IGS Satellite Metadata File Description

Peter Steigenberger

Oliver Montenbruck

Version 1.10, September 30, 2024

DOI: 10.57677/metadata-sinex

Contents

1.	Introdu	uction	2
	1.1. Sa	Itellite Metadata	2
	1.2. M	etadata SINEX Blocks	3
2.	SINEX	Metadata Format Extension	4
	2.1. Ge	eneral	4
	2.2. SA	ATELLITE/IDENTIFIER Block	4
	2.3. SA	ATELLITE/PLANE Block	6
	2.4. SA	ATELLITE/PRN Block	7
	2.5. SA	ATELLITE/FREQUENCY_CHANNEL Block	7
	2.6. SA	ATELLITE/MASS Block	8
	2.7. SA	ATELLITE/COM Block	8
	2.8. SA	ATELLITE/ECCENTRICITY Block	9
	2.9. SA	ATELLITE/TX_POWER Block	11
3.	Conve	ntions and Explanations	13
	3.1. Sa	itellite Identifier	13
	3.2. Sa	tellite Orbital Plane and Slot	13
	3.3. GI	LONASS Frequency Channel Number	14
	3.4. Sa	Itellite Mass	14
	3.5. Ce	enter of Mass and Sensor Eccentricities	14
4.	Metada	ata Sources	16
	4.1. Sa	Itellite Identifiers	16
	4.2. Sa	Itellite Orbital Plane and Slot	16
	4.3. Sa	Itellite Mass	17
	4.4. Tr	ansmit Power	17
Α.	Abbrev	viations	24

Revision History

Revision	Date	Author(s)	Description
1.01	18 July 2023	PS	QZSS pre-maneuver mass
			IRS-2G block type added
1.10 draft	10 July 2024	PS	GLONASS K2 details added, GLONASS K1+ added
			Homogenization of transmit antenna sensor names
			Table 6 updated
			SATELLITE/PLANE block added
1.10	30 September 2024	IGS GB	Approval by IGS Governing Board

1. Introduction

Satellite metadata are vital for accurate modeling of Global Navigation Satellite System (GNSS) data (Montenbruck and Steigenberger, 2020) and are a prerequisite for generation of high-precision products like orbits and clocks used for Precise Point Positioning (PPP), as an example. They include unique identifiers, mapping of the Pseudo-Random Noise (PRN) number to the Space Vehicle Number (SVN), SVN/frequency channel mapping for GLONASS, satellite mass, center of mass information, transmit antenna and laser retro-reflector array eccentricities, transmit power, and active clock history.

1.1. Satellite Metadata

Satellite Identifier Observations and navigation data of GNSS satellites are commonly identified in a GNSS receiver by a satellite number that refers to the transmitted PRN code (for GPS, Galileo, BeiDou, QZSS, and IRNSS) or the "slot number" for GLONASS. In the Receiver Independent Exchange (RINEX) format (Gini, 2023), a 3-character designation comprising the constellation letter and a two-digit PRN or slot number is used to specify the transmitting satellite. By its very nature, this satellite identifier is not tied to a given spacecraft but may vary over its lifetime. The primary unique satellite identifier in this document is the Space Vehicle Number (SVN), additional identifiers are the COSPAR ID, and the Satellite Catalog Number (NORAD ID).

Satellite Mass Knowledge of the mass of a GNSS satellite is required to compute the acceleration caused by non-gravitational forces (such as solar radiation pressure, radiation thrust, or Earth radiation pressure). In line with the quality of other model parameters, a 1% accuracy is typically deemed adequate for this purpose. Updates following the start of initial operations are only required after maneuvers and incremental mass changes of more than 1 kg.

Satellite Center-of-Mass Dynamic orbit models describe the motion of a satellite's center of mass. Therefore, knowledge of the potentially time-varying Center-of-Mass (CoM) location w.r.t. the origin of the spacecraft reference frame is required to express the position of other reference points (e.g., transmit antennas or laser retroreflectors) relative to the CoM. To exploit the precision of GNSS carrier-phase measurements and the technical capabilities of CoM measurements, knowledge of the CoM location is desired with a representative accuracy of 1 to 10 mm. **Sensor Eccentricities** The modeling of GNSS measurements requires concise information on the location of the antenna phase center and potential line-of-sight dependent phase variations. Such information is currently provided in the Antenna Exchange (ANTEX) format. However, as the Phase Center Offsets (PCOs) given in the current International GNSS Service (IGS) ANTEX files refer to CoM, time-variable PCOs are required if the CoM position changes. Therefore, time-invariable eccentricities of an Antenna Reference Point (ARP) can be specified together with PCOs referring to this ARP. Together with the current CoM values, the antenna position can be computed. Details on this topic are given in Sect. 3.5. The sensor eccentricities also include the offset of Laser Retroreflector Arrays (LRAs) for Satellite Laser Ranging (SLR).

Transmit Power Knowledge of the GNSS satellite transmit power is a prerequisite for the computation of antenna thrust caused by the transmission of navigation signals. Antenna thrust mainly acts in the radial direction and depends on the satellite mass and the transmit power (Milani et al., 1987).

1.2. Metadata SINEX Blocks

The satellite metadata are stored in dedicated blocks of an extension to the Solution INdependent EXchange (SINEX) format (Rothacher and Thaller, 2006). Version 2.02 of this format provides a **SATELLITE/ID** block including a very limited set of metadata. In the metadata extension of the SINEX format, the PRN number is moved to a separate block and a new **SATELLITE/IDENTIFIER** block is introduced with the following changes:

- NORAD ID added
- Transition from 2-digit year to 4-digit year
- Replaced antenna name by satellite block name

The satellite metadata extension consists of the following blocks:

Name	Description
SATELLITE/IDENTIFIER	Satellite designations (static), Sec. 2.2
SATELLITE/PLANE	Orbital plane and slot, Sec. 2.3
SATELLITE/PRN	SVN/PRN assignment, Sec. 2.4
SATELLITE/FREQUENCY_CHANNEL	GLONASS frequency channels, Sec. 2.5
SATELLITE/MASS	Spacecraft mass, Sec. 2.6
SATELLITE/CENTER_OF_MASS	Center-of-mass position, Sec. 2.7
SATELLITE/ECCENTRICITY	Sensor positions, Sec. 2.8
SATELLITE/TX_POWER	Total transmit power, Sec. 2.9

2. SINEX Metadata Format Extension

2.1. General

Date and Time All dates are given in the format YYYY: DDD: SSSSS with

YYYY: 4-digit year

DDD: 3-digit day of year

SSSSS: 5-digit seconds of day

Validity intervals are provided for time varying data assuming half-open intervals $[t_{start}, t_{end}]$ and constant parameter values in each interval (no slopes).

SVN The 4-digit Space Vehicle Number (SVN) is used as a unique primary key for accessing the individual information. The SVN is composed of a constellation letter for identifying the GNSS (consistent with RINEX) and a 3-digit number for each individual satellite.

- **G** Global Positioning System (GPS)
- R Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS)
- E Galileo
- **C** BeiDou
- J Quasi-Zenith Satellite System (QZSS)
- I Indian Regional Navigation Satellite System (IRNSS)

2.2. SATELLITE/IDENTIFIER Block

This block contains only unique information that does not require a validity interval.

Field	Description	Format
SVN	Space Vehicle Number as primary unique identifier	1X,A4
COSPAR_ID	COSPAR number: YYYY–NNNL	1X,A9
	YYYY : 4-digit launch year	
	NNN : 3-digit number for the launch within this year	
	L : character identifying the object of the launch	
SatCat	Satellite catalog number, also known as NORAD ID	1X,16
Satellite	see Table 1	1X,A15
block type		
Comment	e.g., launch date, satellite names in TLEs	1X,A41

Table 1:	GNSS	satellite	block	names.
	01100		010011	

Block	Description	Reference
GPS-I GPS-II GPS-IIA GPS-IIR-A GPS-IIR-B	GPS test satellite operational GPS satellite modified Block II satellites replenishment GPS satellite with legacy antenna panel replenishment GPS satellite with new antenna panel	Marquis and Reigh (2015)
GPS-IIR-M GPS-II-F GPS-III GPS-IIIF	modernized GPS-IIR satellite follow-on GPS satellite 3rd generation GPS satellite 3rd generation follow-on GPS satellite	Hartman et al. (2000) Fisher and Ghasemi (1999) Marquis and Shaw (2011)
GLO GLO-M GLO-M+ GLO-K1A GLO-K1B GLO-K1+ GLO-K2	Ist generation GLONASS satellite modernized GLONASS satellite GLONASS-M with L3 CDMA capability 1st generation GLONASS-K with two antenna panels 1st generation GLONASS-K with single antenna panel 1st generation GLONASS-K with L2 CDMA capability 2nd generation GLONASS-K	Fatkulin et al. (2012)
GAL-OA GAL-OB GAL-1 GAL-2	GIOVE-A GIOVE-B Galileo IOV Galileo FOC	Benedicto et al. (2006) Malik et al. (2009) ESA (2012) Berlin et al. (2017)
BDS-2G BDS-2I BDS-2M BDS-3SI-CAST BDS-3SI-SECM BDS-3SM-CAST BDS-3G BDS-3I BDS-3M-CAST	BeiDou-2 GEO BeiDou-2 IGSO BeiDou-2 MEO BeiDou-3S IGSO by CAST BeiDou-3S IGSO by SECM BeiDou-3S MEO by CAST BeiDou-3 SMEO by SECM BeiDou-3 IGSO BeiDou-3 MEO by CAST	
BDS-3M-SECM-A BDS-3M-SECM-B	BeiDou-3 MEO by SECM BeiDou-3 MEO by SECM, modified bus	SECM (2018)
QZS-1 QZS-2I QZS-2G QZS-2A QZS-3I QZS-3G	1st generation QZSS IGSO 2nd generation QZSS IGSO 2nd generation QZSS GEO QZSS Block IIA IGSO 3rd generation QZSS IGSO 3rd generation QZSS GEO	Cabinet Office (2022a) Cabinet Office (2019a,b) Cabinet Office (2022c) Cabinet Office (2022b)
IRS-1G IRS-1I IRS-2G	1st generation IRNSS GEO 1st generation IRNSS IGSO 2nd generation IRNSS GEO	Harde et al. (2015) Harde et al. (2015)

Example:

+SATELLITE/IDENTIFIER							
*							
*SVN_ COSPAR_ID SatCat B	Block	Comment					
G073 2015-062A 41019 GH	GPS-IIF	Launched	2015-10-31;	NAVSTAR 75			
G074 2018-109A 43873 GH	GPS-IIIA	Launched	2018-12-23;	NAVSTAR 77			
R857 2018-086A 43687 G	GLO-M	Launched	2018-11-03;	COSMOS 2529			
R858 2019-030A 44299 GI	GLO-M+	Launched	2019-05-27;	COSMOS 2534			
E221 2018-060A 43564 GA	GAL-2	Launched	2018-07-25;	GALILEO 25 (2C1)			
E222 2018-060B 43565 GA	GAL-2	Launched	2018-07-25;	GALILEO 24 (2CO)			
C222 2019-061A 44542 BI	BDS-3M-CAST	Launched	2019-09-22;	BEIDOU 3M23			
C223 2019-061B 44543 BI	BDS-3M-CAST	Launched	2019-09-22;	BEIDOU 3M24			
J004 2017-062A 42965 Q)ZS-2I	Launched	2017-10-09;	MICHIBIKI-4			
I009 2018-035A 43286 I	IRS-1I	Launched	2018-04-11;	IRNSS-1I			
*							
-SATELLITE/IDENTIFIER							

2.3. SATELLITE/PLANE Block

This block provides provides information about the orbital plane of a satellite within the constellation as well as the slot within the plane.

Field	Description	Format
SVN	Space vehicle number as unique identifier	1X,A4
Valid_From	Begin time of validity interval: YYYY : DDD : SSSSS	1X,I4,1H:,I3,1H:,I5
Valid_To	End time of validity interval: YYYY : DDD : SSSSS	1X,I4,1H:,I3,1H:,I5
Р	Orbital plane	1X,I1
Slot	Orbital slot	1X,A6
Comment	e.g., information source	1X,A35

+SATELLITE/PLANE								
*								
*SVN_	Valid_From	Valid_To	Ρ	Slot	Comment			
G032	2000:028:00000	2004:181:00000	6	F4	[PL05]			
G032	2004:181:00000	2004:323:00000	6	REPOS	[PL05] repositioning			
G032	2004:323:00000	0000:000:00000	6	F6	[PL05]			
R860	2020:076:00000	0000:000:00000	3	24	[PL02]			
R861	2022:332:00000	0000:000:00000	2	16	[PL02]			
C224	2019:308:00000	0000:000:00000	Ι		[PL04]			
C228	2019:350:00000	0000:000:00000	2	B-4	[PL04]			
C230	2020:175:00000	0000:000:00000	G	111E	[PL04]			
E223	2021:339:00000	0000:000:00000	2	в03	[PL03]			
E224	2021:339:00000	0000:000:00000	2	B15	[PL03]			
J005	2021:299:00000	0000:000:00000	Ι	139E	[PL06]			
I009	2018:101:00000	0000:000:00000	Ι	055E	[PL04]			
I010	2023:149:00000	0000:000:00000	G	130E	[PL04]			
-SATE1	-SATELLITE/PLANE							

2.4. SATELLITE/PRN Block

This block provides provides the RINEX satellite identifier (PRN) associated with a given space vehicle at a certain time.

Field	Description	Format
SVN	Space vehicle number as unique identifier	1X,A4
Valid_From	Begin time of validity interval: YYYY:DDD:SSSSS	1X, I4, 1H:, I3, 1H:, I5
Valid_To	End time of validity interval: YYYY:DDD:SSSSS	1X, I4, 1H:, I3, 1H:, I5
PRN	Pseudo-Random Noise number	1X,A3
Comment	e.g., source of PRN switch	1X,A40

Example:

+SATE:	+SATELLITE/PRN					
*						
*SVN_	Valid_From	Valid_To	PRN	Comment		
R802	2014:334:00000	2016:027:00000	R27			
R802	2016:027:00000	2016:046:48600	R17			
R802	2016:046:52200	0000:000:00000	R09			
C101	2015:089:00000	2018:114:36000	C31			
C101	2018:114:36060	2018:191:28800	C16			
C101	2018:191:28860	0000:000:00000	C31			
*						
-SATE:	LLITE/PRN					

2.5. SATELLITE/FREQUENCY_CHANNEL Block

This block provides information about the Frequency Channel Number (FCN) used for the GLONASS FDMA signals.

Field	Description	Format
SVN	Space vehicle number as unique identifier	1X,A4
Valid_From	Start time of validity interval: YYYY:DDD:SSSS	1X, I4, 1H:, I3, 1H:, I5
Valid_To	End time of validity interval: YYYY:DDD:SSSS	1X, I4, 1H:, I3, 1H:, I5
chn	Frequency Channel Number	1X,A3
Comment	e.g., source of FCN switch	1X,A40

```
+SATELLITE/FREQUENCY_CHANNEL

*
*SVN_ Valid_From___ Valid_To____ chn Comment_____

R717 2007:011:00000 2007:016:86399 0 [Const_070111.glo]

R717 2007:017:00000 2009:069:86399 4 [Const_070117.glo]

R717 2009:070:00000 2019:275:86399 -7 [Const_090311.glo]

*
-SATELLITE/FREQUENCY_CHANNEL
```

2.6. SATELLITE/MASS Block

This block lists the mass history (if available) or a static mass value of the spacecraft.

Field	Description	Format
SVN	Space Vehicle Number	1X,A4
Valid_From	Start time of validity interval: YYYY:DDD:SSSS	1X, I4, 1H:, I3, 1H:, I5
Valid_To	End time of validity interval: YYYY:DDD:SSSS	1X, I4, 1H:, I3, 1H:, I5
Mass	Satellite mass in kg	1X,F9.3
Comment	Reference, issue date, etc.	1X,A34

Example:

+SATE	+SATELLITE/MASS					
*						
*SVN_	Valid_From	Valid_To	Mass_[kg]	Comment_		
E101	2011:294:00000	2019:091:00000	696.815	[MA08],	Issue Date:	2011-10-21
E101	2019:091:00000	0000:000:00000	696.806	[MA28],	April 2019	
E102	2011:294:00000	2016:288:00000	695.328	[MA08],	Issue Date:	2011-10-21
E102	2016:288:00000	0000:000:00000	695.318	[MA08],	Issue Date:	2016-10-14
E103	2012:286:00000	0000:000:00000	697.632	[MA08],	Issue Date:	2012-10-12
E104	2012:286:00000	0000:000:00000	695.652	[MA08],	Issue Date:	2012-10-12
*						
-SATELLITE/MASS						

2.7. SATELLITE/COM Block

This block gives the position of the Center-of-Mass (CoM) w.r.t. the spacecraft reference frame and a history if available.

Field	Description	Format
SVN	Space Vehicle Number	1X,A4
Valid_From	Start time of validity interval: YYYY:DDD:SSSSS	1X, I4, 1H:, I3, 1H:, I5
Valid_To	End time of validity interval: YYYY:DDD:SSSS	1X, I4, 1H:, I3, 1H:, I5
X	X-component of CoM in meter	1X,F9.4
Y	Y-component of CoM in meter	1X,F9.4
Ζ	Z-component of CoM in meter	1X,F9.4
Comment	Reference, etc.	1X,A14

+SATELLITE/COM					
*					
*SVN_ Valid_From	Valid_To	X_[m]	Y_[m] _	Z_[m]	Comment
J001 2018:075:00542	2018:254:28080	-0.0011	0.0016	1.8252	[CM07] + dMass
J001 2018:254:28080	2019:070:01864	-0.0011	0.0016	1.8257	[CM07] + dMass
J001 2019:070:01864	2019:250:43853	-0.0011	0.0016	1.8265	[CM07] + dMass
J001 2019:250:43853	0000:000:00000	-0.0011	0.0016	1.8291	[CM07] + dMass
*					
-SATELLITE/COM					

2.8. SATELLITE/ECCENTRICITY Block

This block provides information about the eccentricities of passive and active sensors like SLR retroreflectors and reference points for microwave transmit antennas.

Field	Description	Format
SVN	Space Vehicle Number	1X,A4
Equipment	Sensor name, see Tab. 2 and 3	1X,A20
Туре	SINEX technique code:	1X,A1
	D - DORIS	
	L-SLR	
	$\mathbf{P} - GNSS$	
X	X-component of eccentricity in meter	1X,F9.4
Y	Y-component of eccentricity in meter	1X,F9.4
Ζ	Z-component of eccentricity in meter	1X,F9.4
Comment	Reference, etc.	1X,A21

Conventional IGS names for GNSS transmit antennas are summarized in Table 2. The old GNSS sensor names are compatible with the current IGS ANTEX file. New device names are proposed for use along with the next generation ANTEX format supporting multiple GNSS antennas on a single GNSS satellite like GLONASS K2 and the various QZSS satellites. Conventional names for SLR retroreflector arrays used on GNSS satellites are given in Table 3.

+SATELLITE/ECCENTRICITY					
*					
*SVN_ Equipment	_ T _	X_[m]	Y_[m] _	Z_[m]	Comment
J001 QZSS	Ρ	0.0011	-0.0016	1.8184	[EG06]
J001 LRA_QZS_1	L	1.1500	0.5500	4.5053	qzs1; [M,p,EL11]
J002 QZSS-2I	Ρ	-0.0030	0.0019	1.7711	[EG06]
J002 LRA_QZS_2	L	0.9882	0.8608	4.3733	qzs2; [M,p,EL12]
J003 QZSS-2G	Ρ	-0.0002	-0.0010	1.7759	[EG06]
J003 LRA_QZS_2	L	-1.0818	0.4608	4.3733	qzs3; [M,p,EL14]
J004 QZSS-2I	Ρ	-0.0033	0.0014	1.7681	[EG06]
J004 LRA_QZS_2	L	0.9882	0.8608	4.3733	qzs4; [M,p,EL15]
*					
-SATELLITE/ECCENTRICITY					

Block	Old Sensor Name	New Sensor Name	Description
GPS-I	BLOCK T	LANT CPS T	GPS Block I
GPS_II	BLOCK I	LANT_GPS_I	GPS Block II
GPS-IIA	BLOCK II	LANT_GPS_II	GPS Block IIA
CPS IIP A	BLOCK IIA	IANI_GFS_IIA	GPS Block IIR (original antenna)
CDS IID D	BLOCK IIR-A	LANI_GPS_IIK-A	CPS Plack IIR (original antenna)
GPS-IIR-B	BLOCK IIR-B	LANT_GPS_IIR-B	GPS Block IIR (new antenna)
GPS-IIK-M	BLOCK IIR-M	LANT_GPS_IIR-M	GPS Block IIR-M
GPS-IIF	BLOCK IIF		GPS Block IIF
GPS-III	BLOCK IIIA	LANT_GPS_III	GPS Block III
GLO	GLONASS	LANT_GLO	GLONASS
GLO-M	GLONASS-M	LANT_GLO_M	GLONASS-M
GLO-M+	GLONASS-M	LANT_GLO_M+	GLONASS-M+ main antenna
		L3CANT_GLO_M+	GLONASS-M+ L3 CDMA antenna
GLO-K1A	GLONASS-K1	LANT_GLO_K1A	GLONASS-K1 main antenna
		L3CANT_GLO_K1A	GLONASS-K1 L3 CDMA antenna
GLO-K1B	GLONASS-K1	LANT_GLO_K1B	GLONASS-K1 (one antenna)
GLO-K1+	GLONASS-K1	LANT_GLO_K1+	GLONASS-K1+ main antenna
		L2CANT_GLO_K1+	GLONASS-K1+ L2 CDMA antenna
GLO-K2	GLONASS-K2	LCANT_GLO_K2	GLONASS K2 CDMA antenna
		LFANT_GLO_K2	GLONASS K2 FDMA antenna
GAL-0A	GALILEO-0A	LANT_GIOVEA	GIOVE-A
GAL-0B	GALILEO-0B	LANT_GIOVEB	GIOVE-B
GAL-1	GALILEO-1	LANT_GAL_1	Galileo IOV
GAL-2	GALILEO-2	LANT_GAL_2	Galileo FOC
BDS-2M	BETDOII-2M	LANT BDS 2M	BeiDou-2 MEO
BDS-2I	BEIDOU_2T	LANT BDS 21	BeiDou-2 IGSO
BDS 2G	BEIDOU-21	LANT PDS 2C	BeiDou 2 GEO
BDS 3SI CAST			BeiDou 3 exp. IGSO. CAST
BDS 2SI SECM	BEIDOU-3SI-CASI	LANI DDC 2CT CECM	BeiDou 2 exp. IGSO, CAST
BDS 3SM CAST	BEIDOU-351-SECM		BeiDou 2 exp. MEO. CAST
DDS-SSMI-CAST	BEIDOU-SSM-CASI	LANI_BDS_SSM_CASI	BeiDou 2 exp. MEO, CAST BeiDou 2 exp. MEO, SECM
DDS-35MI-SECM	BEIDOU-SSM-SECM	LANT_BDS_SSM_SECM	BeiDou-3 exp. MEO, SECM
DDS-3MI-CASI	BEIDOU-3M-CAST	LANT_BDS_3M_CAST	BeiDou-5 MEO, CAST BeiDou 2 MEO, SECM (originality)
DDS-3MI-SECMI-A	BEIDOU-3M-SECM	LANT_BDS_3M_SECM_A	BeiDou-5 MEO, SECM (ong. bus)
DDS-3NI-SECIVI-D		LANT_BDS_3M_SECM_B	BeiDou-5 MEO, SECM (new bus)
DD3-30	BEIDOU-3G-CAST	LANT_BDS_3G	BeiDou-3 GEO
BD2-31	BEIDO0-31	LANT_BDS_31	BeiDou-3 IGSO
QZS-1	QZSS	LANT_QZS_1	QZSS Block I IGSO
070 01		L1SANT_QZS_1	
QZS-21	QZSS-2I	LANT_QZS_2I	QZSS BIOCK II IGSO
		LISANT_QZS_2I	
		L5SANT_QZS_2I	
QZS-2G	QZSS-2G	LANT_QZS_2G	QZSS Block II GEO
		L1SANT_QZS_2G	
		L5SANT_QZS_2G	
QZS-2A	QZSS-2A	LANT_QZS_2A	QZSS Block IIA IGSO
		L1SANT_QZS_2A	

Table 2: Sensor names of GNSS satellite transmit antennas.

Block	Old Sensor Name	New Sensor Name	Description
		L5SANT_QZS_2A	
IRS-1G	IRNSS-1GEO	LANT_IRNSS_1G	NavIC Block I GEO
IRS-1I	IRNSS-1IGSO	LANT_IRNSS_11	NavIC Block I IGSO
IRS-2G	IRNSS-2GEO	LANT_IRNSS_2G	NavIC Block II GEO
IRS-2I		LANT_IRNSS_21	NavIC Block II IGSO

Table 3: Sensor names of SLR retroreflector arrays used on GNSS satellites.

Name	Description	Reference
LRA_GPS_IIA LRA_GPS_III	GPS IIA, 32 prisms GPS III, 48 prisms	Degnan and Pavlis (1994)
LRA_GLO_396_AL	GLONASS, 396 prisms, irreg. planar, Al coating	Sosnica et al. (2015)
LRA_GLO_132_AL	GLONASS, 132 prisms, irreg. circle, Al coating	Sosnica et al. (2015)
LRA_GLO_M_AL	GLONASS-M, 112 prisms, rectangular, Al coating	Sosnica et al. (2015)
LRA_GLO_M	GLONASS-M, 112 prisms, rectangular, uncoated	Sosnica et al. (2015)
LRA_GLO_K1	GLONASS-K1, 123 prisms, ring array, uncoated	Sosnica et al. (2015)
LRA_GLO_K2	GLONASS-K2, 36 prisms, ring array	Sharqorodsky (2014)
LRA_GIOVEA	GIOVE-A, 76 prisms, coated	Galileo Project Office (2008)
LRA_GIOVEB	GIOVE-B, 67 prisms, Al coating	Galileo Project Office (2008)
LRA_GAL_1	Galileo IOV, 84 prisms	Navarro-Reyes et al. (2011)
LRA_GAL_2	Galileo FOC, 60 prisms	Navarro-Reyes (2014)
LRA_BDS_SHAO_42 LRA_BDS_SHAO_90 LRA_BDS_NCRIEO_38	BeiDou MEO, SHAO, 42 prisms BeiDou GEO/IGSO satellites, SHAO, 90 prisms BeiDou MEO, NCRIEO, 38 prisms	Zhang et al. (2014) Zhang et al. (2014)
LRA_QZSS_1	QZSS Block I, II, IIA, 56 prisms	Nakamura and Kishimoto (2010)
LRA_IRNSS	IRNSS, 40 prisms ^a	Porcelli et al. (2017) ^b

^a IRNSS-1G does not have a retroreflector array: https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_ missions/current_missions/irnb_general.html

b https://ilrs.cddis.eosdis.nasa.gov/docs/IRNSS_reflector_drawings.pdf

2.9. SATELLITE/TX_POWER Block

This block provides information about the total transmitted power.

Field	Description	Format
SVN	Space Vehicle Number	1X,A4
Valid_From	Start time of validity interval: YYYY:DDD:SSSS	1X,I4,1H:,I3,1H:,I5
Valid_To	End time of validity interval: YYYY:DDD:SSSSS	1X,I4,1H:,I3,1H:,I5
Р	Total transmit power in Watt	1X,I4
Comment	Reference, etc.	1X,A39

+SATELLITE/TX_POWER				
*				
*SVN_ Valid_From	Valid_To	P[W]	Comment	
E101 2011:294:00000	2014:148:00000	150	[TP01]; nominal power	
E101 2014:148:00000	2015:138:00000	95	[TP01,TP02]; temporary back off	
E101 2015:138:00000	0000:000:00000	135	[TP01]; reduced power	
R720 2007:299:00000	2019:094:18000	60	[TP01]	
R720 2019:094:18000	0000:000:00000	40	[TP08]; reduced L1 power	
J004 2017:282:00000	0000:000:00000	550	[TP07]	
*				
-SATELLITE/TX_POWER				

3. Conventions and Explanations

This section discusses conventions used for the generation of the IGS satellite metadata file available at the IGS file server https://files.igs.org/pub/station/general/igs_satellite_metadata.snx.

3.1. Satellite Identifier

SVN For Galileo and BeiDou, the satellite generation can be identified from the first two characters of the SVN:

- Galileo In-Orbit Validation (IOV): Elnn
- Galileo Full Operational Capability (FOC): E2nn
- BeiDou-2: C0nn
- BeiDou-3S: C1nn
- BeiDou-3: C2nn

For GLONASS, the SVN used within the IGS and also in the satellite metadata format differs for newer spacecraft from the Russian spacecraft numbers (see https://www.glonass-iac.ru/en/GLONASS/) by 100 in order to guarantee unique numbers.

TLE Satellite Name The satellite name used in the Two-Line Elements (TLEs) is given as additional information in the comment field as it is not relevant for high-precision applications to justify inclusion in the format definition.

3.2. Satellite Orbital Plane and Slot

Regular orbital planes of GNSS MEO satellites are identified by integer numbers as given in Tab. 5. Irregular planes like the eccentric orbits of Galileo E201 and E202 are identified by the character \mathbf{x} . For IGSO and GEO satellites, the characters \mathbf{I} and \mathbf{G} are given as plane and the longitude is given as slot. Slot designators as used by the system providers and listed in Tab. 5 are used for the MEO satellites. Satellites being repositioned are identified by the tag **REPOS**.

	Planes	Slots
GPS	1 -6	[A-F][1-4][A,F] ^a
GLONASS	1 - 3	[1-24] ^b
Galileo	1-3, X	[A-C][0-1][1-8], Ext0[1,2] ^c
BeiDou MEO	1-3	[A -C]-[1-8]
IGSO	I	nnn[E,₩] ^c
GEO	G	nnn[E,W] ^c

Table 5: Orbital planes and slots of MEO, IGSO, and GEO satellites.

^a the third character is optional and indicates extended slots

^b slots 1-8 in orbital plane 1, slots 9-16 in orbital plane 2, slots 17-24 in orbital plane 3

^c **nnn** indicates the three-digit longitude in degrees

3.3. GLONASS Frequency Channel Number

In contrast to other GNSSs, GLONASS uses the Frequency Division Multiple Access (FDMA) approach to distinguish individual satellites for its legacy L1 and L2 signals. The frequency of the L1 and L2 signals are given by

$$f_{L1}(k) = 1602.0 \text{ MHz} + k \cdot 0.5625 \text{ MHz}$$
(1)

$$f_{L2}(k) = 1246.0 \text{ MHz} + k \cdot 0.4375 \text{ MHz}$$
 (2)

where k stand for the channel number. In the initial GLONASS design, channel numbers k = 0, ..., 24 were used. Due to interference with astronomical observations, the channel numbers were changed to k = 0, ..., 12 in 1998 and to k = -7, ..., +6 in 2005 (Revnivykh et al., 2017). A history of GLONASS channel numbers starting with 2005 is available at ftp://ftp.glonass-iac.ru/MCC/STATUS/.

3.4. Satellite Mass

Until 2022, it was assumed that the satellite mass given in the history information of QZSS operation (Cabinet Office, 2023a,c,d,e,b) refers to the mass after the maneuver. Therefore, the end time of the last orbit maneuver was used as epoch for a change in the mass. End of 2022, CAO started to publish the mass history all QZSS satellites in a machine-readable format in a dedicated SATELLITE/MASS block. From the mass change epochs and the epochs of the maneuvers in the SATELLITE/MANEUVER block, it evident, that the mass values refer to the mass *before* the maneuver. This was implemented in the satellite metadata file on 30 January 2023.

3.5. Center of Mass and Sensor Eccentricities

Figure 1: Current and future relation between CoM and phase center.

Sensors in the context of the **SATELLITE/ECCENTRICITY** block are any passive or active equipment that is used for any kind of measurements, e.g., the GNSS microwave transmit antennas as well as SLR LRAs. The sensor eccentricities describe the coordinates of an equipment reference point w.r.t. the same origin that is used for CoM coordinates in the **SATELLITE/COM** block. Users are advised to ensure that the eccentricity information is used with consistent CoM data. In accord with current IGS conventions and the provision of CoM-related antenna phasecenter information for GNSS satellites in the ANTEX 1.4 format (Rothacher and Schmid, 2010), the CoM is adopted as antenna reference point for all GNSS antennas in the present **SATELLITE/ECCENTRICITY** block. All coordinates refer to the IGS conventions of the spacecraft body axis orientations as defined in Montenbruck et al. (2015).

For Galileo and QZSS, the use of time-varying CoM information causes an inherent incompatibility with the current ANTEX concept of constant phase center offsets relative to the CoM. This discrepancy will only be removed in future ANTEX model versions that will make use of a mechanical antenna reference point for phase center offset specifications, see Fig 1.

For some satellites, a detailed history of mass changes is provided but only Beginning of Life (BoL) and End of Life (EoL) values for the CoM. The current CoM position CoM(t) can be computed by

$$CoM(t) = CoM_{EoL} + \Delta CoM \cdot \mu(t) \cdot (1 - \mu(t))$$
(3)

with

$$\mu(t) = \frac{m(t) - m_{\text{EoL}}}{m_{\text{EoL}}} \tag{4}$$

and

$$\Delta \text{CoM} = \frac{\text{CoM}_{\text{BoL}} - \text{CoM}_{\text{EoL}}}{\mu_{\text{BoL}} \cdot (1 - \mu_{\text{BoL}})}$$
(5)

4. Metadata Sources

The providers of Galileo, BeiDou, and QZSS have published GNSS satellite metadata on dedicated websites:

Galileo	https://www.gsc-europa.eu/support-to-developers/galileo- satellite-metadata
BeiDou	http://en.beidou.gov.cn/SYSTEMS/Officialdocument/
GPS	https://www.navcen.uscg.gov/?pageName=gpsTechnicalReferences
QZSS	https://qzss.go.jp/en/technical/qzssinfo/index.html

4.1. Satellite Identifiers

NORAD ID The satellite catalog number is also known as NORAD ID and is assigned by the United States Space Command. This catalog is publicly available at https://www.space-track.org.

COSPAR ID The COSPAR ID is assigned by the Committee on Space Research. It consists of a 3-digit number for the launch within the current year and one or two characters identifying the object of the launch (usually **A** for single, **A** or **B** for twin, **A**, **B** or **C** for triple, and **A**, **B**, **C** or **D** for quadruple launches of GNSS satellites).

PRN Observations and navigation data of GNSS satellites are commonly identified in a GNSS receiver by a satellite number that refers to the transmitted PRN code (for GPS, Galileo, BeiDou, QZSS, and IRNSS) or the "slot number" for GLONASS. In the RINEX format (Gini, 2023), a 3-character designation comprising the constellation letter and a two-digit PRN or slot number is used to specify the transmitting satellite. By its very nature, this satellite identifier is not tied to a given spacecraft but may vary over its lifetime. The **SATELLITE/PRN** block provides the RINEX satellite identifier ("PRN") associated with a given space vehicle at a certain time. Information on the SVN/PRN association for active satellites can be obtained from the following constellation status websites of the system providers:

GPS	https://www.navcen.uscg.gov/gps-constellation
GLONASS	https://www.glonass-iac.ru/en/sostavOG/
Galileo	<pre>https://www.gsc-europa.eu/system-service-status/constellation- information</pre>
BeiDou	http://www.csno-tarc.cn/en/system/constellation
QZSS	https://sys.qzss.go.jp/dod/en/constellation.html

4.2. Satellite Orbital Plane and Slot

Information on the orbital plane and slot are partly given by the system providers:

GPS	https://www.navcen.uscg.gov/sites/default/files/pdf/gps/ current.pdf
GLONASS	https://www.glonass-iac.ru/en/sostavOG/
Galileo	<pre>https://www.gsc-europa.eu/system-service-status/orbital-and technical-parameters</pre>

Changes in GPS slot positions after 01 July 2019 are taken from the document mentioned above. The release date is taken as start and end date, no time periods for repositioning are given anymore. Orbital slot and orbital plane are swapped in the English version of the GLONASS constellation status website.

4.3. Satellite Mass

An overview of GNSS satellite mass values is given in Table 5. A mass history is currently available for selected Galileo and all QZSS satellites. For QZSS, the mass after each orbit maintenance maneuver is given. As each maneuver can consist of up to three individual burns, the stop date of the last burn is used for the satellite mass history.

The following mass information is currently not considered in the **SATELLITE/MASS** block:

- Individual mass values for specific Block I, II, and IIA spacecraft given in Fliegel et al. (1992).
- Individual mass values for Block IIR satellites G041, G043, G044, G046, G051 as of March 2004 given in Adhya (2005).

4.4. Transmit Power

The received power of a GNSS satellite on the Earth's surface can be measured with a high-gain antenna. The Equivalent Isotropically Radiated Power (EIRP) can be obtained by correcting these measurements for freespace and atmospheric losses along the propagation path between satellite and ground antenna. The transmit power can be estimated as an offset between the measured EIRP and the satellite antenna gain pattern. Such measurements have been made by Steigenberger et al. (2018) and are summarized in Table 6 together with more recent measurements, published metadata as well as assumptions for satellites without measurements or other sources for the transmit power.

GPS No EIRP measurements are available for the GPS Block I and Block II satellites. Therefore, the measured mean value of the Block IIA satellites with 50 W is assumed for both blocks. Block-specific transmit power values obtained from EIRP measurements of individual Block IIA, IIR, IIR-M, and IIF satellites are given in Steigenberger et al. (2018). For GPS III, no measured transmit power is available, the value in Table 6 is based on the Block IIF transmit power, increased power levels specified in IS-GPS-200L (2020) as well as the additional L1C signal.

GPS satellites are able to redistribute power between different signals, a capability called flex power. Thoelert et al. (2018) and Steigenberger et al. (2019) report different modes of flex power on Block IIR-M and IIF satellites. Although the SINEX transmit power block described in Sec. 2.9 allows for time-varying power levels, flex power is currently not considered in the IGS satellite metadata file.

GLONASS For the first generation GLONASS satellites, no EIRP measurements are available. Therefore, they are not included in the satellite metadata file. The current GLONASS-M satellites have significantly different levels of transmitted power: three different power levels (low, medium, high) are present for the L1 and L2 frequency band, respectively (Steigenberger et al., 2018). Six different combinations of L1 and L2 transmit power are listed in Table 6 with values between 20 and 85 W. GLONASS-M+ satellites are capable of transmitting on a third frequency, namely L3. For the second GLONASS-M+ satellite R856, a total power of 120 W was measured in 2019. This is an increase of 20 % compared to the first GLONASS-M+ satellite R855. The GLONASS-K satellites are also able to transmit L3 signals. Whereas GLONASS-K1A utilizes a dedicated transmit antenna for L3, GLONASS-K1B has a common antenna for all three L-band frequencies (Montenbruck et al., 2015).

In view of the upcoming 3rd IGS reprocessing campaign, eight GLONASS satellites have been observed in early 2019. Results for three of them have already been reported in Steigenberger et al. (2018), namely R802, R851, R853, the other five are newly observed (R723, R852, R854, R856, R857). The transmit power values of the reobserved satellites agree within the formal errors with the previous measurements. Therefore, the original values of Steigenberger et al. (2018) are kept.

BeiDou For BeiDou-2 MEO and IGSO satellites, the transmit powers of Steigenberger et al. (2018) are used. No transmit power measurements of GEO satellites are available due to the low elevation angle or even no visibility at the Weilheim dish antenna used by Steigenberger et al. (2018). A best-guess value of 250 W is used for the BeiDou-3S China Academy of Space Technology (CAST) MEO satellites. Due to the lack of BDS-3 transmit antenna gain

Table 5: In-orbit masses of different types of GNSS satellites	5. FOCe denotes the Galileo FOC satellites
in eccentric orbit (E201 and E202).	

System	Туре	Mass [kg]	Reference
GPS	I	455	Kramer (2002)
	II	843	Kramer (2002)
	IIA	930	Kramer (2002)
	IIR	1080	Hegarty (2017)
	IIR-M	1080	Hegarty (2017)
	IIF	1633	a
	III	2161	Alexander and Martin (2018)
GLONASS	M	1415	Fatkulin et al. (2012)
	K1	995	Revnivykh et al. (2017)
	M+	≥ 1415	Revnivykh et al. (2017)
	K1+	≥ 995	Revnivykh et al. (2017)
	K2	1645	Fatkulin et al. (2012)
Galileo	IOV	695–698	European GNSS Service Center (2019)
	FOCe	661,662	European GNSS Service Center (2019)
	FOC	706–712	European GNSS Service Center (2019)
BDS-2	MEO	1176 – 1193	CSNO (2019b)
	IGSO	1272 – 1284	CSNO (2019b)
	GEO	1382 – 1551	CSNO (2019b)
BDS-3S	IGSO CAST IGSO SECM MEO CAST	2800 848 1014	Zhao et al. (2018) Zhao et al. (2018)
BDS-3	MEO CAST	941 – 1061	CSNO (2019a)
	MEO SECM	1009 – 1079	CSNO (2019a)
	IGSO	2870 – 2952	CSNO (2019a)
	GEO	2968	CSNO (2019a)
QZSS	QZS-1	2197 ^b	Cabinet Office (2023a)
	QZS-2	2261 ^b	Cabinet Office (2023c)
	QZS-3	2546 ^b	Cabinet Office (2023d)
	QZS-4	2278 ^b	Cabinet Office (2023e)
	QZS-1R	2357 ^b	Cabinet Office (2022b)
IRNSS	IRS-1 IGSO	700	Best guess from dry mass of 614 kg in Harde et al. (2015)
	IRS-1 GEO	700	Best guess from dry mass of 614 kg in Harde et al. (2015)
	IRS-2 GEO	1500	Best guess from launch mass of 2232 kg in ISRO (2023)

^a http://www.boeing.com/space/global-positioning-system/#/technical-specifications ^b Value as of May 2022, full history available at http://qzss.go.jp/en/technical/qzssinfo/index.html

pattern, preliminary transmit power values of BDS-3 MEO satellites obtained with BDS-2 gain pattern are given. The

QZSS QZSS is the only navigation system with transmit power values provided by the system operator (Cabinet Office, 2022a, 2019a, 2022c, 2019b, 2022b).

