
Appendix A

Regression Versus a

Simpler Stress Model

A simpler SVD-based statistical model of wind stress anomalies has been used by several
authors (Syu and Neelin, 1995; Blanke et al., 1997; Cassou and Perigaud, 2000). In this
model, the stress singular vector expansion coefficients Ỹ∗ are assumed equal to the SST
singular vector expansion coefficients X̃∗. This model takes the form

ŶN = X̃
∗

NB
′

N (A.1)

which essentially replaces the regressed τ
′ anomalies in Figs. 3.7–3.8 with the singular

vectors of τ
′ shown in Fig. 3.5.

A comparison of the regression estimate (3.26) with the estimate (A.1) is shown in
Table A.1. For unfiltered stress data, the two models have nearly the same residual variance
(“error”) of monthly-means. On this basis, it might at first appear that the regression is
not much of an improvement over (A.1). However, the regression is superior in several
important ways.

First, because the wind stress is noisy, improvements in the deterministic part of the
model are hard to discern in the monthly data. Filtering the stress to retain only interan-
nual variations shows that (A.1) gives a mean square error 12% larger than the regression
model for these time scales. Presumably these are the time scales most important to ENSO.

More importantly, model (A.1) assumes that the singular mode expansion coefficients
are perfectly correlated. In fact, these correlations drop off rapidly after the gravest mode
(Fig. A.1). For higher modes, (A.1) will overestimate the influence of SST on the wind
stress by nearly a factor of two. This is why the model variance of (A.1) is nearly twice
as large as the regression, and why the skill of (A.1) actually gets worse as the number of
modes increases. Thus an important benefit of the regression (3.26) is its more accurate
representation of the air-sea coupling strength.

Finally, from Table A.1 it is clear that the regression model is optimal (in a least
squares sense) because the model and residual variances sum to the total variance for the
unfiltered data. The regression model is close to optimal for the interannual wind stress as
well. That (A.1) fits the data fairly well, even though its variance is so much greater than
the optimal estimate, indicates that it is probably an overfit to the data. This problem
is even more apparent for the interannual stress anomalies. Thus while (A.1) shows good
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Table A.1: Analysis of variance of the 1980–1999 FSU wind stress anomalies for two
different models ŶN , both based on N = 3 modes. Results are shown for unfiltered data,
and for data filtered to retain only periods greater than one year. Variances are expressed
as a percentage of the total variance of the wind stress anomalies (40.8 dPa2 unfiltered,

10.7 dPa2 interannual). The regression model corresponds to ŶN = X̃
∗

N R̂N . The direct

SVD model corresponds to ŶN = X̃
∗

NB
′

N .

Regression Direct SVD

Total τ
′

model variance 13.9 25.1

residual variance 86.1 89.4

sum 100.0 114.5

Interannual τ
′

model variance 41.2 71.5

residual variance 54.8 61.6

sum 96.0 133.1

Figure A.1: Correlation of SST singular vector expansion coefficients with stress singular
vector expansion coefficients.
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skill in reconstructing the training data, it would perform much worse given a different
realization of the noise. Obviously the purpose of the model is to forecast the unknown,
not the known. Therefore we proceed using the regression estimate (3.26).



Appendix B

Field Significance

To determine the field significance of a collection of local hypothesis tests performed
on a grid, one must find the probability of rejecting at least x of the N gridpoints at
significance level p, assuming the null hypothesis is true. If this probability is small, then
one may confidently reject the null hypothesis, and infer that the field as a whole was not
generated by the assumed reference process.

If there were no spatial correlations in the residual, then this problem would be equiv-
alent to finding the probability of x successes in N trials, where the probability of success
in any single trial is p. If X is a hypothesized number of successes, then the binomial
distribution (Wilks, 1995) gives the probability of observing X = x successes:

Pr{X = x} =

(
N

x

)
px(1 − p)N−x (B.1)

The probability of at least x successes is then

Pr{X ≥ x} =
N∑

i=x

(
N

i

)
pi(1 − p)N−i (B.2)

= 1 −
x−1∑

i=0

(
N

i

)
pi(1 − p)N−i (B.3)

This probability is shown in Fig. B.1, using unconnected symbols, for the cases of Fig. 3.9
(N = 324) and Fig. 3.10 (N = 513 for 1961–1979, N = 540 for 1980–1999). In each case
the probability of “success” is taken to be the local significance level, p = 0.01, and the
number of trials N is taken to be the number of gridpoints tested.

In the presence of spatial correlation, one can redefine N to be an “effective” number
of gridpoints, which decreases as the correlation increases. For the wind stress residual,
assuming a conservative zonal decorrelation scale of 40◦ longitude gives N ≈ 3. The
binomial probabilities associated with this value of N are shown in Fig. 3.9 using symbols
connected by lines. The figure indicates that in this spatially-correlated case, roughly two
to four times as many points must be rejected by the local significance test to attain field
significance.
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Figure B.1: Reference plot for evaluating field significance of the local hypothesis tests
of Figs. 3.9 and 3.10. Abscissa gives the observed percentage of points rejected by the
local test at significance level p = 0.01. Ordinate gives the binomial probability that the
percent rejected could have been greater than or equal to that observed, assuming the null
hypothesis were true. Unconnected symbols correspond to the assumption of no spatial
correlation, such that Nx = 27 is the number of zonal gridpoints. Line-connected symbols
correspond to an assumed zonal decorrelation scale of 40◦ longitude, such that the effective
number of zonal gridpoints is Nx = 3. Asterisks (Nt = 12) correspond to the 12 calendar
months of Fig. 3.9. Triangles (Nt = 19 and Nt = 20) correspond to the years 1961–1979
and 1980–1999 in Fig. 3.10.



Appendix C

Upwelling in the

Intermediate Model

In the intermediate model, upwelling at the base of the mixed layer is given by the
divergence of mixed layer transport (4.10):

w = ∇ ◦ U (C.1)

where from (4.17),

U = Us +
Hm

H
(Ual − Us) (C.2)

The divergence of the active-layer transport is given by (4.3) and (4.7)–(4.8):

∇ ◦ Ual = −
λu
λh

(∂th+ rh) (C.3)

The Ekman transport is given by (4.15):

Us =
rsτ − fk̂ × τ

ρ (f2 + r2s)
(C.4)

Solving (C.1)–(C.4) for w away from boundaries gives

w = −
Hmλu
Hλh

(∂th+ rh) (C.5)

+
H −Hm

ρH(f2 + r2s)

[
rsdiv(τ ) + fcurl(τ ) +

β(f2 − r2s)τx − 2βfrsτy
f2 + r2s

]

The first term arises from the shallow water dynamics and is quite small, on the order of
0.05 m day−1 for standard parameter values. The remaining terms immediately suggest a
rescaling of y:

ỹ ≡
β

rs
y =

f

rs
(C.6)

Dropping the first term in (C.5) and substituting for y then gives

w =
H −Hm

ρH(ỹ2 + 1)

[
div(τ )

rs
+
ỹcurl(τ )

rs
+
β

r2s

(
ỹ2 − 1

ỹ2 + 1
τx −

2ỹ

ỹ2 + 1
τy

)]
(C.7)
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It is enlightening to examine this solution at three key latitudes:

w(ỹ = 0) =
H −Hm

ρH

(
div(τ )

rs
−
βτx
r2s

)
(C.8)

w(ỹ = ±1) =
H −Hm

2ρH

(
div(τ )

rs
±

curl(τ )

rs
∓
βτy
r2s

)
(C.9)

w(|ỹ| ≫ 1) =
H −Hm

ρH

curl(τ )

rsỹ
(C.10)

In all three cases, the upwelling increases as Hm shoals relative to H. Equation (C.8)
indicates that at the equator, upwelling is generated both by stress divergence and by
easterly stress, with the latter effect usually dominating. The viscosity parameter rs exerts
a strong control over the equatorial upwelling, with w scaling like r−2

s . Equation (C.9)
indicates that at y = rsβ

−1, the direct effect of the easterlies vanishes; here the upwelling
is generated by stress divergence, cyclonic stress curl, and equatorward stress. To the
extent that the wind stress is large in scale, (C.9) indicates that the meridional winds will
be important for generating upwelling slightly away from the equator, with the strength
of the upwelling scaling like r−2

s . Finally, (C.10) indicates that upwelling far from the
equator is entirely due to the wind stress curl; this upwelling decreases with increasing rs
and increasing latitude.

It is interesting to compare the effects of easterlies versus southerlies. For spatially
constant easterlies, (C.7) becomes

w =
β

ρr2s

H −Hm

H

ỹ2 − 1

(ỹ2 + 1)2
τx (C.11)

The upwelling zone extends to y = ±rsβ
−1, and so widens with increasing rs. Integrating

over the latitudes of upwelling gives

∫
1

−1

w dỹ = −
β

ρr2s

H −Hm

H
τx (C.12)

For spatially constant southerlies, on the other hand, (C.7) becomes

w =
β

ρr2s

H −Hm

H

−2ỹ

(ỹ2 + 1)2
τy (C.13)

The upwelling is a maximum at y = −3−1/2rsβ
−1. Integrating over the latitudes of up-

welling gives ∫
0

−∞

w dỹ =
β

ρr2s

H −Hm

H
τy (C.14)

Comparison of (C.12) and (C.14) shows that for equal magnitudes of wind stress, southerlies

induce as much total upwelling south of the equator as easterlies do straddling the equator.
South of y = (1− 21/2)rsβ

−1, southerlies induce stronger upwelling than easterlies of equal
magnitude.



Appendix D

Flux Correction

In the present study we rely on coupled anomaly models, i.e. models in which the
climatology in the control run is flux-corrected. It should be noted that Neelin and Di-
jkstra (1995) have found important dynamical differences between fully-coupled and flux-
corrected climatologies. In the latter case, the climatology cannot respond to changes in
air-sea coupling, and so as coupling increases the flux-corrected trade winds become too
weak relative to the fully-coupled case. These “spurious westerlies” in the flux-corrected
case can allow spurious climate equilibria to exist, which can then affect the model vari-
ability.

The present model shows a warm equilibrium at high coupling in the absence of noise
(Fig. 4.25), which may well be an artifact of the flux correction. That the remnants of this
fixed point at lower coupling may interact with the model’s stochastic variability can be
inferred from Fig. 4.30, which shows the model SST anomalies have negative skewness, i.e.
a tendency to linger in warm states. The hybrid GCM, which is also an anomaly model,
shows this negative skewness as well (Fig. 7.26). Observed SST anomalies, on the other
hand, show positive skewness (Figs. 2.14 and Fig. 2.15).

Unfortunately, it is difficult to maintain a realistic climatology in the present intermedi-
ate model without flux correction. There are two main problems. First, the shallow-water
model is linear, and so cannot simultaneously simulate both the climatological thermo-
cline’s zonal mean depth (which determines the speed of internal waves, and the sensitivity
of the thermocline slope to wind stress changes) and its depth in the eastern Pacific (which
is crucial to ENSO coupled feedbacks). To simulate a fully-coupled climatology in the
present model would require H = H0, which would weaken the wind-thermocline coupling
relative to observations. In the flux-corrected case, however, we may achieve a realistic cli-
matological thermocline (Fig. 4.5) without sacrificing realistic wave speed and thermocline
sensitivity (Fig. 4.4).

The second problem in simulating a fully-coupled climatology is that many climate
processes, such as those involving clouds, evaporation, and vertical mixing, are heavily
parameterized in the intermediate model and in the HGCM. Although these parameter-
izations may be reasonable for simulating ENSO variability, they give rise to errors in
simulating the climatology which are then strongly amplified by coupled feedbacks. Pre-
scribing the climatological winds from observations circumvents this problem, allowing us
to escape the chain of feedbacks which leads to climate drift.
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We have therefore opted for flux correction as a way to obtain a realistic climatology.
The concerns noted by Neelin and Dijkstra (1995) are valid but difficult to address directly.
Indeed, a prime motivation for the present study is the inability of even many state-of-the-
art GCMs to achieve a realistic climatology in the absence of flux correction (Fig. 1.4).



Appendix E

Interval Estimate for the

Predictive Power

It is possible to give an interval estimate for the predictive power (PP) under the
assumption of univariate normal state vectors. Given (4.32) and the discussion afterward,
the quantity

χ2

N−1 ≡
(N − 1)s2

σ2
(E.1)

follows a chi-square distribution on N − 1 degrees of freedom. Similarly, the quantity

χ2

Nc−1 ≡
(Nc − 1)s2c

σ2
c

(E.2)

follows a chi-square distribution on Nc − 1 degrees of freedom. The ratio of chi-square
variables

FN−1,Nc−1 ≡
χ2

N−1
/(N − 1)

χ2

Nc−1
/(Nc − 1)

(E.3)

=
s2/s2c
σ2/σ2

c

then follows an F distribution on N − 1 and Nc − 1 degrees of freedom. By definition of
the F -distribution quantiles FN−1,Nc−1,α/2 and FN−1,Nc−1,1−α/2 we have

P
{
FN−1,Nc−1,α/2 < FN−1,Nc−1 < FN−1,Nc−1,1−α/2

}
= 1 − α (E.4)

which implies

P

{
s2/s2c

FN−1,Nc−1,1−α/2
<
σ2

σ2
c

<
s2/s2c

FN−1,Nc−1,α/2

}
= 1 − α (E.5)

Substituting from (4.33) then gives a 1 − α confidence interval for the PP:

P



1 −

s/sc

F
1/2
N−1,Nc−1,α/2

< PP < 1 −
s/sc

F
1/2
N−1,Nc−1,1−α/2



 = 1 − α (E.6)
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Appendix F

Hybrid Coupled GCM

The hybrid GCM used in this study consists of an ocean general circulation model
coupled to a statistical model of the surface wind stress and heat fluxes, as in Harrison
et al. (2002). Relevant details from that paper are repeated here for convenience, with an
additional description of the model climatology and interannual variability.

F.1 Ocean model

The ocean component is the GFDL Modular Ocean Model (MOM) version 3. The
horizontal domain of the model, shown in Fig. F.1, extends from 120◦E–70◦W, 40◦S–40◦N,
with a sponge condition within 10◦ of the northern and southern boundaries. The zonal
grid spacing is a uniform 1◦. The meridional grid spacing is a uniform 0.33◦ below 10◦

latitude, gradually increases between 10◦ and 15◦ latitude, and is a uniform 1◦ poleward
of 15◦ latitude. The model has 16 fixed vertical levels, with 10 in the top 250 m of the
ocean; the vertical grid spacing increases with depth as shown in Fig. F.2. A rigid lid is
assumed at the ocean surface. The primitive equations are solved on an Arakawa B grid
and advection is computed using centered differences. Vertical mixing is the Richardson
number dependent scheme of Pacanowski and Philander (1981); horizontal mixing is the
nonlinear scheme of Smagorinsky (1963).

Starting from a resting state with observed temperature and salinity (Levitus and
Boyer, 1994), the ocean model is spun up for 25 years using observed climatological monthly
surface fluxes of momentum and heat. The surface wind stresses are converted from the
FSU pseudostress product (Stricherz et al., 1997), using an air density of ρa = 1.2 kg m−3

and a drag coefficient of cd = 1.2 × 10−3. Outside the 30◦S–30◦N domain of FSU, the
stresses are taken from Hellerman and Rosenstein (1983). The heat fluxes consist of the
OSU analysis (Esbensen and Kushnir, 1981), with an additional restoring of the top level
toward observed SST at a rate of 50 Watt m−2 ◦C−1. Surface salinities are restored toward
their observed climatological values at a rate 0.01 kg m−2 s−1 PSU−1. The restoring for
the top model level temperature and salinity corresponds to an e-folding time scale of
approximately 5 days.

263



Appendix F: Hybrid Coupled GCM 264

Figure F.1: Horizontal velocity grid of the ocean general circulation model. Gridpoints
lie at the line intersections; only every sixth row and column of points is plotted. The
temperature and vertical velocity lie on a grid staggered in latitude and longitude with
respect to the grid shown.

Figure F.2: Vertical grid of the ocean general circulation model. Gridpoints of temperature
and horizontal velocity lie at the depths indicated by the circles; layer thicknesses are
indicated on the horizontal axis. The vertical velocity grid is staggered in the vertical with
respect to the grid shown.
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F.2 Statistical atmosphere model

The statistical atmosphere model is very similar to the stress models developed in
Chapter 3. Wind stress, latent heat flux, radiative heat flux models are each developed
separately (sensible and freshwater fluxes are not included). Harrison et al. (2002) com-
pared several such models based on different flux analyses; here we use the version based
on the 1979–1993 period from the ECMWF product (Gibson et al., 1997). SST data are
taken for the same period from the analysis of Reynolds and Smith (1994).

