|
| 1 | +use serde::{Deserialize, Serialize}; |
| 2 | +use specta::Type; |
| 3 | +use std::path::Path; |
| 4 | +use tauri::AppHandle; |
| 5 | + |
| 6 | +#[derive(Debug, Clone, Serialize, Deserialize, Type)] |
| 7 | +pub struct FrameAnalysis { |
| 8 | + pub timestamp: f64, |
| 9 | + pub objects: Vec<DetectedObject>, |
| 10 | + pub scene_description: String, |
| 11 | + pub dominant_colors: Vec<String>, |
| 12 | + pub motion_intensity: f64, |
| 13 | +} |
| 14 | + |
| 15 | +#[derive(Debug, Clone, Serialize, Deserialize, Type)] |
| 16 | +pub struct DetectedObject { |
| 17 | + pub label: String, |
| 18 | + pub confidence: f64, |
| 19 | + pub bounding_box: BoundingBox, |
| 20 | + pub attributes: Vec<String>, |
| 21 | +} |
| 22 | + |
| 23 | +#[derive(Debug, Clone, Serialize, Deserialize, Type)] |
| 24 | +pub struct BoundingBox { |
| 25 | + pub x: f64, |
| 26 | + pub y: f64, |
| 27 | + pub width: f64, |
| 28 | + pub height: f64, |
| 29 | +} |
| 30 | + |
| 31 | +#[derive(Debug, Clone, Serialize, Deserialize, Type)] |
| 32 | +pub struct VideoContentAnalysis { |
| 33 | + pub frames: Vec<FrameAnalysis>, |
| 34 | + pub object_timelines: Vec<ObjectTimeline>, |
| 35 | + pub scene_segments: Vec<SceneSegment>, |
| 36 | +} |
| 37 | + |
| 38 | +#[derive(Debug, Clone, Serialize, Deserialize, Type)] |
| 39 | +pub struct ObjectTimeline { |
| 40 | + pub label: String, |
| 41 | + pub appearances: Vec<TimeRange>, |
| 42 | + pub attributes: Vec<String>, |
| 43 | +} |
| 44 | + |
| 45 | +#[derive(Debug, Clone, Serialize, Deserialize, Type)] |
| 46 | +pub struct TimeRange { |
| 47 | + pub start: f64, |
| 48 | + pub end: f64, |
| 49 | +} |
| 50 | + |
| 51 | +#[derive(Debug, Clone, Serialize, Deserialize, Type)] |
| 52 | +pub struct SceneSegment { |
| 53 | + pub start: f64, |
| 54 | + pub end: f64, |
| 55 | + pub description: String, |
| 56 | + pub tags: Vec<String>, |
| 57 | +} |
| 58 | + |
| 59 | +#[tauri::command] |
| 60 | +#[specta::specta] |
| 61 | +pub async fn analyze_video_content( |
| 62 | + app: AppHandle, |
| 63 | + video_path: String, |
| 64 | + frame_interval: f64, |
| 65 | +) -> Result<VideoContentAnalysis, String> { |
| 66 | + // This is a placeholder - in production you would: |
| 67 | + // 1. Extract frames at intervals using ffmpeg |
| 68 | + // 2. Send frames to vision API (OpenAI, local model, etc) |
| 69 | + // 3. Aggregate results into timeline |
| 70 | + |
| 71 | + // For now, return mock data to demonstrate the structure |
| 72 | + Ok(VideoContentAnalysis { |
| 73 | + frames: vec![], |
| 74 | + object_timelines: vec![], |
| 75 | + scene_segments: vec![], |
| 76 | + }) |
| 77 | +} |
| 78 | + |
| 79 | +#[tauri::command] |
| 80 | +#[specta::specta] |
| 81 | +pub async fn analyze_frame_batch( |
| 82 | + app: AppHandle, |
| 83 | + video_path: String, |
| 84 | + timestamps: Vec<f64>, |
| 85 | +) -> Result<Vec<FrameAnalysis>, String> { |
| 86 | + // Extract specific frames and analyze them |
| 87 | + // This allows on-demand analysis of specific moments |
| 88 | + Ok(vec![]) |
| 89 | +} |
0 commit comments