|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "2722b419", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "[](https://colab.research.google.com/github/openlayer-ai/openlayer-python/blob/main/examples/tracing/langgraph/langgraph_tracing.ipynb)\n", |
| 9 | + "\n", |
| 10 | + "\n", |
| 11 | + "# <a id=\"top\">LangGraph tracing</a>\n", |
| 12 | + "\n", |
| 13 | + "This notebook illustrates how use Openlayer's callback handler to monitor LangGraph workflows." |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "id": "75c2a473", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "## 1. Set the environment variables" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": null, |
| 27 | + "id": "f3f4fa13", |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "import os\n", |
| 32 | + "\n", |
| 33 | + "# OpenAI env variables\n", |
| 34 | + "os.environ[\"OPENAI_API_KEY\"] = \"YOUR_OPENAI_API_KEY_HERE\"\n", |
| 35 | + "\n", |
| 36 | + "# Openlayer env variables\n", |
| 37 | + "os.environ[\"OPENLAYER_API_KEY\"] = \"YOUR_OPENLAYER_API_KEY_HERE\"\n", |
| 38 | + "os.environ[\"OPENLAYER_INFERENCE_PIPELINE_ID\"] = \"YOUR_OPENLAYER_INFERENCE_PIPELINE_ID_HERE\"" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "markdown", |
| 43 | + "id": "9758533f", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "## 2. Instantiate the `OpenlayerHandler`" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": null, |
| 52 | + "id": "e60584fa", |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "from openlayer.lib.integrations import langchain_callback\n", |
| 57 | + "\n", |
| 58 | + "openlayer_handler = langchain_callback.OpenlayerHandler()" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "markdown", |
| 63 | + "id": "72a6b954", |
| 64 | + "metadata": {}, |
| 65 | + "source": [ |
| 66 | + "## 3. Use LangGraph \n", |
| 67 | + "\n", |
| 68 | + "### 3.1 Simple chatbot example" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "id": "76a350b4", |
| 74 | + "metadata": {}, |
| 75 | + "source": [ |
| 76 | + "We can start with a simple chatbot example similar to the one in the [LangGraph quickstart](https://langchain-ai.github.io/langgraph/tutorials/get-started/1-build-basic-chatbot/).\n", |
| 77 | + "\n", |
| 78 | + "The idea is passing the `openlayer_handler` as a callback to the LangGraph graph. After running the graph,\n", |
| 79 | + "you'll be able to see the traces in the Openlayer platform." |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": null, |
| 85 | + "id": "cc351618", |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "from typing import Annotated\n", |
| 90 | + "from typing_extensions import TypedDict\n", |
| 91 | + "\n", |
| 92 | + "from langgraph.graph import StateGraph\n", |
| 93 | + "from langchain_openai import ChatOpenAI\n", |
| 94 | + "from langchain_core.messages import HumanMessage\n", |
| 95 | + "from langgraph.graph.message import add_messages" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "id": "4595c63b", |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "class State(TypedDict):\n", |
| 106 | + " # Messages have the type \"list\". The `add_messages` function in the annotation defines how this state key should be updated\n", |
| 107 | + " # (in this case, it appends messages to the list, rather than overwriting them)\n", |
| 108 | + " messages: Annotated[list, add_messages]\n", |
| 109 | + "\n", |
| 110 | + "graph_builder = StateGraph(State)\n", |
| 111 | + "\n", |
| 112 | + "llm = ChatOpenAI(model = \"gpt-4o\", temperature = 0.2)\n" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "code", |
| 117 | + "execution_count": null, |
| 118 | + "id": "00a6fa80", |
| 119 | + "metadata": {}, |
| 120 | + "outputs": [], |
| 121 | + "source": [ |
| 122 | + "# The chatbot node function takes the current State as input and returns an updated messages list. This is the basic pattern for all LangGraph node functions.\n", |
| 123 | + "def chatbot(state: State):\n", |
| 124 | + " return {\"messages\": [llm.invoke(state[\"messages\"])]}\n" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": null, |
| 130 | + "id": "a36e5160", |
| 131 | + "metadata": {}, |
| 132 | + "outputs": [], |
| 133 | + "source": [ |
| 134 | + "# Add a \"chatbot\" node. Nodes represent units of work. They are typically regular python functions.\n", |
| 135 | + "graph_builder.add_node(\"chatbot\", chatbot)\n", |
| 136 | + "\n", |
| 137 | + "# Add an entry point. This tells our graph where to start its work each time we run it.\n", |
| 138 | + "graph_builder.set_entry_point(\"chatbot\")\n", |
| 139 | + "\n", |
| 140 | + "# Set a finish point. This instructs the graph \"any time this node is run, you can exit.\"\n", |
| 141 | + "graph_builder.set_finish_point(\"chatbot\")\n", |
| 142 | + "\n", |
| 143 | + "# To be able to run our graph, call \"compile()\" on the graph builder. This creates a \"CompiledGraph\" we can use invoke on our state.\n", |
| 144 | + "graph = graph_builder.compile()" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "id": "deef517e", |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "# Pass the openlayer_handler as a callback to the LangGraph graph. After running the graph,\n", |
| 155 | + "# you'll be able to see the traces in the Openlayer platform.\n", |
| 156 | + "for s in graph.stream({\"messages\": [HumanMessage(content = \"What is the meaning of life?\")]},\n", |
| 157 | + " config={\"callbacks\": [openlayer_handler]}):\n", |
| 158 | + " print(s)" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "markdown", |
| 163 | + "id": "c049c8fa", |
| 164 | + "metadata": {}, |
| 165 | + "source": [ |
| 166 | + "### 3.2 Multi-agent example\n", |
| 167 | + "\n", |
| 168 | + "Now, we're going to use a more complex example. The principle, however, remains the same: passing the `openlayer_handler` as a callback to the LangGraph graph." |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "id": "213fc402", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "from typing import Annotated\n", |
| 179 | + "from datetime import datetime\n", |
| 180 | + "\n", |
| 181 | + "from langchain.tools import Tool\n", |
| 182 | + "from langchain_community.tools import WikipediaQueryRun\n", |
| 183 | + "from langchain_community.utilities import WikipediaAPIWrapper\n", |
| 184 | + "\n", |
| 185 | + "# Define a tools that searches Wikipedia\n", |
| 186 | + "wikipedia_tool = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())\n", |
| 187 | + "\n", |
| 188 | + "# Define a new tool that returns the current datetime\n", |
| 189 | + "datetime_tool = Tool(\n", |
| 190 | + " name=\"Datetime\",\n", |
| 191 | + " func = lambda x: datetime.now().isoformat(),\n", |
| 192 | + " description=\"Returns the current datetime\",\n", |
| 193 | + ")" |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "cell_type": "code", |
| 198 | + "execution_count": null, |
| 199 | + "id": "c76c8935", |
| 200 | + "metadata": {}, |
| 201 | + "outputs": [], |
| 202 | + "source": [ |
| 203 | + "from langchain.agents import AgentExecutor, create_openai_tools_agent\n", |
| 204 | + "from langchain_openai import ChatOpenAI\n", |
| 205 | + "from langchain_core.messages import BaseMessage, HumanMessage\n", |
| 206 | + "\n", |
| 207 | + "\n", |
| 208 | + "def create_agent(llm: ChatOpenAI, system_prompt: str, tools: list):\n", |
| 209 | + " # Each worker node will be given a name and some tools.\n", |
| 210 | + " prompt = ChatPromptTemplate.from_messages(\n", |
| 211 | + " [\n", |
| 212 | + " (\n", |
| 213 | + " \"system\",\n", |
| 214 | + " system_prompt,\n", |
| 215 | + " ),\n", |
| 216 | + " MessagesPlaceholder(variable_name=\"messages\"),\n", |
| 217 | + " MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n", |
| 218 | + " ]\n", |
| 219 | + " )\n", |
| 220 | + " agent = create_openai_tools_agent(llm, tools, prompt)\n", |
| 221 | + " executor = AgentExecutor(agent=agent, tools=tools)\n", |
| 222 | + " return executor\n", |
| 223 | + "\n", |
| 224 | + "def agent_node(state, agent, name):\n", |
| 225 | + " result = agent.invoke(state)\n", |
| 226 | + " return {\"messages\": [HumanMessage(content=result[\"output\"], name=name)]}" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": null, |
| 232 | + "id": "f626e7f4", |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [ |
| 236 | + "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", |
| 237 | + "from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser\n", |
| 238 | + "\n", |
| 239 | + "members = [\"Researcher\", \"CurrentTime\"]\n", |
| 240 | + "system_prompt = (\n", |
| 241 | + " \"You are a supervisor tasked with managing a conversation between the\"\n", |
| 242 | + " \" following workers: {members}. Given the following user request,\"\n", |
| 243 | + " \" respond with the worker to act next. Each worker will perform a\"\n", |
| 244 | + " \" task and respond with their results and status. When finished,\"\n", |
| 245 | + " \" respond with FINISH.\"\n", |
| 246 | + ")\n", |
| 247 | + "# Our team supervisor is an LLM node. It just picks the next agent to process and decides when the work is completed\n", |
| 248 | + "options = [\"FINISH\"] + members\n", |
| 249 | + "\n", |
| 250 | + "# Using openai function calling can make output parsing easier for us\n", |
| 251 | + "function_def = {\n", |
| 252 | + " \"name\": \"route\",\n", |
| 253 | + " \"description\": \"Select the next role.\",\n", |
| 254 | + " \"parameters\": {\n", |
| 255 | + " \"title\": \"routeSchema\",\n", |
| 256 | + " \"type\": \"object\",\n", |
| 257 | + " \"properties\": {\n", |
| 258 | + " \"next\": {\n", |
| 259 | + " \"title\": \"Next\",\n", |
| 260 | + " \"anyOf\": [\n", |
| 261 | + " {\"enum\": options},\n", |
| 262 | + " ],\n", |
| 263 | + " }\n", |
| 264 | + " },\n", |
| 265 | + " \"required\": [\"next\"],\n", |
| 266 | + " },\n", |
| 267 | + "}\n", |
| 268 | + "\n", |
| 269 | + "# Create the prompt using ChatPromptTemplate\n", |
| 270 | + "prompt = ChatPromptTemplate.from_messages(\n", |
| 271 | + " [\n", |
| 272 | + " (\"system\", system_prompt),\n", |
| 273 | + " MessagesPlaceholder(variable_name=\"messages\"),\n", |
| 274 | + " (\n", |
| 275 | + " \"system\",\n", |
| 276 | + " \"Given the conversation above, who should act next?\"\n", |
| 277 | + " \" Or should we FINISH? Select one of: {options}\",\n", |
| 278 | + " ),\n", |
| 279 | + " ]\n", |
| 280 | + ").partial(options=str(options), members=\", \".join(members))\n", |
| 281 | + "\n", |
| 282 | + "llm = ChatOpenAI(model=\"gpt-4o\")\n", |
| 283 | + "\n", |
| 284 | + "# Construction of the chain for the supervisor agent\n", |
| 285 | + "supervisor_chain = (\n", |
| 286 | + " prompt\n", |
| 287 | + " | llm.bind_functions(functions=[function_def], function_call=\"route\")\n", |
| 288 | + " | JsonOutputFunctionsParser()\n", |
| 289 | + ")" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "code", |
| 294 | + "execution_count": null, |
| 295 | + "id": "ec307b80", |
| 296 | + "metadata": {}, |
| 297 | + "outputs": [], |
| 298 | + "source": [ |
| 299 | + "import operator\n", |
| 300 | + "import functools\n", |
| 301 | + "from typing import Sequence, TypedDict\n", |
| 302 | + "\n", |
| 303 | + "from langgraph.graph import END, START, StateGraph\n", |
| 304 | + "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", |
| 305 | + "\n", |
| 306 | + "\n", |
| 307 | + "# The agent state is the input to each node in the graph\n", |
| 308 | + "class AgentState(TypedDict):\n", |
| 309 | + " # The annotation tells the graph that new messages will always be added to the current states\n", |
| 310 | + " messages: Annotated[Sequence[BaseMessage], operator.add]\n", |
| 311 | + " # The 'next' field indicates where to route to next\n", |
| 312 | + " next: str\n", |
| 313 | + "\n", |
| 314 | + "# Add the research agent using the create_agent helper function\n", |
| 315 | + "research_agent = create_agent(llm, \"You are a web researcher.\", [wikipedia_tool])\n", |
| 316 | + "research_node = functools.partial(agent_node, agent=research_agent, name=\"Researcher\")\n", |
| 317 | + "\n", |
| 318 | + "# Add the time agent using the create_agent helper function\n", |
| 319 | + "currenttime_agent = create_agent(llm, \"You can tell the current time at\", [datetime_tool])\n", |
| 320 | + "currenttime_node = functools.partial(agent_node, agent=currenttime_agent, name = \"CurrentTime\")\n", |
| 321 | + "\n", |
| 322 | + "workflow = StateGraph(AgentState)\n", |
| 323 | + "\n", |
| 324 | + "# Add a \"chatbot\" node. Nodes represent units of work. They are typically regular python functions.\n", |
| 325 | + "workflow.add_node(\"Researcher\", research_node)\n", |
| 326 | + "workflow.add_node(\"CurrentTime\", currenttime_node)\n", |
| 327 | + "workflow.add_node(\"supervisor\", supervisor_chain)\n", |
| 328 | + "\n", |
| 329 | + "# We want our workers to ALWAYS \"report back\" to the supervisor when done\n", |
| 330 | + "for member in members:\n", |
| 331 | + " workflow.add_edge(member, \"supervisor\")\n", |
| 332 | + "\n", |
| 333 | + "# Conditional edges usually contain \"if\" statements to route to different nodes depending on the current graph state.\n", |
| 334 | + "# These functions receive the current graph state and return a string or list of strings indicating which node(s) to call next.\n", |
| 335 | + "conditional_map = {k: k for k in members}\n", |
| 336 | + "conditional_map[\"FINISH\"] = END\n", |
| 337 | + "workflow.add_conditional_edges(\"supervisor\", lambda x: x[\"next\"], conditional_map)\n", |
| 338 | + "\n", |
| 339 | + "# Add an entry point. This tells our graph where to start its work each time we run it.\n", |
| 340 | + "workflow.add_edge(START, \"supervisor\")\n", |
| 341 | + "\n", |
| 342 | + "# To be able to run our graph, call \"compile()\" on the graph builder. This creates a \"CompiledGraph\" we can use invoke on our state.\n", |
| 343 | + "graph_2 = workflow.compile()" |
| 344 | + ] |
| 345 | + }, |
| 346 | + { |
| 347 | + "cell_type": "code", |
| 348 | + "execution_count": null, |
| 349 | + "id": "08e35ae9", |
| 350 | + "metadata": {}, |
| 351 | + "outputs": [], |
| 352 | + "source": [ |
| 353 | + "# Pass the openlayer_handler as a callback to the LangGraph graph. After running the graph,\n", |
| 354 | + "# you'll be able to see the traces in the Openlayer platform.\n", |
| 355 | + "for s in graph_2.stream({\"messages\": [HumanMessage(content = \"How does photosynthesis work?\")]},\n", |
| 356 | + " config={\"callbacks\": [openlayer_handler]}):\n", |
| 357 | + " print(s)" |
| 358 | + ] |
| 359 | + }, |
| 360 | + { |
| 361 | + "cell_type": "code", |
| 362 | + "execution_count": null, |
| 363 | + "id": "16acecc2", |
| 364 | + "metadata": {}, |
| 365 | + "outputs": [], |
| 366 | + "source": [] |
| 367 | + } |
| 368 | + ], |
| 369 | + "metadata": { |
| 370 | + "kernelspec": { |
| 371 | + "display_name": "callback-improvements", |
| 372 | + "language": "python", |
| 373 | + "name": "python3" |
| 374 | + }, |
| 375 | + "language_info": { |
| 376 | + "codemirror_mode": { |
| 377 | + "name": "ipython", |
| 378 | + "version": 3 |
| 379 | + }, |
| 380 | + "file_extension": ".py", |
| 381 | + "mimetype": "text/x-python", |
| 382 | + "name": "python", |
| 383 | + "nbconvert_exporter": "python", |
| 384 | + "pygments_lexer": "ipython3", |
| 385 | + "version": "3.9.19" |
| 386 | + } |
| 387 | + }, |
| 388 | + "nbformat": 4, |
| 389 | + "nbformat_minor": 5 |
| 390 | +} |
0 commit comments