crypto.org/, pp. 3, 4, 15, September 2021, https://gitlab.com/palisade/
palisade-release/-/blob/master/doc/palisade manual.pdf.

[22] W. Wang, Z. Chen, and X. Huang, “Accelerating leveled fully homomorphic encryption using gpu,”
in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 2800–2803.

[23] A. Özcan, C. Ayduman, E. R. Türkoğlu, and E. Savaş, “Homomorphic encryption on gpu,” IEEE
Access, vol. 11, pp. 84 168–84 186, 2023.

17

https://eprint.iacr.org/2012/078
https://eprint.iacr.org/2012/078
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2013/340
https://eprint.iacr.org/2016/510
https://eprint.iacr.org/2016/510
https://eprint.iacr.org/2018/931
https://eprint.iacr.org/2018/931
https://github.com/zama-ai/concrete
https://github.com/zama-ai/concrete
https://github.com/snucrypto/HEAAN
https://github.com/shaih/HElib/
https://github.com/shaih/HElib/
https://github.com/tuneinsight/lattigo
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://palisade-crypto.org/
https://gitlab.com/palisade/palisade-release/-/blob/master/doc/palisade_manual.pdf
https://gitlab.com/palisade/palisade-release/-/blob/master/doc/palisade_manual.pdf

[24] E. R. Türkoğlu, A. Özcan, C. Ayduman, A. C. Mert, E. Öztürk, and E. Savaş, “An accelerated
gpu library for homomorphic encryption operations of bfv scheme,” in 2022 IEEE International
Symposium on Circuits and Systems (ISCAS), 2022, pp. 1155–1159.

[25] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x faster bootstrapping
in fully homomorphic encryption through memory-centric optimization with GPUs,” Cryptology
ePrint Archive, Paper 2021/508, 2021, https://eprint.iacr.org/2021/508. [Online]. Available:
https://eprint.iacr.org/2021/508

[26] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of encryption/decryption architec-
tures for bfv homomorphic encryption scheme,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 28, no. 2, pp. 353–362, 2020.

[27] Y. Doröz, E. Öztürk, E. Savas, and B. Sunar, “Accelerating ltv based homomorphic encryption
in reconfigurable hardware,” in CHES. Springer, 2015, pp. 185–204. [Online]. Available:
https://www.iacr.org/archive/ches2015/92930182/92930182.pdf

[28] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Efficient bootstrapping for
approximate homomorphic encryption with non-sparse keys,” Cryptology ePrint Archive, Paper
2020/1203, 2020, https://eprint.iacr.org/2020/1203. [Online]. Available: https://eprint.iacr.org/
2020/1203

[29] A. Kim, Y. Polyakov, and V. Zucca, “Revisiting homomorphic encryption schemes for
finite fields,” Cryptology ePrint Archive, Paper 2021/204, 2021. [Online]. Available: https:
//eprint.iacr.org/2021/204

[30] M. Kim, D. Lee, J. Seo, and Y. Song, “Accelerating HE operations from key decomposition
technique,” Cryptology ePrint Archive, Paper 2023/413, 2023, https://eprint.iacr.org/2023/413.
[Online]. Available: https://eprint.iacr.org/2023/413

[31] A. Şah Özcan and E. Savaş, “HEonGPU: a GPU-based fully homomorphic encryption
library 1.0,” Cryptology ePrint Archive, Paper 2024/1543, 2024. [Online]. Available: https:
//eprint.iacr.org/2024/1543

[32] NVIDIA Corporation, “Cuda toolkit documentation,” https://developer.nvidia.com/cuda-toolkit,
2023, accessed May 2023.

[33] P. Trebicki and S. Grabowski, “Modular multiplication and base extensions in residue number sys-
tems,” in 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and
Tools, 2010, pp. 217–220.

[34] ——, “Fast base extension using a redundant modulus in rns,” IEEE Transactions on Computers,
vol. 42, no. 8, pp. 1011–1014, 1993.

[35] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of the BFV
homomorphic encryption scheme,” Cryptology ePrint Archive, Paper 2018/117, 2018, https:
//eprint.iacr.org/2018/117. [Online]. Available: https://eprint.iacr.org/2018/117

[36] A. Şah Özcan and E. Savaş, “Two algorithms for fast gpu implementation of ntt,” Cryptology
ePrint Archive, Paper 2023/1410, 2023, https://eprint.iacr.org/2023/1410. [Online]. Available:
https://eprint.iacr.org/2023/1410

[37] C. Dobraunig, L. Grassi, L. Helminger, C. Rechberger, M. Schofnegger, and R. Walch, “Pasta:
A case for hybrid homomorphic encryption,” Cryptology ePrint Archive, Paper 2021/731, 2021.
[Online]. Available: https://eprint.iacr.org/2021/731

18

https://eprint.iacr.org/2021/508
https://eprint.iacr.org/2021/508
https://www.iacr.org/archive/ches2015/92930182/92930182.pdf
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2021/204
https://eprint.iacr.org/2021/204
https://eprint.iacr.org/2023/413
https://eprint.iacr.org/2023/413
https://eprint.iacr.org/2024/1543
https://eprint.iacr.org/2024/1543
https://developer.nvidia.com/cuda-toolkit
https://eprint.iacr.org/2018/117
https://eprint.iacr.org/2018/117
https://eprint.iacr.org/2018/117
https://eprint.iacr.org/2023/1410
https://eprint.iacr.org/2023/1410
https://eprint.iacr.org/2021/731

	Introduction
	Preliminaries
	Notation
	Multiplication in RQ with Number Theoretic Transform
	Residue Number System (RNS)
	External Product and Gadget Decomposition

	Homomorphic Encryption
	Relinearization Key Generation

	Other Two Methods for Improved Relinearziation Operation
	Method II
	Method III
	Comparison of Three Methods for External Product

	Experimental Results and Comparison
	Execution Timing Results
	Benchmarking Results for Hybrid Homomorphic Encryption

	Conclusion

