From d25bc3107d22a2fc9a0d0aff8d29550e4e943345 Mon Sep 17 00:00:00 2001 From: abdoulayegk Date: Thu, 19 Nov 2020 07:49:40 +0530 Subject: [PATCH] adaboost classifier to predict brest cancer --- classification/adaboost_classifier.py | 39 +++++++++++++++++++++++++++ 1 file changed, 39 insertions(+) create mode 100644 classification/adaboost_classifier.py diff --git a/classification/adaboost_classifier.py b/classification/adaboost_classifier.py new file mode 100644 index 0000000..e0f23f0 --- /dev/null +++ b/classification/adaboost_classifier.py @@ -0,0 +1,39 @@ +from sklearn.ensemble import AdaBoostClassifier +from sklearn.datasets import load_breast_cancer +from sklearn.model_selection import train_test_split +from sklearn.metrics import plot_confusion_matrix +from matplotlib import pyplot as plt + + +"""Adaboost classifier example""" + + +def adaboost(): + cancer_df = load_breast_cancer() + print(cancer_df.keys()) + X, y = cancer_df.data, cancer_df.target + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) + + abc = AdaBoostClassifier(base_estimator=None, + n_estimators=300, learning_rate=1, random_state=0) + abc.fit(X_train, y_train) + y_pred = abc.predict(X_test) + print(y_pred[:20]) + # Display Confusion Matrix of Classifier + plot_confusion_matrix( + abc, + X_test, + y_test, + display_labels=cancer_df["target_names"], + cmap="Blues", + normalize="true", + ) + plt.title("Normalized Confusion Matrix - Cancer Dataset") + plt.show() + + # to see the accuracy of the model + print("Accuracy of adaboost is:", abc.score(X_test, y_test)) + + +if __name__ == "__main__": + adaboost() \ No newline at end of file pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy