Skip to content

pyexcel-renderers/pyexcel-text

Repository files navigation

pyexcel-text - Let you focus on data, instead of text formats

https://raw.githubusercontent.com/pyexcel/pyexcel.github.io/master/images/patreon.png https://api.travis-ci.org/pyexcel/pyexcel-text.svg?branch=master

It is a plugin to pyexcel and extends its capbility to present and write data in text fromats mainly through tabulate:

  • "plain"
  • "simple"
  • "grid"
  • "pipe"
  • "orgtbl"
  • "rst"
  • "mediawiki"
  • "latex"
  • "latex_booktabs"
  • "json"
  • "html"

Since v0.2.7, json and ndjson input are also supported.

Usage

What's new?

>>> import pyexcel as pe
>>> sheet = pe.Sheet()
>>> sheet.json = '[[1,2],[2,3]]'
>>> sheet
pyexcel sheet:
+---+---+
| 1 | 2 |
+---+---+
| 2 | 3 |
+---+---+
>>> highspeedrail = pe.Sheet()
>>> highspeedrail.json = """
... [{"year": 1903, "country": "Germany", "speed": "206.7km/h"},
... {"year": 1964, "country": "Japan", "speed": "210km/h"},
... {"year": 2008, "country": "China", "speed": "350km/h"}]
... """
>>> highspeedrail.name = 'High Speed Train Speed Break Through (Source: Wikipedia)'
>>> highspeedrail
High Speed Train Speed Break Through (Source: Wikipedia):
+---------+-----------+------+
| country | speed     | year |
+---------+-----------+------+
| Germany | 206.7km/h | 1903 |
+---------+-----------+------+
| Japan   | 210km/h   | 1964 |
+---------+-----------+------+
| China   | 350km/h   | 2008 |
+---------+-----------+------+
>>> henley_on_thames_facts = pe.Sheet()
>>> henley_on_thames_facts.json = """
... {"area": "5.58 square meters",
... "population": "11,619",
... "civial parish": "Henley-on-Thames",
... "latitude": "51.536",
... "longitude": "-0.898"
... }"""
>>> henley_on_thames_facts
pyexcel sheet:
+--------------------+------------------+----------+-----------+------------+
| area               | civial parish    | latitude | longitude | population |
+--------------------+------------------+----------+-----------+------------+
| 5.58 square meters | Henley-on-Thames | 51.536   | -0.898    | 11,619     |
+--------------------+------------------+----------+-----------+------------+
>>> ccs_insight = pe.Sheet()
>>> ccs_insight.name = "Worldwide Mobile Phone Shipments (Billions), 2017-2021"
>>> ccs_insight.json = """
... {"year": ["2017", "2018", "2019", "2020", "2021"],
... "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
... "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]}"""
>>> ccs_insight
pyexcel sheet:
+----------------+--------------+------+
| feature phones | smart phones | year |
+----------------+--------------+------+
| 0.46           | 1.53         | 2017 |
+----------------+--------------+------+
| 0.38           | 1.64         | 2018 |
+----------------+--------------+------+
| 0.3            | 1.74         | 2019 |
+----------------+--------------+------+
| 0.23           | 1.82         | 2020 |
+----------------+--------------+------+
| 0.17           | 1.9          | 2021 |
+----------------+--------------+------+

Here is a variant of json:

>>> highspeedrail2 = pe.Sheet()
>>> highspeedrail2.ndjson = """
... {"year": 1903, "country": "Germany", "speed": "206.7km/h"}
... {"year": 1964, "country": "Japan", "speed": "210km/h"}
... {"year": 2008, "country": "China", "speed": "350km/h"}
... """.strip()
>>> highspeedrail2.name = 'High Speed Train Speed Break Through (Source: Wikipedia)'
>>> highspeedrail2
High Speed Train Speed Break Through (Source: Wikipedia):
+---------+-----------+------+
| country | speed     | year |
+---------+-----------+------+
| Germany | 206.7km/h | 1903 |
+---------+-----------+------+
| Japan   | 210km/h   | 1964 |
+---------+-----------+------+
| China   | 350km/h   | 2008 |
+---------+-----------+------+
>>> henley_on_thames_facts2 = pe.Sheet()
>>> henley_on_thames_facts2.ndjson = """
... {"area": "5.58 square meters"}
... {"population": "11,619"}
... {"civial parish": "Henley-on-Thames"}
... {"latitude": "51.536"}
... {"longitude": "-0.898"}
... """.strip()
>>> henley_on_thames_facts2
pyexcel sheet:
+---------------+--------------------+
| area          | 5.58 square meters |
+---------------+--------------------+
| population    | 11,619             |
+---------------+--------------------+
| civial parish | Henley-on-Thames   |
+---------------+--------------------+
| latitude      | 51.536             |
+---------------+--------------------+
| longitude     | -0.898             |
+---------------+--------------------+
>>> ccs_insight2 = pe.Sheet()
>>> ccs_insight2.name = "Worldwide Mobile Phone Shipments (Billions), 2017-2021"
>>> ccs_insight2.ndjson = """
... {"year": ["2017", "2018", "2019", "2020", "2021"]}
... {"smart phones": [1.53, 1.64, 1.74, 1.82, 1.90]}
... {"feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]}
... """.strip()
>>> ccs_insight2
pyexcel sheet:
+----------------+------+------+------+------+------+
| year           | 2017 | 2018 | 2019 | 2020 | 2021 |
+----------------+------+------+------+------+------+
| smart phones   | 1.53 | 1.64 | 1.74 | 1.82 | 1.9  |
+----------------+------+------+------+------+------+
| feature phones | 0.46 | 0.38 | 0.3  | 0.23 | 0.17 |
+----------------+------+------+------+------+------+

Simple

>>> import pyexcel as pe
>>> content = [
...     ["Column 1", "Column 2", "Column 3"],
...     [1, 2, 3],
...     [4, 5, 6],
...     [7, 8, 9]
... ]
>>> sheet = pe.Sheet(content)
>>> print(sheet.simple)
pyexcel sheet:
--------  --------  --------
Column 1  Column 2  Column 3
1         2         3
4         5         6
7         8         9
--------  --------  --------
>>> sheet.name_columns_by_row(0)
>>> print(sheet.simple)
pyexcel sheet:
  Column 1    Column 2    Column 3
----------  ----------  ----------
         1           2           3
         4           5           6
         7           8           9

Grid

>>> print(sheet.grid)
pyexcel sheet:
+------------+------------+------------+
|   Column 1 |   Column 2 |   Column 3 |
+============+============+============+
|          1 |          2 |          3 |
+------------+------------+------------+
|          4 |          5 |          6 |
+------------+------------+------------+
|          7 |          8 |          9 |
+------------+------------+------------+

Mediawiki

>>> multiple_sheets = {
...      'Sheet 1':
...          [
...              [1.0, 2.0, 3.0],
...              [4.0, 5.0, 6.0],
...              [7.0, 8.0, 9.0]
...          ],
...      'Sheet 2':
...          [
...              ['X', 'Y', 'Z'],
...              [1.0, 2.0, 3.0],
...              [4.0, 5.0, 6.0]
...          ],
...      'Sheet 3':
...          [
...              ['O', 'P', 'Q'],
...              [3.0, 2.0, 1.0],
...              [4.0, 3.0, 2.0]
...          ]
...  }
>>> book = pe.Book(multiple_sheets)
>>> book.save_as("myfile.mediawiki")
>>> myfile = open("myfile.mediawiki")
>>> print(myfile.read())
Sheet 1:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| align="right"| 1 || align="right"| 2 || align="right"| 3
|-
| align="right"| 4 || align="right"| 5 || align="right"| 6
|-
| align="right"| 7 || align="right"| 8 || align="right"| 9
|}
Sheet 2:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| X   || Y   || Z
|-
| 1.0 || 2.0 || 3.0
|-
| 4.0 || 5.0 || 6.0
|}
Sheet 3:
{| class="wikitable" style="text-align: left;"
|+ <!-- caption -->
|-
| O   || P   || Q
|-
| 3.0 || 2.0 || 1.0
|-
| 4.0 || 3.0 || 2.0
|}
>>> myfile.close()

Html

>>> book.save_as("myfile.html")
>>> myfile = open("myfile.html")
>>> print(myfile.read()) # doctest: +SKIP
Sheet 1:
<table>
<tr><td style="text-align: right;">1</td><td style="text-align: right;">2</td><td style="text-align: right;">3</td></tr>
<tr><td style="text-align: right;">4</td><td style="text-align: right;">5</td><td style="text-align: right;">6</td></tr>
<tr><td style="text-align: right;">7</td><td style="text-align: right;">8</td><td style="text-align: right;">9</td></tr>
</table>
Sheet 2:
<table>
<tr><td>X  </td><td>Y  </td><td>Z  </td></tr>
<tr><td>1.0</td><td>2.0</td><td>3.0</td></tr>
<tr><td>4.0</td><td>5.0</td><td>6.0</td></tr>
</table>
Sheet 3:
<table>
<tr><td>O  </td><td>P  </td><td>Q  </td></tr>
<tr><td>3.0</td><td>2.0</td><td>1.0</td></tr>
<tr><td>4.0</td><td>3.0</td><td>2.0</td></tr>
</table>

Please note tabulate 0.7.7 gives an extra tbody tag around tr tag.

.. testcode::
   :hide:

    >>> myfile.close()
    >>> import os
    >>> os.unlink("myfile.mediawiki")
    >>> os.unlink("myfile.html")


Dependencies

  • tabulate

About

It is a plugin to pyexcel and provides the capability to present and write data in text formats using tabulate

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy