Skip to content

Latest commit

 

History

History
6 lines (4 loc) · 525 Bytes

README.md

File metadata and controls

6 lines (4 loc) · 525 Bytes

Multi-agent Transformer

We provide an implementation of the Multi-agent Transformer algorithm in JAX. MAT casts cooperative multi-agent reinforcement learning as a sequence modelling problem where agent observations and actions are treated as a sequence. At each timestep the observations of all agents are encoded and then these encoded observations are used for auto-regressive action selection.

Relevant paper:

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy