-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathadd_new_algorithm.py
136 lines (107 loc) · 4.89 KB
/
add_new_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# MIT License
# Copyright (c) 2023 Replicable-MARL
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
example of add new algorithm to MARLlib
"""
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.agents.pg.pg_torch_policy import PGTorchPolicy
from ray.rllib.agents.pg.pg import DEFAULT_CONFIG as PG_CONFIG, PGTrainer
from ray import tune
from ray.tune.utils import merge_dicts
from ray.tune import CLIReporter
from ray.rllib.models import ModelCatalog
from marllib.marl.algos.utils.log_dir_util import available_local_dir
from marllib.marl.algos.utils.setup_utils import AlgVar
from marllib import marl
import json
torch, nn = try_import_torch()
###########
### IPG ###
###########
IPGTorchPolicy = PGTorchPolicy.with_updates(
name="IPGTorchPolicy",
get_default_config=lambda: PG_CONFIG,
)
def get_policy_class_ipg(config_):
if config_["framework"] == "torch":
return IPGTorchPolicy
IPGTrainer = PGTrainer.with_updates(
name="IPGTrainer",
default_policy=None,
get_policy_class=get_policy_class_ipg,
)
def run_ipg(model_class, config_dict, common_config, env_dict, stop, restore):
ModelCatalog.register_custom_model(
"Base_Model", model_class)
_param = AlgVar(config_dict)
train_batch_size = _param["batch_episode"] * env_dict["episode_limit"]
if "fixed_batch_timesteps" in config_dict:
train_batch_size = config_dict["fixed_batch_timesteps"]
episode_limit = env_dict["episode_limit"]
batch_mode = _param["batch_mode"]
lr = _param["lr"]
config = {
"train_batch_size": train_batch_size,
"batch_mode": batch_mode,
"lr": lr if restore is None else 1e-10,
"model": {
"custom_model": "Base_Model",
"max_seq_len": episode_limit,
"custom_model_config": merge_dicts(config_dict, env_dict),
},
}
config.update(common_config)
algorithm = config_dict["algorithm"]
map_name = config_dict["env_args"]["map_name"]
arch = config_dict["model_arch_args"]["core_arch"]
RUNNING_NAME = '_'.join([algorithm, arch, map_name])
if restore is not None:
with open(restore["params_path"], 'r') as JSON:
raw_config = json.load(JSON)
raw_config = raw_config["model"]["custom_model_config"]['model_arch_args']
check_config = config["model"]["custom_model_config"]['model_arch_args']
if check_config != raw_config:
raise ValueError("is not using the params required by the checkpoint model")
model_path = restore["model_path"]
else:
model_path = None
results = tune.run(IPGTrainer,
name=RUNNING_NAME,
checkpoint_at_end=config_dict['checkpoint_end'],
checkpoint_freq=config_dict['checkpoint_freq'],
restore=model_path,
stop=stop,
config=config,
verbose=1,
progress_reporter=CLIReporter(),
local_dir=available_local_dir if config_dict["local_dir"] == "" else config_dict["local_dir"])
return results
if __name__ == '__main__':
# choose environment + scenario
env = marl.make_env(environment_name="mpe", map_name="simple_spread", force_coop=True)
# register new algorithm
marl.algos.register_algo(algo_name="ipg", style="il", script=run_ipg)
# initialize algorithm
ipg = marl.algos.ipg(hyperparam_source="mpe")
# build agent model based on env + algorithms + user preference if checked available
model = marl.build_model(env, ipg, {"core_arch": "mlp", "encode_layer": "128-256"})
# start learning + extra experiment settings if needed. remember to check ray.yaml before use
ipg.fit(env, model, stop={'episode_reward_mean': 2000, 'timesteps_total': 10000000}, local_mode=True, num_gpus=1,
num_workers=0, share_policy='all', checkpoint_freq=10)