diff --git a/.github/workflows/docs-deploy.yml b/.github/workflows/docs-deploy.yml index fe267291a..f854ed70d 100644 --- a/.github/workflows/docs-deploy.yml +++ b/.github/workflows/docs-deploy.yml @@ -98,6 +98,8 @@ jobs: server: ${{ secrets.DOCS_SERVER }} username: ${{ secrets.DOCS_USERNAME }} password: ${{ secrets.DOCS_PASSWORD }} + log-level: verbose + timeout: 60000 local-dir: docs/build/html/ server-dir: ./ # deploy to the root dir exclude: | # don't delete the /ver/ dir diff --git a/docs/source/conf.py b/docs/source/conf.py index 66b3c9317..76298d4ff 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -88,8 +88,6 @@ templates_path = ["_templates"] exclude_patterns = [] -napoleon_custom_sections = ["Features"] - # -- Options for HTML output ------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output diff --git a/examples/machine_learning/kmeans.py b/examples/machine_learning/kmeans.py new file mode 100644 index 000000000..620fa15fb --- /dev/null +++ b/examples/machine_learning/kmeans.py @@ -0,0 +1,119 @@ +""" +K-Means Clustering of MNIST Dataset +=================================== + +Example showing how you can perform K-Means clustering on the MNIST dataset. +""" + +# test_example = false +# sphinx_gallery_pygfx_docs = 'screenshot' + +import fastplotlib as fpl +import numpy as np +from sklearn.datasets import load_digits +from sklearn.cluster import KMeans +from sklearn.decomposition import PCA + +# load the data +mnist = load_digits() + +# get the data and labels +data = mnist['data'] # (1797, 64) +labels = mnist['target'] # (1797,) + +# visualize the first 5 digits +# NOTE: this is just to give a sense of the dataset if you are unfamiliar, +# the more interesting visualization is below :D +fig_data = fpl.Figure(shape=(1, 5), size=(900, 300)) + +# iterate through each subplot +for i, subplot in enumerate(fig_data): + # reshape each image to (8, 8) + subplot.add_image(data[i].reshape(8,8), cmap="gray", interpolation="linear") + # add the label as a title + subplot.set_title(f"Label: {labels[i]}") + # turn off the axes and toolbar + subplot.axes.visible = False + subplot.toolbar = False + +fig_data.show() + +# project the data from 64 dimensions down to the number of unique digits +n_digits = len(np.unique(labels)) # 10 + +reduced_data = PCA(n_components=n_digits).fit_transform(data) # (1797, 10) + +# performs K-Means clustering, take the best of 4 runs +kmeans = KMeans(n_clusters=n_digits, n_init=4) +# fit the lower-dimension data +kmeans.fit(reduced_data) + +# get the centroids (center of the clusters) +centroids = kmeans.cluster_centers_ + +# plot the kmeans result and corresponding original image +figure = fpl.Figure( + shape=(1,2), + size=(700, 400), + cameras=["3d", "2d"], + controller_types=[["fly", "panzoom"]] +) + +# set the axes to False +figure[0, 0].axes.visible = False +figure[0, 1].axes.visible = False + +figure[0, 0].set_title(f"K-means clustering of PCA-reduced data") + +# plot the centroids +figure[0, 0].add_scatter( + data=np.vstack([centroids[:, 0], centroids[:, 1], centroids[:, 2]]).T, + colors="white", + sizes=15 +) +# plot the down-projected data +digit_scatter = figure[0,0].add_scatter( + data=np.vstack([reduced_data[:, 0], reduced_data[:, 1], reduced_data[:, 2]]).T, + sizes=5, + cmap="tab10", # use a qualitative cmap + cmap_transform=kmeans.labels_, # color by the predicted cluster +) + +# initial index +ix = 0 + +# plot the initial image +digit_img = figure[0, 1].add_image( + data=data[ix].reshape(8,8), + cmap="gray", + name="digit", + interpolation="linear" +) + +# change the color and size of the initial selected data point +digit_scatter.colors[ix] = "magenta" +digit_scatter.sizes[ix] = 10 + +# define event handler to update the selected data point +@digit_scatter.add_event_handler("pointer_enter") +def update(ev): + # reset colors and sizes + digit_scatter.cmap = "tab10" + digit_scatter.sizes = 5 + + # update with new seleciton + ix = ev.pick_info["vertex_index"] + + digit_scatter.colors[ix] = "magenta" + digit_scatter.sizes[ix] = 10 + + # update digit fig + figure[0, 1]["digit"].data = data[ix].reshape(8, 8) + +figure.show() + +# NOTE: `if __name__ == "__main__"` is NOT how to use fastplotlib interactively +# please see our docs for using fastplotlib interactively in ipython and jupyter +if __name__ == "__main__": + print(__doc__) + fpl.loop.run() \ No newline at end of file pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy