diff --git a/.gitignore b/.gitignore index 1b10a3585..4a6aa3cc0 100644 --- a/.gitignore +++ b/.gitignore @@ -31,6 +31,9 @@ TAGS # Files created by Spyder .spyproject/ +# Files created by or for VS Code (HS, 13 Jan, 2024) +.vscode/ + # Environments .env .venv diff --git a/control/__init__.py b/control/__init__.py index 120d16325..5a9e05e95 100644 --- a/control/__init__.py +++ b/control/__init__.py @@ -101,6 +101,7 @@ from .config import * from .sisotool import * from .passivity import * +from .sysnorm import * # Exceptions from .exception import * diff --git a/control/sysnorm.py b/control/sysnorm.py new file mode 100644 index 000000000..547f01f79 --- /dev/null +++ b/control/sysnorm.py @@ -0,0 +1,306 @@ +# -*- coding: utf-8 -*- +"""sysnorm.py + +Functions for computing system norms. + +Routine in this module: + +norm + +Created on Thu Dec 21 08:06:12 2023 +Author: Henrik Sandberg +""" + +import numpy as np +import scipy as sp +import numpy.linalg as la +import warnings + +import control as ct + +__all__ = ['norm'] + +#------------------------------------------------------------------------------ + +def _slycot_or_scipy(method): + """ Copied from ct.mateqn. For internal use.""" + + if method == 'slycot' or (method is None and ct.slycot_check()): + return 'slycot' + elif method == 'scipy' or (method is None and not ct.slycot_check()): + return 'scipy' + else: + raise ct.ControlArgument(f"Unknown argument '{method}'.") + +#------------------------------------------------------------------------------ + +def _h2norm_slycot(sys, print_warning=True): + """H2 norm of a linear system. For internal use. Requires Slycot. + + See also + -------- + ``slycot.ab13bd`` : the Slycot routine that does the calculation + https://github.com/python-control/Slycot/issues/199 : Post on issue with ``ab13bf`` + """ + + try: + from slycot import ab13bd + except ImportError: + ct.ControlSlycot("Can't find slycot module ``ab13bd``!") + + try: + from slycot.exceptions import SlycotArithmeticError + except ImportError: + raise ct.ControlSlycot("Can't find slycot class ``SlycotArithmeticError``!") + + A, B, C, D = ct.ssdata(ct.ss(sys)) + + n = A.shape[0] + m = B.shape[1] + p = C.shape[0] + + dico = 'C' if sys.isctime() else 'D' # Continuous or discrete time + jobn = 'H' # H2 (and not L2 norm) + + if n == 0: + # ab13bd does not accept empty A, B, C + if dico == 'C': + if any(D.flat != 0): + if print_warning: + warnings.warn("System has a direct feedthrough term!") + return float("inf") + else: + return 0.0 + elif dico == 'D': + return np.sqrt(D@D.T) + + try: + norm = ab13bd(dico, jobn, n, m, p, A, B, C, D) + except SlycotArithmeticError as e: + if e.info == 3: + if print_warning: + warnings.warn("System has pole(s) on the stability boundary!") + return float("inf") + elif e.info == 5: + if print_warning: + warnings.warn("System has a direct feedthrough term!") + return float("inf") + elif e.info == 6: + if print_warning: + warnings.warn("System is unstable!") + return float("inf") + else: + raise e + return norm + +#------------------------------------------------------------------------------ + +def norm(system, p=2, tol=1e-10, print_warning=True, method=None): + """Computes norm of system. + + Parameters + ---------- + system : LTI (:class:`StateSpace` or :class:`TransferFunction`) + System in continuous or discrete time for which the norm should be computed. + p : int or str + Type of norm to be computed. p=2 gives the H2 norm, and p='inf' gives the L-infinity norm. + tol : float + Relative tolerance for accuracy of L-infinity norm computation. Ignored + unless p='inf'. + print_warning : bool + Print warning message in case norm value may be uncertain. + method : str, optional + Set the method used for computing the result. Current methods are + 'slycot' and 'scipy'. If set to None (default), try 'slycot' first + and then 'scipy'. + + Returns + ------- + norm_value : float + Norm value of