System	Туре	Group	SVN	Power	
GPS	Ι		G001–G006, G008–G011	$50\mathrm{W}$	
	II		G013-G021	$50\mathrm{W}$	
	IIA		G022-G040	$50\mathrm{W}$	
	IIR-A/B		G041, G043 – G047, G051, G054, G056, G059 – G061	$60\mathrm{W}$	
	IIR-M		G048-G050, G052, G053, G055, G057, G058	$145\mathrm{W}$	
	IIF		G062-G073	$240\mathrm{W}$	
	III		G074–G083	$300\mathrm{W}$	
GLO	Μ	L1L/L2L	R735 since 2 Feb. 2016	$20\mathrm{W}$	
		L1L/L2M	R715, R721, R733, R734, R736	$25\mathrm{W}$	
		L1L/L2H	R719	$40\mathrm{W}$	
		L1M/L2H	R716, R720	$60\mathrm{W}$	
		L1H/L2M	R717, R730, R732	$65\mathrm{W}$	
		L1H/L2H	R731, R742–R745, R747, R851, R852, R853, R857	$85\mathrm{W}$	
			R854	$70\mathrm{W}$	
		default	default value for all other GLONASS-M satellites	$50\mathrm{W}$	
	M+		R855	$100\mathrm{W}$	
	M+		R856	$120\mathrm{W}$	
	M+		R858	$110\mathrm{W}$	
	M+		R805, R806, R859, R860, R861	$110\mathrm{W}$	а
	K1		R801	$135\mathrm{W}$	
			R802	$105\mathrm{W}$	
			R805, R806	$105\mathrm{W}$	b
GAL	IOV	nominal	E101-E104	$160\mathrm{W}$	c
		reduced	E101 and E102	$135\mathrm{W}$	d
		back-off	E103	$95\mathrm{W}$	e
	FOC		E201-E234	$265\mathrm{W}$	
BDS-2	MEO		C012-C015	$130\mathrm{W}$	
	IGSO		C005, C007–C010, C017	$185\mathrm{W}$	
BDS-3	MEO CAST		C201/2, C205/6, C209/10, C213/4, C218/9, C222/3, C227/8, C332/3	$310\mathrm{W}$	f
	MEO SECM		C203/4, C207/8, C211/2, C215/6, C225/6	$280\mathrm{W}$	f
	IGSO		C220, C221, C224	$310\mathrm{W}$	g
	GEO		C217, C229, C230, C231	$310\mathrm{W}$	g
QZSS	QZS-I	IGSO	J001	$250\mathrm{W}$	h
-	QZS-II	IGSO	J002, J004	$500\mathrm{W}$	i
	QZS-II	GEO	J003	$550\mathrm{W}$	j
	QZS-IIA	IGSO	J005	$460\mathrm{W}$	k
a average of R855, R856, R858 e measured in Oct. 2016 i Cabinet Office (2019a,b) b copy of R802 f obtained with BDS-2 gain pattern j Cabinet Office (2022c) c until approximately 27 May 2014 g MEO CAST value as first guess k Cabinet Office (2022b) d until approximately 27 May 2016 h Office (2022c) k Cabinet Office (2022b)					

Table 6: Average transmit power of different types of GNSS satellites. All measured values are rounded to 5 W. Measured values are given in black, assumed values in red, and provider values in blue.

^d measured in Dec. 2015 and Oct. 2016 ^h Cabinet Office (2022a)

20

References

- Adhya S (2005) Thermal re-radiation modelling for the precise prediction and determination of spacecraft orbits. URL https://discovery.ucl.ac.uk/id/eprint/1445243/1/U592563.pdf
- Alexander K, Martin HW III (2018) GPS program update. 13th Meeting of the International Committee on Global Navigation Satellite Systems URL http://www.unoosa.org/documents/pdf/icg/2018/icg13/02.pdf
- Benedicto J, Gatti G, Garutti A, Paffet J, Bradford A, Jackson C, Rooney E (2006) The triumph of GIOVE-A the first Galileo satellite. ESA Bulletin 127:62–69
- Berlin M, Burnett CM, de Rocco L, Rodríguez J (2017) Galileo: Work order 1 finished and deployed. In: GNC 2017
- Cabinet Office (2019a) QZS-2 satellite information. Tech. Rep. SPI-QZS2_C, Government of Japan, National Space Policy Secretariat, URL https://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/spi-qzs2_c.pdf
- Cabinet Office (2019b) QZS-4 satellite information. Tech. Rep. SPI-QZS4_C, Government of Japan, National Space Policy Secretariat, URL https://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/spi-qzs4_c.pdf
- Cabinet Office (2022a) QZS-1 satellite information. Tech. Rep. SPI_QZS1_B, Government of Japan, National Space Policy Secretariat, URL https://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/spi-qzs1_b.pdf
- Cabinet Office (2022b) QZS-1R satellite information. Tech. Rep. SPI-QZS1R_A, Government of Japan, National Space Policy Secretariat, URL https://qzss.go.jp/en/technical/qzssinfo/khp0mf0000000wuf-att/spi-qzs1r_a_220120.pdf
- Cabinet Office (2022c) QZS-3 satellite information. Tech. Rep. SPI-QZS3.E, Government of Japan, National Space Policy Secretariat, URL http://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/spi-qzs3_e.pdf
- Cabinet Office (2023a) The history information of QZS-1 operation. Tech. Rep. OHI-QZS1, Government of Japan, National Space Policy Secretariat, URL https://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/ohi-qzs1.pdf
- Cabinet Office (2023b) The history information of QZS-1r operation. Tech. Rep. OHI-QZS1R, Government of Japan, National Space Policy Secretariat, URL https://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/ohi-qzs1r.pdf
- Cabinet Office (2023c) The history information of QZS-2 operation. Tech. Rep. OHI-QZS2, Government of Japan, National Space Policy Secretariat, URL https://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/ohi-qzs2.pdf
- Cabinet Office (2023d) The history information of QZS-3 operation. Tech. Rep. OHI-QZS3, Government of Japan, National Space Policy Secretariat, URL http://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/ohi-qzs3.pdf
- Cabinet Office (2023e) The history information of QZS-4 operation. Tech. Rep. OHI-QZS4, Government of Japan, National Space Policy Secretariat, URL http://qzss.go.jp/en/technical/qzssinfo/khp0mf000000wuf-att/ohi-qzs4.pdf
- CSNO (2019a) Announcement on the release of Beidou satellite related parameters. URL http://www.beidou.gov.cn/yw/gfgg/ 201912/t20191209_19613.html, in Chinese
- CSNO (2019b) Announcement: Release of the BDS-2 satellite related parameters. URL http://en.beidou.gov.cn/WHATSNEWS/ 201912/t20191209_19641.html
- Degnan JJ, Pavlis EC (1994) Laser ranging to GPS satellites with centimeter accuracy. GPS World 5(9):62-70
- ESA (2012) Fact sheet: Galileo In-Orbit Validation. URL http://download.esa.int/docs/Galileo_IOV_Launch/Galileo_ IOV_factsheet_2012.pdf
- European GNSS Service Center (2019) Galileo satellite metadata. European Global Navigation Satellite Systems Agency, URL https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata
- Fatkulin R, Kossenko V, Storozhev S, Zvonar V, Chebotarev V (2012) GLONASS space segment: satellite constellation, Glonass-M and Glonass-K spacecraft main features. In: ION GNSS 2012, pp 3912–3930
- Fisher SC, Ghasemi K (1999) GPS IIF the next generation. Proceedings of the IEEE 87(1):24-47, DOI 10.1109/5.736340
- Fliegel H, Gallini T, Swift E (1992) Global Positioning System radiation force model for geodetic applications. Journal of Geophysical Research 97(B1):559–568, DOI 10.1029/91JB02564
- Galileo Project Office (2008) Specification of Galileo and GIOVE space segment properties relevant for Satellite Laser Ranging. Tech. Rep. 3.2, European Space Agency, URL https://ilrs.cddis.eosdis.nasa.gov/docs/ESA-EUING-TN-10206_Issue_3.2.pdf
- Gini F (2023) RINEX, The Receiver Independent Exchange Format, Version 4.01. Tech. rep., URL https://files.igs.org/pub/ data/format/rinex_4.01.pdf

- Harde H, Shahade M, Badnore D (2015) Indian regional navigation satellite system. International Journal of Research In Science & Engineering 1(1)
- Hartman T, Boyd LR, Koster D (2000) Modernizing the GPS Block IIR spacecraft. In: ION GPS 2000, pp 2115–2121
- Hegarty C (2017) The Global Positioning System (GPS). In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, Springer, chap 7, pp 197–218, DOI 10.1007/978-3-319-42928-1_7
- IS-GPS-200L (2020) Interface Specification IS-GPS-200: Navstar GPS Space Segment/Navigation User Segment Interfaces. URL https: //www.gps.gov/technical/icwg/IS-GPS-200L.pdf
- ISRO (2023) GSLV-F12/NVS-01 mission. URL https://www.isro.gov.in/media_isro/pdf/Missions/GSLVF12/ GSLVF12_NVS01_Mission.pdf
- Kramer HJ (2002) Observation of the Earth and Its Environment: Survey of Missions and Sensors, 4th edn. Springer, DOI 10.1007/978-3-642-56294-5
- Malik M, Gatti G, Alpe V, Johansson M, Kieffer R, Robertson G (2009) GIOVE-B Satellite & Payload Overview. In: Proceedings of the European Navigation Conference Global Navigation Satellite Systems
- Marquis W, Shaw M (2011) Design of the GPS III Space Vehicle. In: ION ITM 2011, pp 3067–3075
- Marquis WA, Reigh DL (2015) The GPS Block IIR and IIR-M broadcast L-band antenna panel: Its pattern and performance. Navigation 62(4):329–347, DOI 10.1002/navi.123
- Milani A, Nobili AM, Farinella P (1987) Non-gravivational Perturbations and Satellite Geodesy. Adam Hilger
- Montenbruck O, Steigenberger P (2020) IGS white paper on satellite and operations information for generation of precise GNSS orbit and clock products. Tech. rep., IGS Multi-GNSS Working Group, URL https://files.igs.org/pub/resource/working_groups/multi_gnss/Whitepaper_SatelliteMetaData_IGS_200204.pdf, version 2020/02/04
- Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan A (2015) GNSS satellite geometry and attitude models. Advances in Space Research 56(6):1015–1029, DOI 10.1016/j.asr.2015.06.019
- Nakamura S, Kishimoto M (2010) ILRS SLR Mission Support Request for QZS-1. URL http://ilrs.gsfc.nasa.gov/docs/ILRS_ retroreflector_QZS_20100729.pdf
- Navarro-Reyes D (2014) Galileo FOC satellite's LRA additional information. Tech. Rep. ESA-DTEN-NG-MEMO/0017611, ESA, URL https://ilrs.cddis.eosdis.nasa.gov/docs/2014/Galileo_FOC_LRA_additional_information_ signed.pdf
- Navarro-Reyes D, Gonzalez F, Svehla D, Zandberben R (2011) ILRS SLR Mission Support Request for Galileo-101 and Galileo-102. URL http://ilrs.gsfc.nasa.gov//docs/ILRS_MSR_Galileo_201106.pdf
- Porcelli L, Boni A, Ciocci E, Contessa S, Dell'Agnello S, Monache GD, Intaglietta N, Martini M, Mondaini C, Patrizi G, Salvatori L, Tibuzzi M, Lops C, Cantone C, Tuscano P, Maiello M, Venkateswaran R, Chakraborty P, Reddy CR, Sriram K (2017) Thermo-optical vacuum testing of IRNSS laser retroreflector array qualification model. Advances in Space Research 60(5):1054–1061, DOI 10.1016/j.asr.2017.05.012
- Revnivykh S, Bolkunov A, Serdyukov A, Montenbruck O (2017) GLONASS. In: Teunissen P, Montenbruck O (eds) Springer Handbook of Global Navigation Satellite Systems, Springer, chap 8, pp 219–245, DOI 10.1007/978-3-319-42928-1_8
- Rothacher M, Schmid R (2010) ANTEX: The antenna exchange format, version 1.4. URL https://files.igs.org/pub/data/ format/antex14.txt
- Rothacher M, Thaller D (2006) SINEX Solution (software/technique) INdependent EXchange format version 2.02 (December 01, 2006). URL https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Documents/ac/sinex_v202_pdf
- Shanghai Engineering Center for Microsatellites (2018) Satellite geometry and attitude mode of MEO satellites of BDS-3 developed by SECM. In: ION GNSS+ 2018, ION, pp 1268–1289, DOI 10.33012/2018.16118
- Shargorodsky V (2014) GLONASS retroreflector systems. URL https://ilrs.gsfc.nasa.gov/docs/2014/glonassretros_ shargorodsky_20140501.pdf
- Sosnica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, Jäggi A (2015) Satellite laser ranging to GPS and GLONASS. Journal of Geodesy 89(7):725–743, DOI 10.1007/s00190-015-0810-8
- Steigenberger P, Thoelert S, Montenbruck O (2018) GNSS satellite transmit power and its impact on orbit determination. Journal of Geodesy 92(6):609–624, DOI 10.1007/s00190-017-1082-2

- Steigenberger P, Thölert S, Montenbruck O (2019) Flex power on GPS block IIR-M and IIF. GPS Solutions 23(1), DOI 10.1007/s10291-018-0797-8
- Thoelert S, Hauschild A, Steigenberger P, Langley RB, Antreich F (2018) GPS IIR-M L1 transmit power redistribution: Analysis of GNSS receiver and high-gain antenna data. Navigation 65(3):423–430, DOI 10.1002/navi.250
- Zhang ZP, Zhang HF, Chen WZ, Li P, Meng WD, Wang YM, Wang J, Hu W, Yang FM (2014) Design and performances of laser retro-reflector arrays for Beidou navigation satellites and SLR observations. Advances in Space Research 54(5):811–817, DOI 10.1016/j.asr.2013.12.025
- Zhao Q, Wang C, Guo J, Wang B, Liu J (2018) Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis. GPS Solutions 22(1), DOI 10.1007/s10291-017-0673-y

A. Abbreviations

ANTEX	Antenna Exchange
ARP	Antenna Reference Point
BoL	Beginning of Life
CAO	Cabinet Office (Government of Japan)
CAST	China Academy of Space Technology
CDMA	Code Division Multiple Access
СоМ	Center-of-Mass
COSPAR	Committee on Space Research
DORIS	Doppler Orbitography and Radiopositioning Integrated by Satellite
EIRP	Equivalent Isotropically Radiated Power
EoL	End of Life
FCN	Frequency Channel Number
FOC	Full Operational Capability
FDMA	Frequency Division Multiple Access
GEO	Geostationary Earth Orbit
GIOVE	Galileo in Orbit Validation Element
GLONASS	Globalnaya Navigatsionnaya Sputnikovaya Sistema (Global Navigation Satellite System)
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
IGS	International GNSS Service
IGSO	Inclined Geosynchronous Earth Orbit
IOV	In-Orbit Validation
IRNSS	Indian Regional Navigation Satellite System
LRA	Laser Retroreflector Array
MEO	Medium Earth Orbit
NavIC	Navigation with Indian Constellation
NCRIEO	North China Research Institute of Electro-Optic
NORAD	North American Aerospace Defense Command
PCO	Phase Center Offset
PPP	Precise Point Positioning
PRN	Pseudo-Random Noise
QZSS	Quasi-Zenith Satellite System
RINEX	Receiver Independent Exchange
SECM	Shanghai Engineering Center for Microsatellites
SHAO	Shanghai Observatory
SINEX	Solution INdependent EXchange
SLR	Satellite Laser Ranging
SVN	Space Vehicle Number
TLE	Two-Line Elements