The data fields are first interpolated onto a 3◦ × 3◦ grid covering the ocean between
20◦S–20◦N. Monthly climatologies are subtracted from the data to give monthly anomalies,
which are then detrended by removing the least-squares linear fit to the timeseries at each
gridpoint. As in Chapter 3, the flux models are constructed by performing linear regressions
of the observed anomalies onto the leading singular vector patterns of observed flux/SST
covariance. Only the gravest regression mode is included in this case, and there is no
stochastic component.

F.3 Coupled model

Following the spinup of the ocean climatology, the ocean GCM is coupled to the sta-
tistical atmosphere anomaly model. The ocean model climatology is maintained by the
imposition of the climatology of restoring terms simulated during the last 10 years of
ocean spinup. An additional heat flux is also imposed to damp SST anomalies at a rate of
1 Watt m−2 ◦C−1, which corresponds approximately to a restoring time scale of 100 days
for the top model layer.

The coupled simulation is initialized with a perturbation from the model climatology,
and then is integrated forward in time for 20 years, with output of monthly-average fields.
The first four years of the run are considered a transition to the coupled statistical equi-
librium and are discarded; only the last 16 years are analyzed. A 12-month climatology
is computed from these 16 years of data, and then subtracted from the total fields to give
monthly anomaly fields.

F.3.1 Climatology

Annual mean

The annual-mean equatorial temperature structure of the coupled model is shown in
Fig. F.3. The simulated ocean is about 1–2◦C too cold near the surface in the central and
eastern Pacific, and slightly too cold in the western Pacific. Thus ∂zT is too weak at 50 m
depth in the east and the zonal SST gradient is somewhat too strong. The model also
has a 2–4◦C cold bias below 160 m. These problems are likely related to limitations of
the vertical mixing scheme, and perhaps also to errors in the climatological stress forcing,
since this forcing is rather uncertain (see Chapter 2). However, the simulated depth of the
20◦C isotherm is generally quite good, as is the vertical stratification in the vicinity of the
thermocline.
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Figure F.3: Vertical section of climatological annual-mean temperature along the equator
(2◦S–2◦N). Solid contours indicate the climatology of the hybrid coupled GCM control
run. Dotted contours indicate the 1980–99 climatology from the observational analysis of
Behringer et al. (1998).

The annual-mean structure of the equatorial ocean simulated by the model is shown in
Fig. F.4. The GCM cold bias at the surface, evident in panel (h), weakens the stratification
near the surface in the east (panel d), which promotes vertical mixing. Compared to the
NCEP analysis, the GCM has more easterly mixed layer currents in the east, more westerly
currents in the west, and stronger upwelling at 50 m depth in the central/eastern Pacific.
Note that similar biases in the mixed layer currents were found in the intermediate model
(Fig. 4.12). This suggests that either both models are missing some fundamental physics,
or that the FSU wind stress forcing is flawed, or that the NCEP ocean analysis is incorrect.

The equatorial heat budget of the top 50 m of the model is shown in Fig. F.5. The
equatorial eastern Pacific is cooled primarily through vertical advection. Additional cool-
ing occurs through meridional advection, which peaks around 125◦W, and zonal advection,
which provides a broad cooling throughout the central basin. Vertical advection is respon-
sible for all of the cooling at the eastern boundary, while zonal advection is responsible
for nearly all of the cooling at the dateline. The advective cooling is almost balanced by
the surface heat flux, which is into the ocean all along the equator. Adding the advective
tendency to the surface flux gives a nonzero residual which is identified with sub-monthly
eddies. This eddy flux provides a warming in the east, which is roughly one third as strong
as the warming due to surface flux, and a weak cooling in the western Pacific.

Compared to the intermediate model (Fig. 4.14), the GCM has a more active heat
budget due to its stronger cold tongue. The cooling due to vertical advection is shifted
farther east in the GCM, and the cooling due to zonal advection is zonally broader due to
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Figure F.4: Annual-mean oceanic climatological fields at the equator (2◦S–2◦N). Dashed
lines are from the observational analysis of Behringer et al. (1998), solid lines are from
the control run of the hybrid coupled GCM. (a) Zonal wind stress, (b) depth of the 20◦

isotherm, (c) temperature at 50 m, (d) temperature at surface minus that at 50 m, (e)
meridional wind stress, (f) zonal current averaged over the top 50 m, (g) vertical velocity
at 50 m, (h) SST.
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Figure F.5: Annual-mean climatological heat budget of the equatorial band (2◦S–2◦N),
for the top 50 m of the hybrid coupled GCM. Positive values correspond to a warming
tendency. Advection and surface fluxes are computed on the full model grid using the
total monthly-mean currents and temperatures from the control run, so that effects of the
annual cycle and ENSO are included but sub-monthly eddy fluxes are not. The eddy flux
tendency is then defined as the heating required to balance the effects of monthly-mean
surface flux and advection.
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a gentler zonal SST gradient than in the intermediate model. Meridional advection plays
rather different roles in these models: in the intermediate ocean, it provides strong cooling
at the eastern boundary, while in the GCM, it warms the eastern boundary and cools
farther west. The eastern boundary warming by meridional advection is a major reason
that the GCM also shows a relatively smaller role for surface heat flux in the east.

The GCM eddy fluxes in the east Pacific are largely driven by tropical instability waves
(TIWs), which are active in the model as well as in observations (McPhaden et al., 1998;
Stockdale et al., 1998; Masina and Philander, 1999a,b; Chelton et al., 2001; Polito et al.,
2001; Zhang, 2001). These waves have a period of 20–40 days and so are not well resolved
by monthly averages. Comparing Figs. F.5 and 4.14 shows that the amplitude and position
of the eddy heat fluxes in the GCM is reasonably well captured by the diffusion term in
the intermediate model. Note, however, that the intermediate model assumes a constant
diffusivity, i.e. it assumes the eddies have constant amplitude. In reality, TIWs are strongest
when the trade winds and cold tongue are strongest, such as during boreal autumn and
La Niña. Thus the intermediate model will probably tend to underestimate mixing in the
east Pacific during La Niña, and overestimate it during El Niño. The intermediate model
also does not capture the small amount of eddy cooling in the central and western Pacific
that is evident in the GCM.

Annual cycle

The annual cycle of SST in the model (Fig. F.6) is strongest off-equator and in the
vicinity of the cold tongue. Near the coast of South America, SST is warmest in March–
April. The annual signal propagates westward along the equator through the calendar year,
such that SST peaks in October near the dateline. Associated with these annual variations
in SST are seasonal changes in the surface wind stress and currents (not shown), which
also propagate westward along the equator. In the central equatorial Pacific, upwelling
tends to peak near the end of the calendar year, when the easterly trade winds are at their
strongest. The westward equatorial surface currents, on the other hand, are strongest in
the central Pacific during August–October and weakest April–June.

F.3.2 Simulated ENSO

Fig. F.7 shows the evolution of the equatorial fields in the hybrid coupled GCM. After
four years the model has settled into a self-sustained ENSO with a period of about 3.3 years
and a NINO3 SSTA amplitude of about 1.25◦C. The oscillation fairly regular, although it
is modulated somewhat by the seasonal cycle. Westward propagation of SST anomalies is
evident in the central Pacific. Although there is evidence of eastward propagation of the
thermocline depth anomalies, the bulk of the thermocline signal in the east is in phase with
SSTA in the east. The zonal stress along the equator slightly lags the SSTA in the east,
and is more in phase with SSTA in the western Pacific.

The off-equatorial structure of the simulated ENSO cycle is shown in Fig. F.8. The
peak SST variability occurs off the coast of Peru, and just south of the equator in the
central Pacific. There is westward propagation of SST anomalies almost everywhere in
the basin, not just at the equator, and there is a strong poleward spreading of the SST
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Figure F.6: Annual harmonic of SST from the climatology of the hybrid coupled model.
Vectors indicate the month of warmest SST, i.e. rightward-pointing vectors indicate a
January peak, downward-pointing vectors an April peak. The vector length corresponds
the amplitude of the annual harmonic and is indicated by the contours (◦C).
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Figure F.7: Representative timeseries of anomaly fields from the hybrid coupled GCM
control run, averaged over the equatorial band (2◦S–2◦N). (a) Zonal stress anomaly (dPa),
(b) anomalous depth (m) of the 20◦C isotherm, (c) SST anomaly (◦C).

anomalies following the equatorial peak.
Fig. F.9 shows the equatorial heat budget for a single ENSO cycle in the GCM. The

largest term, −w∂zT
′, is active east of 140◦W and is a strong amplifier of SSTA in the east.

The next largest term is the surface heat flux, which provides a strong damping of SST
anomalies across the central and eastern Pacific. The eddy heat fluxes also damp SSTA
strongly in the east. The destabilizing effect of −w∂zT

′ on the SSTA is enhanced by the
meridional advection terms: −v∂yT

′ in the eastern basin, and −v′∂yT in the central basin.
All of these terms are nearly in phase or perfectly out of phase with SSTA in the east, and
none of these terms shows much sign of zonal propagation.

Enter −u′∂xT , which is active in the central basin and propagates westward at roughly
30 cm s−1 (i.e. a 1.7-year basin-crossing time). In the eastern Pacific, this term is nearly in
quadrature with SSTA. The −u∂xT

′ term is also somewhat in quadrature with SSTA, but
no other terms have the amplitude of −u′∂xT at the crossing points between warm and
cold events. Thus −u′∂xT appears to be an essential oscillation mechanism in the GCM.

The −w′∂zT term plays a fairly small role except possibly at the far eastern boundary,
but even in the east its effect not very coherent with the model ENSO. The nonlinear
terms generally small, though they do have rectified effects on the mean state: −v′∂yT

′
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1
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Figure F.8: Amplitude and phase of the ENSO cycle of SST anomalies in the hybrid coupled
model. Vectors indicate the SSTA phase relative to the average over the NINO3.4 region
(170◦W–120◦W, 5◦S–5◦N), i.e. rightward-pointing vectors indicate a peak coincident with
NINO3.4 SSTA, downward-pointing vectors a lag of a quarter cycle behind NINO3.4 SSTA.
The vector length corresponds the amplitude of the ENSO harmonic and is indicated by
the contours (◦C). The period of the cycle is 3.3 years.

induces a warming all along the equator, while −u′∂xT
′ and −w′∂zT

′ induce cooling near
the dateline and near the eastern boundary, respectively.