system. + + Notes + ----- + Does not yet compute the L-infinity norm for discrete time systems with pole(s) in z=0 unless Slycot is used. + + Examples + -------- + >>> Gc = ct.tf([1], [1, 2, 1]) + >>> ct.norm(Gc, 2) + 0.5000000000000001 + >>> ct.norm(Gc, 'inf', tol=1e-11, method='scipy') + 1.000000000007276 + """ + + if not isinstance(system, (ct.StateSpace, ct.TransferFunction)): + raise TypeError('Parameter ``system``: must be a ``StateSpace`` or ``TransferFunction``') + + G = ct.ss(system) + A = G.A + B = G.B + C = G.C + D = G.D + + # Decide what method to use + method = _slycot_or_scipy(method) + + # ------------------- + # H2 norm computation + # ------------------- + if p == 2: + # -------------------- + # Continuous time case + # -------------------- + if G.isctime(): + + # Check for cases with infinite norm + poles_real_part = G.poles().real + if any(np.isclose(poles_real_part, 0.0)): # Poles on imaginary axis + if print_warning: + warnings.warn("Poles close to, or on, the imaginary axis. Norm value may be uncertain.") + return float('inf') + elif any(poles_real_part > 0.0): # System unstable + if print_warning: + warnings.warn("System is unstable!") + return float('inf') + elif any(D.flat != 0): # System has direct feedthrough + if print_warning: + warnings.warn("System has a direct feedthrough term!") + return float('inf') + + else: + # Use slycot, if available, to compute (finite) norm + if method == 'slycot': + return _h2norm_slycot(G, print_warning) + + # Else use scipy + else: + P = ct.lyap(A, B@B.T, method=method) # Solve for controllability Gramian + + # System is stable to reach this point, and P should be positive semi-definite. + # Test next is a precaution in case the Lyapunov equation is ill conditioned. + if any(la.eigvals(P).real < 0.0): + if print_warning: + warnings.warn("There appears to be poles close to the imaginary axis. Norm value may be uncertain.") + return float('inf') + else: + norm_value = np.sqrt(np.trace(C@P@C.T)) # Argument in sqrt should be non-negative + if np.isnan(norm_value): + raise ct.ControlArgument("Norm computation resulted in NaN.") + else: + return norm_value + + # ------------------ + # Discrete time case + # ------------------ + elif G.isdtime(): + + # Check for cases with infinite norm + poles_abs = abs(G.poles()) + if any(np.isclose(poles_abs, 1.0)): # Poles on imaginary axis + if print_warning: + warnings.warn("Poles close to, or on, the complex unit circle. Norm value may be uncertain.") + return float('inf') + elif any(poles_abs > 1.0): # System unstable + if print_warning: + warnings.warn("System is unstable!") + return float('inf') + + else: + # Use slycot, if available, to compute (finite) norm + if method == 'slycot': + return _h2norm_slycot(G, print_warning) + + # Else use scipy + else: + P = ct.dlyap(A, B@B.T, method=method) + + # System is stable to reach this point, and P should be positive semi-definite. + # Test next is a precaution in case the Lyapunov equation is ill conditioned. + if any(la.eigvals(P).real < 0.0): + if print_warning: + warnings.warn("Warning: There appears to be poles close to the complex unit circle. Norm value may be uncertain.") + return float('inf') + else: + norm_value = np.sqrt(np.trace(C@P@C.T + D@D.T)) # Argument in sqrt should be non-negative + if np.isnan(norm_value): + raise ct.ControlArgument("Norm computation resulted in NaN.") + else: + return norm_value + + # --------------------------- + # L-infinity norm computation + # --------------------------- + elif p == "inf": + + # Check for cases with infinite norm + poles = G.poles() + if G.isdtime(): # Discrete time + if any(np.isclose(abs(poles), 1.0)): # Poles on unit circle + if print_warning: + warnings.warn("Poles close to, or on, the complex unit circle. Norm value may be uncertain.") + return float('inf') + else: # Continuous time + if any(np.isclose(poles.real, 0.0)): # Poles on imaginary axis + if print_warning: + warnings.warn("Poles close to, or on, the imaginary axis. Norm value may be uncertain.") + return float('inf') + + # Use slycot, if available, to compute (finite) norm + if method == 'slycot': + return ct.linfnorm(G, tol)[0] + + # Else use scipy + else: + + # ------------------ + # Discrete time case + # ------------------ + # Use inverse bilinear transformation of discrete time system to s-plane if no poles on |z|=1 or z=0. + # Allows us to use test for continuous time systems next. + if G.isdtime(): + Ad = A + Bd = B + Cd = C + Dd = D + if any(np.isclose(la.eigvals(Ad), 0.0)): + raise ct.ControlArgument("L-infinity norm computation for discrete time system with pole(s) in z=0 currently not supported unless Slycot installed.") + + # Inverse bilinear transformation + In = np.eye(len(Ad)) + Adinv = la.inv(Ad+In) + A = 2*(Ad-In)@Adinv + B = 2*Adinv@Bd + C = 2*Cd@Adinv + D = Dd - Cd@Adinv@Bd + + # -------------------- + # Continuous time case + # -------------------- + def _Hamilton_matrix(gamma): + """Constructs Hamiltonian matrix. For internal use.""" + R = Ip*gamma**2 - D.T@D + invR = la.inv(R) + return np.block([[A+B@invR@D.T@C, B@invR@B.T], [-C.T@(Ip+D@invR@D.T)@C, -(A+B@invR@D.T@C).T]]) + + gaml = la.norm(D,ord=2) # Lower bound + gamu = max(1.0, 2.0*gaml) # Candidate upper bound + Ip = np.eye(len(D)) + + while any(np.isclose(la.eigvals(_Hamilton_matrix(gamu)).real, 0.0)): # Find actual upper bound + gamu *= 2.0 + + while (gamu-gaml)/gamu > tol: + gam = (gamu+gaml)/2.0 + if any(np.isclose(la.eigvals(_Hamilton_matrix(gam)).real, 0.0)): + gaml = gam + else: + gamu = gam + return gam + + # ---------------------- + # Other norm computation + # ---------------------- + else: + raise ct.ControlArgument(f"Norm computation for p={p} currently not supported.") + diff --git a/control/tests/sysnorm_test.py b/control/tests/sysnorm_test.py new file mode 100644 index 000000000..917e98d04 --- /dev/null +++ b/control/tests/sysnorm_test.py @@ -0,0 +1,63 @@ +# -*- coding: utf-8 -*- +""" +Tests for sysnorm module. + +Created on Mon Jan 8 11:31:46 2024 +Author: Henrik Sandberg +""" + +import control as ct +import numpy as np + +def test_norm_1st_order_stable_system(): + """First-order stable continuous-time system""" + s = ct.tf('s') + G1 = 1/(s+1) + assert np.allclose(ct.norm(G1, p='inf', tol=1e-9), 1.0) # Comparison to norm computed in MATLAB + assert np.allclose(ct.norm(G1, p=2), 0.707106781186547) # Comparison to norm computed in MATLAB + + Gd1 = ct.sample_system(G1, 0.1) + assert np.allclose(ct.norm(Gd1, p='inf', tol=1e-9), 1.0) # Comparison to norm computed in MATLAB + assert np.allclose(ct.norm(Gd1, p=2), 0.223513699524858) # Comparison to norm computed in MATLAB + + +def test_norm_1st_order_unstable_system(): + """First-order unstable continuous-time system""" + s = ct.tf('s') + G2 = 1/(1-s) + assert np.allclose(ct.norm(G2, p='inf', tol=1e-9), 1.0) # Comparison to norm computed in MATLAB + assert ct.norm(G2, p=2) == float('inf') # Comparison to norm computed in MATLAB + + Gd2 = ct.sample_system(G2, 0.1) + assert np.allclose(ct.norm(Gd2, p='inf', tol=1e-9), 1.0) # Comparison to norm computed in MATLAB + assert ct.norm(Gd2, p=2) == float('inf') # Comparison to norm computed in MATLAB + +def test_norm_2nd_order_system_imag_poles(): + """Second-order continuous-time system with poles on imaginary axis""" + s = ct.tf('s') + G3 = 1/(s**2+1) + assert ct.norm(G3, p='inf') == float('inf') # Comparison to norm computed in MATLAB + assert ct.norm(G3, p=2) == float('inf') # Comparison to norm computed in MATLAB + + Gd3 = ct.sample_system(G3, 0.1) + assert ct.norm(Gd3, p='inf') == float('inf') # Comparison to norm computed in MATLAB + assert ct.norm(Gd3, p=2) == float('inf') # Comparison to norm computed in MATLAB + +def test_norm_3rd_order_mimo_system(): + """Third-order stable MIMO continuous-time system""" + A = np.array([[-1.017041847539126, -0.224182952826418, 0.042538079149249], + [-0.310374015319095, -0.516461581407780, -0.119195790221750], + [-1.452723568727942, 1.7995860837102088, -1.491935830615152]]) + B = np.array([[0.312858596637428, -0.164879019209038], + [-0.864879917324456, 0.627707287528727], + [-0.030051296196269, 1.093265669039484]]) + C = np.array([[1.109273297614398, 0.077359091130425, -1.113500741486764], + [-0.863652821988714, -1.214117043615409, -0.006849328103348]]) + D = np.zeros((2,2)) + G4 = ct.ss(A,B,C,D) # Random system generated in MATLAB + assert np.allclose(ct.norm(G4, p='inf', tol=1e-9), 4.276759162964244) # Comparison to norm computed in MATLAB + assert np.allclose(ct.norm(G4, p=2), 2.237461821810309) # Comparison to norm computed in MATLAB + + Gd4 = ct.sample_system(G4, 0.1) + assert np.allclose(ct.norm(Gd4, p='inf', tol=1e-9), 4.276759162964228) # Comparison to norm computed in MATLAB + assert np.allclose(ct.norm(Gd4, p=2), 0.707434962289554) # Comparison to norm computed in MATLAB diff --git a/examples/bode-and-nyquist-plots.ipynb b/examples/bode-and-nyquist-plots.ipynb index 6ac74f34e..a38275a92 100644 --- a/examples/bode-and-nyquist-plots.ipynb +++ b/examples/bode-and-nyquist-plots.ipynb @@ -16,6 +16,7 @@ "metadata": {}, "outputs": [], "source": [ + "import numpy as np\n", "import scipy as sp\n", "import matplotlib.pyplot as plt\n", "import control as ct" @@ -109,9 +110,9 @@ "w001rad = 1. # 1 rad/s\n", "w010rad = 10. # 10 rad/s\n", "w100rad = 100. # 100 rad/s\n", - "w001hz = 2*sp.pi*1. # 1 Hz\n", - "w010hz = 2*sp.pi*10. # 10 Hz\n", - "w100hz = 2*sp.pi*100. # 100 Hz\n", + "w001hz = 2*np.pi*1. # 1 Hz\n", + "w010hz = 2*np.pi*10. # 10 Hz\n", + "w100hz = 2*np.pi*100. # 100 Hz\n", "# First order systems\n", "pt1_w001rad = ct.tf([1.], [1./w001rad, 1.], name='pt1_w001rad')\n", "display(pt1_w001rad)\n", @@ -153,7 +154,7 @@ ], "source": [ "sampleTime = 0.001\n", - "display('Nyquist frequency: {:.0f} Hz, {:.0f} rad/sec'.format(1./sampleTime /2., 2*sp.pi*1./sampleTime /2.))" + "display('Nyquist frequency: {:.0f} Hz, {:.0f} rad/sec'.format(1./sampleTime /2., 2*np.pi*1./sampleTime /2.))" ] }, { diff --git a/examples/genswitch.py b/examples/genswitch.py index e65e40110..58040cb3a 100644 --- a/examples/genswitch.py +++ b/examples/genswitch.py @@ -60,7 +60,7 @@ def genswitch(y, t, mu=4, n=2): # set(pl, 'LineWidth', AM_data_linewidth) plt.axis([0, 25, 0, 5]) -plt.xlabel('Time {\itt} [scaled]') +plt.xlabel('Time {\\itt} [scaled]') plt.ylabel('Protein concentrations [scaled]') plt.legend(('z1 (A)', 'z2 (B)')) # 'Orientation', 'horizontal') # legend(legh, 'boxoff') diff --git a/examples/kincar-flatsys.py b/examples/kincar-flatsys.py index b61a9e1c5..56b5672ee 100644 --- a/examples/kincar-flatsys.py +++ b/examples/kincar-flatsys.py @@ -100,8 +100,8 @@ def plot_results(t, x, ud, rescale=True): plt.subplot(2, 4, 8) plt.plot(t, ud[1]) - plt.xlabel('Ttime t [sec]') - plt.ylabel('$\delta$ [rad]') + plt.xlabel('Time t [sec]') + plt.ylabel('$\\delta$ [rad]') plt.tight_layout() # diff --git a/examples/singular-values-plot.ipynb b/examples/singular-values-plot.ipynb index f126c6c3f..676c76916 100644 --- a/examples/singular-values-plot.ipynb +++ b/examples/singular-values-plot.ipynb @@ -90,7 +90,7 @@ ], "source": [ "sampleTime = 10\n", - "display('Nyquist frequency: {:.4f} Hz, {:.4f} rad/sec'.format(1./sampleTime /2., 2*sp.pi*1./sampleTime /2.))" + "display('Nyquist frequency: {:.4f} Hz, {:.4f} rad/sec'.format(1./sampleTime /2., 2*np.pi*1./sampleTime /2.))" ] }, { diff --git a/examples/type2_type3.py b/examples/type2_type3.py index 250aa266c..52e0645e2 100644 --- a/examples/type2_type3.py +++ b/examples/type2_type3.py @@ -5,7 +5,7 @@ import os import matplotlib.pyplot as plt # Grab MATLAB plotting functions from control.matlab import * # MATLAB-like functions -from scipy import pi +from numpy import pi integrator = tf([0, 1], [1, 0]) # 1/s # Parameters defining the system
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: