-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial.py
126 lines (90 loc) · 3.72 KB
/
tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
Name: tutorial.py
Author: Xuewen Zhang
Date:at 25/04/2024
version: 1.0.0
Description: A tutorial to show how to achieve model linearization
using modlinear toolbox.
required packages: modlinear
"""
import numpy as np
# model linearization toolbox
import modlinear as ml
def example_cas_linear():
# system parameters
x_dim = 10
up_dim = 2
ts = 1
# construct symbolic A, B function for linear continuous model
A_fcn, B_fcn = ml.cas_linearize(fun, x_dim, up_dim)
# construct symbolic A, B function for linear discrete model
A_dis_fcn, B_dis_fcn = ml.cas_linearize(fun, x_dim, up_dim, c2d=True, ts=ts, M=100)
# obtain the A_dis, B_dis at certain expand point
ps = np.loadtxt('tutorial/expand-point/ps.txt').reshape(-1, 1)
us = np.loadtxt('tutorial/expand-point/us.txt').reshape(-1, 1)
xs = np.loadtxt('tutorial/expand-point/xs.txt').reshape(-1, 1)
ups = np.vstack((us, ps))
A = A_fcn(xs, ups).full()
B = B_fcn(xs, ups).full()
A_dis = A_dis_fcn(xs, ups).full()
B_dis = B_dis_fcn(xs, ups).full()
# Plot the matrices
ml.plot_matrix(A, matrixname='A_cas', savedir='tutorial/results/')
ml.plot_matrix(B, matrixname='B_cas', figsize=(2, 5), cmap='OrRd', savedir='tutorial/results/')
ml.plot_matrix(A_dis, matrixname='A_dis_cas', savedir='tutorial/results/')
ml.plot_matrix(B_dis, matrixname='B_dis_cas', figsize=(2, 5), cmap='OrRd', savedir='tutorial/results/')
def example_linear_c2d():
# expand point
ps = np.loadtxt('tutorial/expand-point/ps.txt').reshape(-1, 1)
us = np.loadtxt('tutorial/expand-point/us.txt').reshape(-1, 1)
xs = np.loadtxt('tutorial/expand-point/xs.txt').reshape(-1, 1)
state = np.vstack((xs, us, ps))
# sampling period of discrete model
ts = 1
# C matrix
C = np.zeros((2, 10))
C[0, 1] = 1
C[1, 2] = 1
# obtain linearized discrete model
A_dis, B_dis, C_dis, D_dis = ml.linearize_c2d(wrap_fun, state, C=C, ts=ts)
# save the matrices
# np.savetxt('A_dis.txt', A_dis)
# np.savetxt('B_dis.txt', B_dis)
# np.savetxt('C_dis.txt', C_dis)
# np.savetxt('D_dis.txt', D_dis)
# Plot the matrices
ml.plot_matrix(A_dis, matrixname='A_dis', savedir='tutorial/results/')
ml.plot_matrix(B_dis, matrixname='B_dis', figsize=(2, 5), cmap='OrRd', savedir='tutorial/results/')
print('-'*30, 'Finished', '-'*30)
def example_linear_con():
# expand point
ps = np.loadtxt('tutorial/expand-point/ps.txt').reshape(-1, 1)
us = np.loadtxt('tutorial/expand-point/us.txt').reshape(-1, 1)
xs = np.loadtxt('tutorial/expand-point/xs.txt').reshape(-1, 1)
state = np.vstack((xs, us, ps))
# obtain linearized discrete model
A, B = ml.linearize_continuous(wrap_fun, state)
# save the matrices
# np.savetxt('A.txt', A)
# np.savetxt('B.txt', B)
# Plot the matrices
ml.plot_matrix(A, matrixname='A', savedir='tutorial/results/')
ml.plot_matrix(B, matrixname='B', figsize=(2, 5), cmap='OrRd', savedir='tutorial/results/')
print('-'*30, 'Finished', '-'*30)
def fun(x, u):
"""
ode function, use your own example
"""
return np.array(x*u + 0.3*u)
def wrap_fun(state):
""" Wrap the ode function with one input """
x = state[:10]
u = state[10:]
return fun(x, u)
if __name__ == '__main__':
# tutorial of nonlinear continuous model to linear discrete model with numerical calculation
example_linear_c2d()
# tutorial of nonlinear continuous model to linear continuous model with numerical calculation
example_linear_con()
# tutorial of nonlinear continuous model to linear discrete and continuous model with symbolic calculation
example_cas_linear()