|
| 1 | +import torch |
| 2 | +from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizerFast |
| 3 | + |
| 4 | +from .illm import ILlm |
| 5 | +from .._utils.constants import LLAMA_VALUE_ERROR, LLAMA_PROMPT_EXCEPTION, CONFIG_REQUIRED_ERROR |
| 6 | + |
| 7 | + |
| 8 | +class HuggingFace(ILlm): |
| 9 | + def __init__(self, config=None): |
| 10 | + """ |
| 11 | + Initialize the class with an optional config parameter. |
| 12 | +
|
| 13 | + Parameters: |
| 14 | + config (any): The configuration parameter. |
| 15 | +
|
| 16 | + Returns: |
| 17 | + None |
| 18 | + """ |
| 19 | + if config is None: |
| 20 | + raise ValueError(CONFIG_REQUIRED_ERROR) |
| 21 | + |
| 22 | + if 'model_name' not in config: |
| 23 | + raise ValueError(LLAMA_VALUE_ERROR) |
| 24 | + model_name = config.pop('model_name') or 'gpt2' |
| 25 | + |
| 26 | + self.tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer") |
| 27 | + self.model = AutoModelForCausalLM.from_pretrained(model_name, **config) |
| 28 | + |
| 29 | + def system_message(self, message: str) -> any: |
| 30 | + """ |
| 31 | + Create a system message. |
| 32 | +
|
| 33 | + Parameters: |
| 34 | + message (str): The content of the system message. |
| 35 | +
|
| 36 | + Returns: |
| 37 | + any: A formatted system message. |
| 38 | +
|
| 39 | + Example: |
| 40 | + system_msg = system_message("System update: Server maintenance scheduled.") |
| 41 | + """ |
| 42 | + return {"role": "system", "content": message} |
| 43 | + |
| 44 | + def user_message(self, message: str) -> any: |
| 45 | + """ |
| 46 | + Create a user message. |
| 47 | +
|
| 48 | + Parameters: |
| 49 | + message (str): The content of the user message. |
| 50 | +
|
| 51 | + Returns: |
| 52 | + any: A formatted user message. |
| 53 | + """ |
| 54 | + return {"role": "user", "content": message} |
| 55 | + |
| 56 | + def assistant_message(self, message: str) -> any: |
| 57 | + """ |
| 58 | + Create an assistant message. |
| 59 | +
|
| 60 | + Parameters: |
| 61 | + message (str): The content of the assistant message. |
| 62 | +
|
| 63 | + Returns: |
| 64 | + any: A formatted assistant message. |
| 65 | + """ |
| 66 | + return {"role": "assistant", "content": message} |
| 67 | + |
| 68 | + def invoke(self, prompt, **kwargs) -> str: |
| 69 | + """ |
| 70 | + Submit a prompt to the model for generating a response. |
| 71 | +
|
| 72 | + Parameters: |
| 73 | + prompt (str): The prompt parameter. |
| 74 | + **kwargs: Additional keyword arguments (optional). |
| 75 | + - temperature (float): The temperature parameter for controlling randomness in generation. |
| 76 | +
|
| 77 | + Returns: |
| 78 | + str: The generated response from the model. |
| 79 | + """ |
| 80 | + if prompt is None or len(prompt) == 0: |
| 81 | + raise Exception(LLAMA_PROMPT_EXCEPTION) |
| 82 | + |
| 83 | + inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2000) |
| 84 | + temperature = kwargs.get("temperature", 0.1) |
| 85 | + |
| 86 | + with torch.no_grad(): |
| 87 | + output = self.model.generate(input_ids=inputs.input_ids, attention_mask=inputs.attention_mask, |
| 88 | + max_length=2000, temperature=temperature, |
| 89 | + pad_token_id=self.tokenizer.pad_token_id, |
| 90 | + eos_token_id=self.tokenizer.eos_token_id, |
| 91 | + bos_token_id=self.tokenizer.bos_token_id, **kwargs) |
| 92 | + |
| 93 | + data = self.tokenizer.decode(output[0], skip_special_tokens=True) |
| 94 | + return data |
0 commit comments