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regardless of the path one chooses, the overall form of causal network will

be essentially the same. And what this means is that on a sufficiently

large scale, the universe will appear to have a unique history, even though

at the level of individual events there will be considerable arbitrariness.

If there is not enough convergence in the multiway system it will

still be possible to get stuck with different types of strings that never

lead to each other. And if this happens, then it means that the history of

the universe can in effect follow many truly separate branches. But

whenever there is significant randomness produced by the evolution of

the multiway system, this does not typically appear to occur.

So this suggests that in fact it is at some level not too difficult for

multiway systems to reproduce our everyday perception that more or

less definite things happen in the universe. But while this means that it

might be possible for there to be arbitrariness in the causal network for

the universe, it still tends to be my suspicion that there is not—and that

in fact the particular rules followed by the universe do in the end have

the property that they always yield the same causal network.

Evolution of Networks

Earlier in this chapter, I suggested that at the lowest level space might

consist of a giant network of nodes. But how might such a network evolve? 

The most straightforward possibility is that it could work much

like the substitution systems that we have discussed in the past few

sections—and that at each step some piece or pieces of the network

could be replaced by others according to some fixed rule.

The pictures at the top of the facing page show two very simple

examples. Starting with a network whose connections are like the

edges of a tetrahedron, both the rules shown work by replacing each

node at each step by a certain fixed cluster of nodes. 

This setup is very much similar to the neighbor-independent

substitution systems that we discussed on pages 83 and 187. And just as in

these systems, it is possible for intricate structures to be produced, but the

structures always turn out to have a highly regular nested form.
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So what about more general substitution systems? Are there

analogs of these for networks? The answer is that there are, and they are

based on making replacements not just for individual nodes, but rather

for clusters of nodes, as shown in the pictures below.

In the substitution systems for strings discussed in previous sections,

the rules that are given can involve replacing any block of elements by any

other. But in networks there are inevitably some restrictions. For example,

if a cluster of nodes has a certain number of connections to the rest of the

network, then it cannot be replaced by a cluster which has a different

number of connections. And in addition, one cannot have replacements

step 1 step 2 step 3 step 4

step 1 step 2 step 3 step 4

Network evolution in which each node is replaced at each step by a fixed cluster of nodes. The resulting networks have
a regular nested form. The dimensions of the limiting networks are respectively  and .Log[2, 3] ; 1.58 Log[3, 7] ; 1.77

Examples of rules that involve replacing clusters of nodes in a network by other clusters of nodes. All
these rules preserve the planarity of a network. Notice that some of them cannot be reversed since their
right-hand sides are too symmetrical to determine which orientation of the left-hand side should be used.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

510

like the one on the left that go from a symmetrical cluster to one for which

a particular orientation has to be chosen. 

But despite these restrictions a fairly large number of

replacements are still possible; for example, there are a total of 419

distinct ones that exist involving clusters with no more than five nodes.

So given a replacement for a cluster of a particular form, how

should such a replacement actually be applied to a network? At first

one might think that one could set up some kind of analog of a cellular

automaton and just replace all relevant clusters of nodes at once. 

But in general this will not work. For as the picture below

illustrates, a particular form of cluster can in general appear in many

overlapping ways within a given network.

The issue is essentially no different from the one that we

encountered in previous sections for blocks of elements in substitution

systems on strings. But an additional complication is that in networks,

unlike strings, there is no immediately obvious ordering of elements. 

Nevertheless, it is still possible to devise schemes for deciding

where in a network replacements should be carried out. One fairly

simple scheme, illustrated on the facing page, allows only a single

replacement to be performed at each step, and picks the location of this

replacement so as to affect the least recently updated nodes.

In each pair of pictures in the upper part of the page, the top one

shows the form of the network before the replacement, and the bottom

one shows the result after doing the replacement—with the cluster of

nodes involved in the replacement being highlighted in both cases. In

the 3D pictures in the lower part of the page, networks that arise on

successive steps are shown stacked one on top of the other, with the

nodes involved in each replacement joined by gray lines.

A replacement whose
outcome orientation
cannot be determined.

The 12 ways in which the cluster of nodes on the left occurs in a particular network. In the
particular case shown, each way turns out to overlap with nodes in exactly four others.
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(a)

(b)

(c)

(a) (b) (c)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(a)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(b)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(c)

Examples of the evolution of networks in which a single cluster
of nodes is replaced at each step according to the rules shown.
Each pair of pictures above represents the state of the network
before and after each replacement. The nodes affected by the
replacement are highlighted in both cases. The location at
which the replacement is performed is determined by requiring
that it involve the oldest possible nodes in the network. The
nodes in the pictures above are drawn with a “clock”. The angle
of the beginning of the black sector in the clock indicates when
the node was created, while the angle of its end represents the
current step, so that older nodes have larger black sectors. 
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Inevitably there is a certain arbitrariness in the way these

pictures are drawn. For the underlying rules specify only what the

pattern of connections in a network should be—not how its nodes

should be laid out on the page. And in the effort to make clear the

relationship between networks obtained on different steps, even

identical networks can potentially be drawn somewhat differently.

With rule (a), however, it is fairly easy to see that a simple nested

structure is produced, directly analogous to the one shown on page 509.

And with rule (b), obvious repetitive behavior is obtained.

So what about more complicated behavior? It turns out that even

with rule (c), which is essentially just a combination of rules (a) and (b),

significantly more complicated behavior can already occur.

The picture below shows a few more steps in the evolution of

this rule. And the behavior obtained never seems to repeat, nor do the

networks produced exhibit any kind of obvious nested form.

What about other schemes for applying replacements? The

pictures on the facing page show what happens if at each step one allows

not just a single replacement, but all replacements that do not overlap. 

It takes fewer steps for networks to be built up, but the results are

qualitatively similar to those on the previous page: rule (a) yields a nested

structure, rule (b) gives repetitive behavior, while rule (c) produces

behavior that seems complicated and in some respects random.

step 21 step 22 step 23 step 24 step 25 step 26 step 27 step 28 step 29 step 30

step 11 step 12 step 13 step 14 step 15 step 16 step 17 step 18 step 19 step 20

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9 step 10

More steps in the evolution of rule (c) from the previous page. The number of nodes increases irregularly (though
roughly linearly) with successive steps.
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(a) (b) (c)

Examples of network evolution
according to the same basic underlying
rules as on page 511, but now with all
possible clusters of nodes that do not
overlap being replaced at each step.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(a)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(b)

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

(c)

(a)

(b)

(c)
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Just as for substitution systems on strings, one can find causal

networks that represent the causal connections between different

updating events on networks. And as an example the pictures below show

such causal networks for the evolution processes on the previous page.

In the rather simple case of rule (a) the results turn out to be

independent of the updating scheme that was used. But for rules (b) and

(c), different schemes in general yield different causal networks.

So what kinds of underlying replacement rules lead to causal

networks that are independent of how the rules are applied? The

situation is much the same as for strings—with the basic criterion just

being that all replacements that appear in the rules should be for

clusters of nodes that can never overlap themselves or each other. 

The pictures below show all possible distinct clusters with up to

five nodes—and all but three of these already can overlap themselves.

(a)

(b)

(c)

Causal networks that represent the relationship between updating events for the
network evolution processes shown on the previous page.

All possible distinct clusters containing up to five nodes, with planarity not required.



F U N D A M E N T A L  P H Y S I C S C H A P T E R  9

515

But among slightly larger clusters there turn out to be many that do

not overlap themselves—and indeed this becomes common as soon as

there are at least two connections between each dangling one. 

The first few examples are shown below. And in almost all of these,

there is no overlap not only within a single cluster, but also between

different clusters. And this means that rules based on replacements for

collections of these clusters will have the property that the causal

networks they produce are independent of the updating scheme used. 

One feature of the various rules I showed earlier is that they all

maintain planarity of networks—so that if one starts with a network

that can be laid out in the plane without any lines crossing, then every

subsequent network one gets will also have this property. 

Yet in our everyday experience space certainly does not seem to

have this property. But beyond the practical problem of displaying what

happens, there is actually no fundamental difficulty in setting up rules

that can generate non-planarity—and indeed many rules based on the

clusters above will for example do this.

So in the end, if one manages to find the ultimate rules for the

universe, my expectation is that they will give rise to networks that on

a small scale look largely random. But this very randomness will most

likely be what for example allows a definite and robust value of 3 to

emerge for the dimensionality of space—even though all of the many

complicated phenomena in our universe must also somehow be

represented within the structure of the same network.

The simplest clusters that have no
overlaps with themselves—and mostly
have no overlaps with each other.
Replacements for sets of clusters that
do not overlap have the property of
causal invariance.




