Skip to content

.Net 6 accuracy on training doesn't changing #880

Closed
@Zvirovyi

Description

@Zvirovyi

Training on .Net 6 basically not working, but on .Net 5 all is good.

TensorFlowNet.Examples(MNIST CNN (Eager)):

.Net 5:
step: 10, loss: 25,200823, accuracy: 0,75 
step: 20, loss: 17,497072, accuracy: 0,8125 
step: 30, loss: 4,7848167, accuracy: 0,96875 
step: 40, loss: 11,228649, accuracy: 0,90625 
step: 50, loss: 8,46461, accuracy: 0,90625 
step: 60, loss: 12,897742, accuracy: 0,875 
step: 70, loss: 5,8186455, accuracy: 0,90625 
step: 80, loss: 1,6474819, accuracy: 1 
step: 90, loss: 5,5969973, accuracy: 0,90625 
Test Accuracy: 0,9 
18.11.2021 00:18:13 Completed MNIST CNN (Eager)
Example: MNIST CNN (Eager) in 4,7636146s is OK!
.Net 6:
step: 10, loss: 73,61097, accuracy: 0,125 
step: 20, loss: 74,02429, accuracy: 0,03125 
step: 30, loss: 73,439026, accuracy: 0,03125 
step: 40, loss: 73,71028, accuracy: 0,0625 
step: 50, loss: 73,987946, accuracy: 0,125 
step: 60, loss: 73,33862, accuracy: 0,15625 
step: 70, loss: 72,83645, accuracy: 0,21875 
step: 80, loss: 73,17415, accuracy: 0,21875 
step: 90, loss: 73,84353, accuracy: 0,09375 
Test Accuracy: 0,11 
18.11.2021 00:19:28 Completed MNIST CNN (Eager)
Example: MNIST CNN (Eager) in 4,4328711s is Failed!

Custom CNN code:

var ((x_train, y_train), (x_test, y_test)) = keras.datasets.mnist.load_data();

var x_train_norm = (x_train.astype(TF_DataType.DtFloatRef) / 255f).reshape((-1, 28, 28, 1));
var x_test_norm = (x_test.astype(TF_DataType.DtFloatRef) / 255f).reshape((-1, 28, 28, 1));

var model = keras.Sequential(new()
{
    keras.layers.InputLayer((28, 28, 1)),
    keras.layers.Conv2D(32, 3, activation: keras.activations.Relu),
    keras.layers.MaxPooling2D(),
    keras.layers.Conv2D(64, 2, activation: keras.activations.Relu),
    keras.layers.MaxPooling2D(),
    keras.layers.Flatten(),
    keras.layers.Dense(10, keras.activations.Softmax)
});

model.compile(keras.optimizers.Adam(), keras.losses.SparseCategoricalCrossentropy(from_logits: true), new [] { "accuracy" } );

model.summary();

model.fit(x_train_norm, y_train, 128, 2);
.Net 5:
Epoch: 001/002, Step: 0001/0469, loss: 2,302554, accuracy: 0,062500
...
Epoch: 001/002, Step: 0469/0469, loss: 1,604421, accuracy: 0,870233
Epoch: 002/002, Step: 0001/0469, loss: 1,497208, accuracy: 0,968750
...
Epoch: 002/002, Step: 0469/0469, loss: 1,498555, accuracy: 0,965783
.Net 6:
Epoch: 001/002, Step: 0001/0469, loss: 2,302585, accuracy: 0,796875
...
Epoch: 001/002, Step: 0469/0469, loss: 1,736288, accuracy: 0,768267
Epoch: 002/002, Step: 0001/0469, loss: 1,726776, accuracy: 0,734375
...
Epoch: 002/002, Step: 0469/0469, loss: 1,692857, accuracy: 0,768283

System info

OS: Manjaro linux(arch-based), Windows 10

Metadata

Metadata

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions

    pFad - Phonifier reborn

    Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

    Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


    Alternative Proxies:

    Alternative Proxy

    pFad Proxy

    pFad v3 Proxy

    pFad v4 Proxy