There are many similarities between the GCM ENSO and that in the intermediate
model control run (Fig. 4.20). In both cases, −w∂zT

′ is the dominant destabilizer in the
east, surface flux is the primary damping, and −u′∂xT is a key transitioner in the central
Pacific. There are also important differences. Compared to the intermediate model, the
GCM shows a greater role for eddy fluxes, which act as an extra damping in the east;
the −w∂zT

′ term does not lead SSTA as much in the east; and −w∂zT
′ does not act as

a damping in the central Pacific. The effects of meridional advection are stronger in the
GCM, while the effect of −u∂xT

′ is weaker.
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Figure F.9: Temperature anomaly tendency terms for a single ENSO cycle from the hybrid
coupled GCM control run, averaged 2◦S–2◦N and over the upper 50 m of the ocean. Vertical
axis indicates years since initialization; dashed line indicates the peak of a warm event.
Contour interval is 10 Watts m−2, heavy contour indicates zero; warm colors indicate
positive values, cool colors negative values; near-zero values are not shaded. Panels show
(a) net heat flux into the ocean, (b) −u′∂xT , (c) −u∂xT

′, (d) −u′∂xT
′, (e) ∂tT

′, (f) −v′∂yT ,
(g) −v∂yT

′, (h) −v′∂yT
′, (i) eddy flux, (j) −w′∂zT , (k) −w∂zT

′, (l) −w′∂zT
′.
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Symbols and Definitions

Scalars (real or complex) are indicated by italic Roman or Greek type (u, U , τx).
Vectors are indicated by bold type (u, U, τ ). Matrices are indicated by uppercase bold
sans serif type (M).

Diacritical marks

ψ time mean of ψ

ψ′ temporal anomaly of ψ: ψ′ ≡ ψ − ψ

ψ∗ rotated coordinates; or perturbation

ψ̂ estimate of ψ from data

ψ̃ nondimensional ψ; or amplitude of ψ

M
′ matrix transpose

M
∗ matrix of expansion coefficients (rotated timeseries)

M̃ nondimensional matrix

Operators

|ψ| absolute value (magnitude) of ψ: |ψ|2 ≡ Re(ψ)2 + Im(ψ)2

‖ψ‖ norm of ψ, e.g. the sum of squares of all elements of ψ

〈ψ〉 ensemble mean of ψ

curl vertical component of vector curl

∂ψ partial derivative with respect to ψ

H{x(t)} Hilbert transform: H{x(t)} ≡
1

π

∫
∞

−∞

x(t′)

t′ − t
dt′
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R(x) ramp function: R(x) ≡ xS(x) =

{
0 : x ≤ 0
x : x > 0

R′(w) R(w) −R(w)

R∗(w) R(w) −R(w)

Re(ψ) real part of ψ

S(x) Heaviside step function: S(x) ≡

{
0 : x ≤ 0
1 : x > 0

∇2 horizontal Laplacian operator: ∇2 ≡ ∂2
x + ∂2

y

Roman symbols (lowercase)

a curvature parameter for T0

b linear sensitivity of entrainment temperature anomalies to thermocline depth
anomalies: T ′

e ≈ bh′

c shallow water gravity wave speed = (g′H)1/2

cd drag coefficient (nondimensional)

e the base of the natural logarithm: e ≡ lim
x→∞

(
1 +

1

x

)x

f Coriolis parameter on the equatorial beta plane = βy; or statistic used in the
F -test for variance

g acceleration of gravity at sea level = 9.81 m s−2

g′ reduced gravity = g∆ρ/ρ

h thermocline depth anomaly

h1 linear thermocline depth anomaly

hm zonal-mean thermocline depth anomaly

hp zonal-perturbation thermocline depth anomaly: he = h− hm

i zonal index; or imaginary unit (−1)1/2

j meridional index

k singular value index; or zonal wavenumber

l time index

n number of time points
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nx total number of longitudinal gridpoints

ny total number of latitudinal gridpoints

p number of SST gridpoints

q number of wind stress gridpoints

r dissipation coefficient for active layer mass and momentum; or number of
singular values

rs damping of active layer shear current (mixed layer viscosity)

s number of principal components; or sample standard deviation

sc sample standard deviation of the climatological ensemble

t time coordinate

u average mixed layer current = (u, v)

u1 linear average active layer current

ua surface wind = (ua, va)

ual average active layer current

ui average active layer current below the mixed layer

us vertical shear current at base of mixed layer = (us, vs)

w upwelling at base of mixed layer

x zonal coordinate (positive eastward)

x∗ longitude of transient zonal stress patch

x0 longitude of climatological stress perturbation

xe longitude of easternmost gridpoint

xw longitude of westernmost gridpoint

y meridional coordinate (positive northward)

ỹ meridional coordinate nondimensionalized by upwelling scale

y∗ latitude of transient zonal stress patch

yn latitude of northernmost gridpoint

ys latitude of southernmost gridpoint

z vertical coordinate (positive upward)
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Roman symbols (uppercase)

A complex coupling factor A = |A| eiθA , converts SST anomalies to zonal stress
anomalies in the simplified equatorial model. The stress anomalies are shifted
eastward relative to the SST anomalies by the phase angle θA.

B fraction of the active layer occupied by the unmixed layer: B ≡
H −Hm

H

Fν1,ν2 distribution of a ratio of independent chi-square variables with ν1 and ν2

degrees of freedom: Fν1,ν2 ≡
χ2
ν1/ν1

χ2
ν2/ν2

H active layer depth

H0 active layer depth in the absence of wind stress

Hm mixed layer depth

Hobs observed active layer depth averaged over the domain of wave propagation

Im(ψ) imaginary part of ψ

Le equatorial radius of deformation =

(
c

2β

)1/2

≈ 230 km ≈ 2.1◦ latitude

Lx zonal halfwidth of climatological stress perturbation

Ly meridional halfwidth of climatological stress perturbation

M number of principal components in the noise model for the residual stress
anomalies

N number of singular modes in the regression model for stress anomalies

Ne number of ensemble members

P{E} probability of event E

PP predictive power

Re reflectivity of the eastern boundary

Rw reflectivity of the western boundary

T mixed layer temperature (SST)

T0(y) equilibrium SST in the absence of ocean dynamics

T0(y = 0) value of T0 at the equator

Tc thermocline central temperature
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Te temperature of water entrained into the mixed layer

Tmin minimum temperature in Te parameterization

U mixed layer transport = Hmu

U1 linear total active layer transport = (U1, V1)

U1,Kelvin Kelvin component of U1

U1,Rossby Rossby component of U1

Ual total active layer transport = Hual

Ui active layer transport below the mixed layer = (H −Hm)ual

Us shear transport = Hmus

Greek symbols (lowercase)

β variation of Coriolis parameter with latitude at the equator
= 2.28 × 10−11 (m s)−1 = 1.97 × 10−6 (m day)−1

≈ 2.51 × 10−6 (◦lat s)−1 ≈ 0.217 (◦lat day)−1

γ mixed layer entrainment efficiency

δ temperature increment in Te parameterization

ǫ linear damping coefficient for SST

ζ ratio of time step to noise decorrelation time

κ horizontal eddy diffusivity in the mixed layer

λh coefficient of thermocline depth

λu coefficient of active layer currents/transport

φ1 lag-1 autocorrelation

ρ density of seawater

ρa density of surface air

µ coefficient of wind stress anomalies (coupling strength)

σ2 variance

σ2
c climatological variance

ω complex frequency in time: ω = ωr + iωi

ωi angular frequency in time
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ωr e-folding growth rate in time

τ vector wind stress on the ocean surface = (τx, τy)

τ∗x transient zonal stress patch

θψ phase angle of ψ

τ̃∗x amplitude of transient zonal stress patch

τ∗x perturbation to climatological zonal stress

τ∗y perturbation to climatological meridional stress

τ̃∗x amplitude of perturbation to climatological zonal stress

τ̃∗y amplitude of perturbation to climatological meridional stress

χ2
ν chi-square variable with ν degrees of freedom

Greek symbols (uppercase)

∆x grid spacing in zonal direction

∆y grid spacing in meridional direction

∆x∗ zonal halfwidth of transient zonal stress patch

∆y∗ meridional halfwidth of transient zonal stress patch

∆t time step

∆t∗ duration of transient zonal stress patch

Γ maximum ∂hTe in Te parameterization

Matrices

A dimensionalized left singular vectors of C

AN leading N SST singular vectors

Ã left singular vectors of C

B dimensionalized right singular vectors of C

B̃ right singular vectors of C

BN,be dimensionalized principal component patterns of the residual stress estimated
from N singular modes

BN,be,M leading M dimensionalized principal component patterns of the residual stress
estimated from N singular modes
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C temporal covariance of observed SST/stress anomalies = (n− 1)−1X
′
Y

D diagonal matrix of singular values of C

D̃ nondimensionalized diagonal matrix of singular values of C

E matrix of shocks (spatially-correlated Gaussian noise)

EN random shocks plus truncation error

ÊN matrix of residuals (estimate of EN from the data)

˜̂
E

∗

N,be nondimensionalized principal component expansion coefficients of the residual
stress estimated using N singular modes

F red noise model for residual stress principal components

I identity matrix

RN regression of stress anomalies onto the leading N singular vectors of SST

R̂N estimate of RN from the data

Sx∗ diagonal matrix of SST singular vector expansion coefficient standard devia-
tions

Sy∗ diagonal matrix of stress singular vector expansion coefficient standard devi-
ations

X observed SST anomalies

X
∗ singular vector expansion coefficients of SST anomalies

X̃
∗

nondimensionalized singular vector expansion coefficients of SST anomalies

X̃
∗

N leading N nondimensionalized singular vector expansion coefficients of SST
anomalies

Y observed wind stress anomalies

Y
∗ singular vector expansion coefficients of stress anomalies

Ỹ
∗

nondimensionalized singular vector expansion coefficients of stress anomalies

ŶN estimate of deterministic stress anomaly from the leading N singular modes
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Units and Conversions

dPa MKS unit of wind stress = 0.1 Pa
= 1 dyne cm−2 = 7.46 × 108 kg m−1 day−2

cm centimeter

dyne CGS unit of force = g cm s−2 = 10−5 N

◦C Celsius temperature scale, or Celsius degree

km kilometer

K Kelvin temperature scale, or Kelvin unit

◦ lat degree latitude ≈ 1.11 × 105 m at the equator

◦ lon degree longitude ≈ 1.11 × 105 m at the equator

m meter

N Newton (MKS unit of force)

Pa MKS unit of wind stress = 1 N m−2

s second

W Watt (unit of power)

yr year
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Abbreviations and Acronyms

Abbreviations

H0 null hypothesis

ka thousand years ago

NID(µ, σ2) normally and independently distributed with mean µ and variance σ2

NINO3 eastern equatorial Pacific region (150◦W–90◦W, 5◦S–5◦N)

NINO3.4 central equatorial Pacific region (170◦W–120◦W, 5◦S–5◦N)

NINO4 western/central equatorial Pacific region (160◦E–150◦W, 5◦S–5◦N)

umtp zonal advection component −u∂xT
′

uptm zonal advection component −u′∂xT

uptp zonal advection component −u′∂xT
′

vmtp meridional advection component −v∂yT
′

vptm meridional advection component −v′∂yT

vptp meridional advection component −v′∂yT
′

wmtp vertical advection component −w∂zT
′

wptm vertical advection component −w′∂zT

wptp vertical advection component −w′∂zT
′

Acronyms

AGCM atmospheric general circulation model

CGS centimeter-gram-second system of units

CGCM coupled atmosphere/ocean general circulation model
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ENSO El Niño-Southern Oscillation

EOF empirical orthogonal function

EWE easterly wind event

FSU Florida State University; or the FSU pseudostress analysis

GCM general circulation model

GFDL Geophysical Fluid Dynamics Laboratory

HGCM hybrid coupled general circulation model

ITCZ Intertropical Convergence Zone

MJO Madden-Julian Oscillation

MKS meter-kilogram-second system of units

MOM Modular Ocean Model

MSD mean square deviation

NAO North Atlantic Oscillation

NCAR The National Center for Atmospheric Research

NCEP The National Centers for Environmental Prediction;
or the NCEP/NCAR reanalysis

OGCM oceanic general circulation model

OLR outgoing longwave radiation

PCA principal components analysis

PDO Pacific Decadal Oscillation

PP predictive power

RMS root mean square

SOI Southern Oscillation Index (surface air pressure at Tahiti minus that at Dar-
win, Australia)

SPCZ South Pacific Convergence Zone

SSE sum of square errors

SST sea surface temperature

SSTA sea surface temperature anomaly
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SVD singular value decomposition

TIW tropical instability wave

UNESCO United Nations Educational, Scientific, and Cultural Organization

WWE westerly wind event
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289



Collins, M., 2000a: The El Niño-Southern Oscillation in the Second Hadley Centre Coupled
Model and its response to greenhouse warming. J. Climate, 13, 1299–1312. 17

Collins, M., 2000b: Understanding uncertainties in the response of ENSO to greenhouse
warming. Geophys. Res. Lett., 27, 3509–3512. 17

Curtis, S. and S. Hastenrath, 1999: Long-term trends and forcing mechanisms of circulation
and climate in the equatorial Pacific. J. Climate, 12, 1134–1144. 10

da Silva, A. M., C. C. Young, and S. Levitus, 1994: Atlas of Surface Marine Data 1994, Vol.
1: Algorithms and Procedures. NOAA Atlas NESDIS 6, U.S. Department of Commerce,
83 pp., Washington, D.C. 22, 23, 26

D’Agostino, R. B. and M. A. Stephens, (Eds.) , 1986: Goodness-of-fit techniques. Dekker,
New York, 560pp. 49

Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the
twentieth and twenty-first centuries simulated by the NCAR Climate System Model. J.

Climate, 14, 485–519. 16, 145

D’Arrigo, R., R. Villalba, and G. Wiles, 2001: Tree-ring estimates of Pacific decadal climate
variability. Climate Dyn., 18, 219–224. 12

Davey, M. K., M. Huddleston, K. R. Sperber, and model data contributors, 2000: STOIC:
A study of coupled GCM climatology and variability in tropical ocean regions. STOIC
project report, CLIVAR-WGSIP, 41 pp. 6

Davey, M. K., M. Huddleston, K. R. Sperber, and model data contributors, 2002: STOIC:
A study of coupled model climatology and variability in tropical ocean regions. Climate

Dyn., 18, 403–420. 4, 6, 8

Delcroix, T., 1998: Observed surface oceanic and atmospheric variability in the tropical
Pacific at seasonal and ENSO timescales: A tentative overview. J. Geophys. Res., 103,
18 611–18 633. 188

Delecluse, P., M. K. Davey, Y. Kitamura, S. G. H. Philander, M. Suarez, and L. Bengtsson,
1998: Coupled general circulation modeling of the tropical Pacific. J. Geophys. Res., 103,
14 357–14 373. 3, 145, 188

DeVries, T. J., L. Ortlieb, A. Diaz, L. Wells, and C. Hillaire-Marcel, 1997: Determining
the early history of El Niño. Science, 276, 965–966. 14

DeWitt, D. G. and E. K. Schneider, 1998: The tropical ocean response to a change in
orbital forcing. Technical Report 56, COLA. 14

Dewitte, B., 2000: Sensitivity of an intermediate ocean-atmosphere coupled model of the
tropical Pacific to its oceanic vertical structure. J. Climate, 13, 2363–2388. 178

Dewitte, B. and C. Perigaud, 1996: El Niño-La Niña events simulated with Cane and
Zebiak’s model and observed with satellite or in situ data. Part II: Model forced with
observations. J. Climate, 9, 1188–1207. 25, 91

290



Diaz, H. F. and R. S. Pulwarty, 1994: An analysis of the time scales of variability in
centuries-long ENSO-sensitive records in the last 1000 years. Climatic Change, 26, 317–
342. 14

Dijkstra, H. A. and J. D. Neelin, 1995: Ocean-atmosphere interaction and the tropical
climatology. Part II: Why the Pacific cold tongue is in the east. J. Climate, 8, 1343–
1359. 28, 138, 145, 150, 153, 161, 179

Dijkstra, H. A. and J. D. Neelin, 1999: Coupled processes and the tropical climatology.
Part III: Instabilities of the fully coupled climatology. J. Climate, 12, 1630–1643. 18,
175, 179

du Penhoat, Y. and M. A. Cane, 1991: Effect of low-latitude western boundary gaps on
the reflection of equatorial motions. J. Geophys. Res., 96, 3307–3322. 93

Dunbar, R. B., G. M. Wellington, M. W. Colgan, and P. W. Glynn, 1994: Eastern Pa-
cific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in
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