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Impurity levels and resonant transmission of acoustic phonons in a double-barrier system 

Seiji Mizuno and Shin-ichiro Tamura 
Department of Engineering Science, Hokkaido University, Sapporo 060, Japan 

(Received 11 February 1992) 

We study theoretically the resonant transmission of acoustic phonons in a double-barrier system for 
phonons consisting of a bulk material sandwiched between periodic superlattices. The phonon transmis­
sion rate and the resonance condition in this system are derived analytically based on the transfer-matrix 
method. We show that the phonons in a frequency gap of the superlattices can be transmitted through 
the whole system without attenuation, if the frequency of incident phonons satisfies the resonance condi­
tion. Based on the Green's-function method, we also show that the resonant frequencies coincide with 
the impurity levels associated with the lattice vibrations localized near the embedded bulk layer. 

I. INTRODUCfION 

The phonon-dispersion relation in a periodic superlat­
tice is obtained by folding the dispersion curves for a bulk 
material back into the mini-Brillouin-zone determined by 
the periodicity of the superlattice. 1 In the folded disper­
sion relation, frequency gaps are generally formed at the 
center and the boundary of the mini-Brillouin-zone. We 
can control the size of the mini-Brillouin-zone by chang­
ing the length of the unit period of the superlattice. This 
implies that we can also set the frequency gaps in an ex­
perimentally accessible frequency range ( ;:5 1 THz) much 
lower than those of bulk solids. 

So far, the propagation of acoustic phonons in super­
lattices with various stacking order of constituent layers 
has been studied both experimentally and theoretically. 2 

An interesting feature studied recently is the resonant 
transmission of phonons in AB A multisuperlattice struc­
tures composed of two kinds of periodic superlattices A 
and B.3 In the present paper, we study the phonon 
transmission in a system where the B superlattice is re­
placed by a bulk material. An advantage of this simpler 
system is that we can develop analytical calculations for 
the resonance condition and elucidate its physical origin. 

Thus, the system that we consider consists of a bulk 
material sandwiched between the same periodic superlat­
tices. A schematic frequency-band diagram for this sys­
tem is shown in Fig. 1. In this figure, the hatched regions 
indicate the frequency gaps of superlattices. The pho­
nons within these frequency gaps cannot be transmitted 
through the system. In other words, the superlattices act 
as barriers for phonons with frequencies between W Land 
WH' Thus, we can regard the system shown in Fig. 1 as a 
double-barrier system for phonons in the forbidden gap. 
This structure is similar to the double-barrier quantum­
well structure for electrons. 4 This similarity suggests the 
possibility for designing various phonon optics devices 
such as a phonon mirror, phonon resonator, and phonon 
filter suggested by Narayanamurti several years ago. 5 In 
the present paper, from the viewpoint of realizing such 
devices, we study theoretically the transmission charac-
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teristics of acoustic phonons in this double-barrier sys­
tem. 

The outline of this paper is as follows. In Sec. II, we 
first introduce a transfer matrix to formulate mathemati­
cally the dynamics of phonons in a multilayered system. 
Next, we present an analytical expression for the phonon 
transmission rate by the transfer-matrix method. Then, 
the resonance phenomena of phonons in the double­
barrier system are predicted both analytically and numer­
ically. In Sec. III, to analyze the physical origin of the 
resonant transmission of phonons through barriers, we 
consider a corresponding system in which the width of 
both barriers is infinity. In this case, the system we con­
sider is a single-well structure and the equation of motion 
for the lattice displacement at interfaces becomes formal­
ly the same as the Schrodinger equation for the one­
dimensional tight-binding model with two neighboring 
impurities. We solve the latter equation by using the 
Green's-function method and obtain the equations giving 
the frequencies of the impurity levels. These equations 
are found to be identical to the conditions for the reso­
nant transmission derived in Sec. II. We also discuss the 

w 

z 

BK III ~~ III y I 

FIG. 1. Schematic frequency band along a direction z, per­
pendicular to the layer interfaces of the double-barrier system. 
The hatched regions indicate the frequency gaps. The parts SL, 
BK, x, and y mean the periodic superlattice, bulk material, sub­
strate, and phonon detector, respectively. 
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number of the impurity levels in a given structure graphi­
cally. In Sec. IV, a summary and conclusions are given. 

II. TRANSMISSION 
IN mE DOUBLE-BARRIER SYSTEM 

In this section, we study the transmission of acoustic 
phonons in a double-barrier system. In particular, we 
consider the case where the wave vector k ofthe phonons 
is perpendicular to the layer interfaces of the system. In 
this case, three phonon modes are decoupled from one 
another if the interfaces are a mirror-symmetry plane. 
For simplicity, we consider this case and treat only one 
mode of phonons, e.g., the longitudinal mode. Further­
more, we adopt the continuum model for the lattice vi­
brations. This model is valid for sub-THz phonons be­
cause acoustic branches in the phonon-dispersion relation 
for most of the semiconductor superlattices are liner in k 
( = I k I) in the frequency range below 1 THz. 

In Sec. II A, we present the general expression for the 
phonon transmission rate in the double-barrier structure 
by calculating the products of transfer matrices analyti­
cally. In Sec. II B, we present a numerical example for 
the phonon transmission based on our formula. 

A. Analytical expressions for the transfer matrix 
and transmission rate 

A schematic picture of the double-barrier system is 
shown in Fig. 2. The structure grown on a substrate x 
and having a detector layer on top of it is divided into 
three parts, which are called SL, BK, and SL. Two SL 
parts have the same structure consisting of alternate 
stacking of semiconductors A and B, while the BK part 
consists of the bulk semiconductor A. The thicknesses of 

detector (y) 

~ , , , , , , 
SL 

, , , , , , , , , , 

BK 

SL 

substrate (x) 

FIG. 2. Schematic picture of the double-barrier system. This 
system is divided into three parts: SL, BK, and SL. Two SL 
parts have the same structure consisting of alternate stacking of 
semiconductors A and B, while the BK part consists of the bulk 
semiconductor A. 

the A and B layers in the SL parts are denoted by d A and 
dB' respectively, and D ( = d A + dB) is the unit period of 
the SL part. The thicknesses of the BK part and the 
whole system are denoted by D' and L, respectively. 

In the continuum model, the lattice displacement Uj(z) 
and stress S;(z) for the acoustic mode are expressed in 
terms of linear combinations of the transmitted and 
reflected waves: 

U ( )= t jkjz+ r -jkjz jZ cje cje , (l) 

(2) 

Here, i is an index specifying constituent layers; c/ and c( 
are the amplitudes of the transmitted and reflected waves, 
respectively; k; is the wave number; Zj =pjV; is the 
acoustic impedance given by the product of the mass den­
sity pj and the sound velocity vj;w=k;vj is the frequency. 

The lattice displacement Uj(z) and stress S;(z) should 
be continuous at each interface of adjacent layers. These 
boundary conditions can be expressed in terms of the 
transfer matrix and lead to the relations among the dis­
placement UD(L) and stress SD(L) at the detector-SL in­
terface, and Us(O) and Ss(O) at the substrate-SL inter­
face; 

(3) 

where the transfer matrix T w for the whole system can 
be written as a product of the transfer matrices for three 
parts SL, BK, and SL, 

(4) 

with N indicating the number of periodicity of the SL 
parts. The transfer matrix T BK for the BK part is given 
by 

cosy 

TBK = -wZAsiny 

1 . 
-Z smy 
w A 

cosy (5) 

with Y = k AD'. The transfer matrix T SL for the SL part 
with N periods is expressed as 

(6) 

where the transfer matrices T A and TB for the constitu­
ent layers A and B have the similar form as T BK' 

1 . 
cosa --sma 

wZA 

-wZAsina cosa 
(7) 

cos/3 1 'nf3 --SI 
WZB 

TB = -wZBsinf3 cos/3 
(8) 
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where 

1 --u 
(i)ZA 

Z 
A. = cosa cos{3 - Z A sina sin{3 , 

B 

Z 
u = sina cos{3 + Z A cosa sin{3 , 

B 

Z 
~ = - sina cos{3- Z: cosa sin{3 , 

ZB. . 
f..L = cosa cos{3 - Z A sma Sln{3 . 

(9) 

(10) 

(11) 

(12) 

(13) 

The analytical expression for (TB T A)N is presented in 
Ref. 3; the result is 

A.~y S(N)+C(N) -ZI uS(N) 
(i) A 

- A.~y S(N)+C(N) , 

(14) 

where 

sin(NO) 
for IY~A.I~1 sinO 

S(N)= 
sinh(NO) 

for y+A. > 1 
sinhO 2 

(15) 

(-1 )N+l sinh(NO) 
sinhO 

for ~<-1 
2 ' 

cos(NO) for IY~A.I~1 
C(N)= cosh(NO) for y~A. >1 (16) 

( -1 )Ncosh(NO) for y+A. -1 
2 < . 

Here, 0 is defined by 

y+A. for IY~A.I~1 cosO:=: 
2 

y+A. 
for ~>1 (17) coshO:=: 

2 2 

~ for ~<-1 coshO:=:-
2 2 . 

The frequencies satisfying the condition 1 (f..L + A.) 121 
> 1 [ 1 (f..L + A.) 121 ~ 1 ] are inside the frequency gaps 
(bands). By inserting Eqs. (5) and (14) into Eq. (4), we can 
obtain the transfer matrix T w for the whole system. The 
calculation of T w is straightforward but the explicit ex-

pression is lengthy. Thus, we write down here only the 
expression of T w for I (f..L + A.) /21 > 1 because this is the 
case of our main concern: 

a _1_b 
(i)ZA 

Tw= (i)ZAC d 

where 

a = ~ [l± 2~:rO jG±e2NO+ ~ [n= 2~:rO 
- (A.-y)(~-u) sinr 

4 sinh20 ' 

b=+ u (G+e 2NO-G e-2NO ) 
2 sinhO - 'f 

+ [1- u(t- u ) jSin 
2sinh20 r , 

C=± t (G e2NO_G_e-2NO) 
2sinhO ± + 

- [1 + t(t- u ) jSin 
2sinh20 r , 

(18) 

(19) 

(20) 

(21) 

d=~ [1+ A.-y jG e2NO+~[1± A.-y jG e- 2NO 
2 2 sinhO ± 2 2 sinhO 'f 

+ (A.-y)(t-u) . 
smr 

4 sinh20 ' 

_ t- u . 
G±-cosr± 2sinhOsmr . 

(22) 

(23) 

The upper sign corresponds to the case (f..L + A.) /2 > 1 and 
the lower sign to (f..L + A.) /2 < - 1. In terms of a, b, c, and 
d, the transmission rate t of phonons through the whole 
system is expressed as 

(24) 

The details of the derivation of the above equation is 
presented in Ref. 3. 

B. A numerical example 

As a numerical example, we choose (100) AIAs/GaAs 
superlattices for the SL parts and AlAs for the BK part. 
The unit period of the SL parts consists of (6 ML 
AIAs)/(6 ML GaAs), and the number of period is N = 12. 
The thickness of the BK part is the same as the SL part 
(i.e., D'=ND). The other parameters are as follows: the 
thickness of one monolayer (ML) in the SL part is 2.83 A 
in the [100] direction for both AlAs (= A) and GaAs 
(=B) (i.e., d A =dB =2.83 A); the mass density and longi­
tudinal sound velocity are 5.36 g/cm3 and 4.71 km/s for 
GaAs, and 3.76 glcm3 and 5.65 km/s for AlAs (i.e., 
PA=3.76 g/cm,3 PB=5.36 g/cm,3 vA=5.65 km/s, 
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FIG. 3. Frequency dependence of the longitudinal phonon 
transmission rate in a double-barrier system. The parameters 
used are in the text. 

VB =4.71 km/s). 
In Fig. 3, we show the frequency dependence of the 

longitudinal phonon transmission rate through the whole 
system calculated from Eq. (24). We find a large dip 
(0.72-0.80 THz) in the given frequency range. This dip 
is due to the Bragg reflection of the phonons in the SL 
part. The frequency at the center of this dip predicted by 
the first-order Bragg condition v=+(d A /V A +dB /VB )-1 

is 0.76 THz. This value is in good agreement with the 
frequency at the center of the dip in Fig. 3. 

In addition to the appearance of this dip, the most no­
ticeable feature in transmission is the existence of two 
sharp enhancements within the dip. To see the details of 
this structure, the transmission rate in the dip is enlarged 
in Fig. 4. These enhancements in transmission corre­
spond to the resonance characteristic of the system we 
study. 

Here, we discuss the origin of these resonant transmis­
sions quantitatively based on the analytical expression for 
the transmission rate derived in Sec. II A. Because our 
interest is in the phonons in the gap of the SL part, we 
may calculate the transmission rate for 1 (JL + A.) /21 > 1. 
The relevant transfer matrix in this case is given in Eqs. 
(18)-(23). Inserting Eqs. (18)-(23) into Eq. (24), we can 
obtain the exact expression for T w under the condition 
1 (JL + A.) 121 > 1. The result is 

t = 4 (25) 
p2+Q2 ' 

where 

P=G±e2NIJ+G,+,e-2NIJ , 

Q=+ a-~ [G e2NfJ-G e-2NIJ ] 
2sinhf) ± '+' 

+ [ Zx + ZA _ a-~ (~-a) ]sinr 
ZA Zx 2sinh2f) , 

(26) 

(27) 

1.0 

0.8 

.~ 0.4 

= = .. .... 
0.2 

0.0 
0.72 

w 2 

~ 

. 
--. .' 

0.74 0.760.78 

Frequency (THz) 

wH 

~ 
3.0 

2.0 

1.0 

- I 

0.0 ~ 
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-2. 0 
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FIG. 4. The longitudinal phonon transmission rate (solid 
line) and the function G _ (dotted line) within the lowest fre-
quency gap in the double-barrier system. 

with a=(Zx/ZA)a and ~=(ZA/Zx)~. Here, we have 
assumed for simplicity that the substrate and detector are 
the same semiconductors, i.e., Zx =Zy. Hence, as the 
number of periods N of the SL parts becomes larger, both 
P and Q increase exponentially, or the transmission rate 
becomes zero in proportion with e -4NIJ. This is valid as 
far as the coefficients G± of e 2NIJ in Eqs. (26) and (27) are 
nonzero. However, if these coefficients are zero, that is, 

G+ =O fi y+A. >1 or 2 (28) 

or 

G_=O for ~<-1 (29) 
2 

is satisfied, the transmission rate has a finite value, 

t=4 [ [ Zx + ZA a.-~ (~-a) ]sinr ]-2 (30) 
ZA Zx 2smh e 

for a large N. Therefore, Eqs. (28) and (29) should be 
known as the resonance condition. The physical origin of 
the resonance will be clarified in the next section. 

In Fig. 4, we show the frequency dependence of G_ 
(relevant to the frequency range shown in Fig. 3). As ex­
pected, we can find a good coincidence of the frequencies 
at the sharp enhancements in transmission with the fre-

z 

FIG. 5. Discrete levels induced by the sandwiched bulk ma­
terials. 
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_r_ 

_r_ -t 

WL ---L----~----~----~~z 

FIG. 6. The profiles of the real part of the amplitude of the 
phonons within the gap. 

quencies satisfying G _ = o. The very small deviation be­
tween frequency satisfying G _ =0 and the location of the 
transmission peak is due to the finite number of periodici­
ty (N= 12) of the SL part assumed, i.e., the terms of 
e -2N8 in Eqs. (26) and (27) have small but still seizable 
contributions. If N becomes larger, the deviation be­
comes much smaller. 

Our results show that even phonons inside the frequen­
cy gap of the SL part can be transmitted through the 
whole system when they satisfy the resonance condition 
(28) or (29). A schematic picture for this result is shown 
in Fig. 5. The hatched regions indicate the frequency 
gaps for the SL parts. The frequencies (01 and (02 stand 
for the resonance frequencies at which the sharp 
enhancements in transmission occur. The diagram of 
Fig. 5 is very similar to the double-barrier quantum-well 
structure for electrons in which the resonant tunneling 
occurs. 

The profiles of the real part of the amplitude of the 
phonons within the gap ((0 L < (0 < (0 H) are shown in Fig. 
6; these profiles correspond to (0 =(01' (01 < (0 < (02' and 
(0=(02. In the case (0+(01,(02' the real part of the ampli­
tude decays as the phonons propagate through both of 
the SL parts, implying that the phonons cannot propa­
gate through the system if the barriers are appropriately 
thick. However, for (0=(01,(02' the profiles of the ampli­
tude have quite different shapes from those at (0+(01,(02' 

and the phonons can propagate through both barriers 
without attenuation. This behavior is characteristic of 
the resonant transmission. 

III. IMPURITY LEVELS OF PHONONS 

In Sec. n B we considered the phonon transmission in 
the double-barrier system. We can regard the BK part as 
an impurity embedded in the perfect periodic superlat­
tice. In this picture, it is expected that the resonance fre­
quencies given by the solutions of Eqs. (28) and (29) agree 
with the frequencies of impurity levels of phonons gen­
erated by the BK part. Based on the Green's-function 

method,6 we show that this is indeed the case. 
In this section, we consider the case where the number 

of the period N of the SL parts becomes infinity, i.e., the 
widths of both barriers are infinity. As discussed in Sec. 
n A, the continuity conditions for the lattice displace­
ment and stress can be expressed as 

I ----a 
(OZA n 

I-'n [~: ] . (31) 

Here, Un and Sn are the displacement and stress at the 
nth interface, respectively; An' a n' ~n' and I-'n are the ele­
ments of the transfer matrix associated with the segment 
of the system located between the nth and the (n + I )th 
interfaces. When the relevant segment is the BK part, 
the transfer matrix is given by Eq. (5), i.e., 

A/=I-'/=cosy, a/=siny, ~/=-siny, (32) 

where we assume that the BK part is located between the 
lth and the (Z + I )th interfaces. On the other hand, when 
this segment is a unit period of the SL part, the corre­
sponding transfer matrix is given by Eq. (9), i.e., for n+l, 

An =A, I-'n =1-', an =a, ~n =~ . (33) 

From Eq. (31), we have 

(34) 

Eliminating S from these equations, we obtain the equa­
tion governing the lattice displacement, 7 

1 1 [ An I-'n -I ] -Un+I+----Un- l = -+---- Un 
an an-I an an-I 

Here, we introduce the following parameters: 

E=I-'+A V=~-1 
, siny' 

£1 =A-a coty, £2=I-'-a coty 

With this notation, Eq. (35) can be rewritten as 

U/_ I + £1 U/ + ( 1 + V) U/ + I = EU/ , 

(I+V)U/+£2 U/+I+U/+ 2=EU/+ I , 

Un-I+Un+l=EUn (n+Z,Z+U. 

(35) 

(36) 

(37) 

These equations are mathematically equivalent to the 
Schrodinger equation for the one-dimensional tight­
binding model with neighboring two impurities. For this 
model, the Hamiltonian can be written as 

(38) 

where H 0 is the periodic tight-binding Hamiltonian with 
the site energy 0 and unit transfer integral, 
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Ho=l:{ln+l)(nl+ln}(n+ll) , (39) 
n 

and H, is the perturbation arising from the two neigh­
boring impurities, 

H, =E,Il)(l1 +E211 + 1)(1 + 11 

+V{Il)(I+ll+l/+l)([l) (40) 

Here, each state In} is an atomic1ike orbital centered at 
the site n, or originally the amplitude of the phonons at 
the nth interface; E, and E2 are the site energy of the lth 
and (l + 1)th impurity sites, respectively, and V is the 
transfer integral between the two neighboring impurity 
sites. The eigenvalues and eigenfunctions of the periodic 
tight-binding Hamiltonian Ho have the well-known form 

Eq =2 cos(qD) , (41) 

Iq)= v~ l:eiqnDln} , 
n 

(42) 

where q is the wave number restricted in the first mini­
Brillouin-zone. 

Our purpose is to obtain the discrete levels induced by 
the two impurities. The most convenient way to find 
these discrete levels is to find the poles of the Green's 
function G corresponding to H. The Green's function is 
defined by 

G(E)=(E-H)-'=(E-Ho-H,)-' . (43) 

Similarly, we define the Green's function Go in the homo­
geneous system associated with Ho: 

We can expand G in terms of H, and Go as 

G=[I-(E-Ho)-'H,l-'(E-Ho )-' 

=[I-GoH d-'Go 

=Go+GoH,Go+GoH,GoH,Go+ ... 

or 
G=Go+GoTGo , 

where the t matrix T is defined by 

T=H, +H,GoH, +H,GoH,GoH, + ... 

(44) 

(45) 

(46) 

(47) 

Taking account of the explicit expression of H, [Eq. 
(40)], we can write 

T=H, +H,l: In }(n IGo l: 1m }(m IH, + ... 
n m 

(48) 

where I a) denotes the row vector W}, II + 1)) and the 
matrices (aIGola) and (aIH,la) are 

[
([IGoll) (lIGol/+l) ] 

(aIGola)= ([+IIGoll) (l+IIGoll+1) , (49) 

[E' V] 
(aIH,la)= V E2 . (50) 

Thus, we obtain from Eq. (48) 

(aITla) = (aIH,la) + (aIH,la) 

X(aIGola}(aIH,la}+' .. 

=(aIH,la}{1-(aIGola}(aIH,la})-' . 

(51) 

From Eqs. (46) and (51) we find that the poles of G are 
given by 

(52) 

The Green's function Go defined by Eq. (44) can be 
written in terms of the eigenfunction I q ) of H 0 as 

Go= l: klhl . 
q E-Eq 

(53) 

With the use of Eqs. (42) and (53), the matrix elements of 
Go are 

(iIGoU)= l: (ilq)(qlj) 
q E-Eq 

D f1TID eiqDU-j) 
=- dq. (54) 

27r -1TIDE-2cos(qD) 

This integration can be carried out analytically and we 
have 

[E 12-V(E 12)2-1 ]Ii-jl 

2V(EI2)2-1 
for E > 1 

2 

[EI2+V(EI2)2_1]li- j l for E <-1 

2V(E 12)2-1 2 

=gli-jl (55) 

As in Eq. (7), we define 0 by 

E for E > 1 
2 2 

coshO= (56) 
E E 

for - <-1 
2 2 

[Eq. (56) is the same as Eq. (7), because E is defined by 
,u+A.]. Then, Eq. (55) is rewritten as 

(e -o)li-jl 
for 

E 
2sinhe 

->1 
2 

gli-jl = (-e-o)li-jl E 
(57) 

2sinhO 
for -<-1 

2 

and the matrix (aIGola) defined by Eq. (49) can be writ­
ten as 

(aIGola) = [:: ::]. (58) 

By inserting Eqs. (50) and (58) into Eq. (52), the equation 
which gives the poles of G takes the form 

1-2g, V +(gi -g6)( V2-E,E2)-(E, +E2)gO=0 . (59) 
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Finally, substituting Eqs. (36) and (57) into Eq. (59), we 
obtain 

+ ;-a . -0 
cosy - 2 sinhO smy - , (60) 

where the upper sign corresponds to the case where 
(J.t + A.) /2 > 1 and the lower sign to (J.t + A.) /2 < - 1. 
Equation (60) is identical to the resonance condition 
G± =0 [see Eqs. (23), (28), and (29)] given in Sec. II. 

We also discuss the number of discrete levels given by 
the solutions of Eq. (60). Equation (60) is rewritten as 

_ ;-a 
-coty-± 2sinhO (61) 

In Fig. 7, we show the frequency dependence of both 
sides of Eq. (61) within the frequency gap. The right­
hand side of Eq. (61) is a monotonically increasing or de­
creasing function of frequency ranging from - 00 to 00 

(sinhO=O at the edges of the gap). The left-hand side is a 
monotonically increasing periodic funCtion of y = k AD', 
whose period in inversely proportional to D'. Hence, in 
each frequency gap there exists at least one intersection 
between these functions, or the solution of Eq. (61). In 
the present case, there exist two intersections which give 
the solutions of Eq. (61), i.e., the discrete frequencies WI 

and W2. If the thickness D' of the BK part increases, the 
period of -coty decreases. Therefore, the number of the 
intersections increases. (If we double the thickness D', 
three intersections emerge, or there exist three impurity 
levels for D'=2ND.) On the other hand, if D' decreases, 
the number of the intersections decreases. This result is 
similar to the fact that the number of bound states of 
electrons in a single potential well structure increases 
with increasing well width. 

Next, we calculate the amplitude ofphonons at the fre­
quencies corresponding to the discrete levels. Because 
these levels are obtained from the equation [see Eq. (45)] 

I-GoHt=O, (62) 

we can write for the nth state (n I, 
(63) 

This equation is rewritten as 

(n I =(n IGoHt 

=(n IGola}(alHlla}(al 

=gn _/(Et( II + V(/+ 11 )+gn-/-t( v(/1 +E2(/+ 11) . 

(64) 

Therefore, the nth component Un = (n Ib) of the eigen­
function I b ) of H is expressed as 

Un =gn-/(Et U/ + VUl+t)+gn-/-t( VU/+E2 Ul+t) . 

(65) 

Green's function gn depends on the site index n as 

3.0 

2.0 

1.0 

0.0 

-1. 0 

-2.0 

-3.0 

0.72 

..-... 

0.74 

. . 
. /:/ -cot r 

0.76 

Frequency (THz) 
0.78 

FIG. 7. Graphical solutions of Eq. (61). 

gn -e -Inll! [see Eq. (57)]. Consequently, the amplitude at 
the interface of each layer decays exponentially on either 
side of the impurity site. That is, phonons at the impuri­
ty level exhibit a localized character. 

IV. SUMMARY AND CONCLUDING REMARKS 

In the present work, we have derived analytical expres­
sions for the transmission rate and the resonance condi­
tion in the double-barrier system for phonons. The re­
sults show that the phonons in the frequency gaps of the 
SL part are transmitted through both barriers without at­
tenuation, when the frequency of the incident phonons 
coincides with that of discrete levels. These levels are 
caused by lattice vibrations localized at the sandwiched 
bulk material. We have also derived an equation giving 
the frequencies of these impurity levels. 

These results signify that the double-barrier system we 
consider is analogous to the double-barrier system for 
electrons in which resonant tunneling occurs. This simi­
larity suggests the potential for designing various phonon 
optics devices. In particular, the sharp resonant 
transmission in a wide frequency gap can be used to 
design a phonon resonator for the detection or generation 
of monochromatic high-frequency phonons. Our analyti­
cal expression for the transmission rate will be useful for 
this purpose. 
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