diff --git a/distributed/FSDP/T5_training.py b/distributed/FSDP/T5_training.py index 4ab136eace..3b256d2f01 100644 --- a/distributed/FSDP/T5_training.py +++ b/distributed/FSDP/T5_training.py @@ -198,13 +198,13 @@ def fsdp_main(args): # Training settings parser = argparse.ArgumentParser(description='PyTorch T5 FSDP Example') parser.add_argument('--batch-size', type=int, default=4, metavar='N', - help='input batch size for training (default: 64)') + help='input batch size for training (default: %(default)s)') parser.add_argument('--test-batch-size', type=int, default=4, metavar='N', - help='input batch size for testing (default: 1000)') + help='input batch size for testing (default: %(default)s)') parser.add_argument('--epochs', type=int, default=2, metavar='N', - help='number of epochs to train (default: 3)') + help='number of epochs to train (default: %(default)s)') parser.add_argument('--seed', type=int, default=1, metavar='S', - help='random seed (default: 1)') + help='random seed (default: %(default)s)') parser.add_argument('--track_memory', action='store_false', default=True, help='track the gpu memory') parser.add_argument('--run_validation', action='store_false', default=True, diff --git a/distributed/ddp-tutorial-series/multigpu.py b/distributed/ddp-tutorial-series/multigpu.py index 7e11633305..84865b3140 100644 --- a/distributed/ddp-tutorial-series/multigpu.py +++ b/distributed/ddp-tutorial-series/multigpu.py @@ -97,7 +97,8 @@ def main(rank: int, world_size: int, save_every: int, total_epochs: int, batch_s parser = argparse.ArgumentParser(description='simple distributed training job') parser.add_argument('total_epochs', type=int, help='Total epochs to train the model') parser.add_argument('save_every', type=int, help='How often to save a snapshot') - parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') + parser.add_argument('--batch_size', default=32, type=int, + help='Input batch size on each device (default: %(default)s)') args = parser.parse_args() world_size = torch.cuda.device_count() diff --git a/distributed/ddp-tutorial-series/multigpu_torchrun.py b/distributed/ddp-tutorial-series/multigpu_torchrun.py index 32d6254d2d..fd198da4aa 100644 --- a/distributed/ddp-tutorial-series/multigpu_torchrun.py +++ b/distributed/ddp-tutorial-series/multigpu_torchrun.py @@ -105,7 +105,8 @@ def main(save_every: int, total_epochs: int, batch_size: int, snapshot_path: str parser = argparse.ArgumentParser(description='simple distributed training job') parser.add_argument('total_epochs', type=int, help='Total epochs to train the model') parser.add_argument('save_every', type=int, help='How often to save a snapshot') - parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') + parser.add_argument('--batch_size', default=32, type=int, + help='Input batch size on each device (default: %(default)s)') args = parser.parse_args() main(args.save_every, args.total_epochs, args.batch_size) diff --git a/distributed/ddp-tutorial-series/multinode.py b/distributed/ddp-tutorial-series/multinode.py index 72670171b5..973cff0b23 100644 --- a/distributed/ddp-tutorial-series/multinode.py +++ b/distributed/ddp-tutorial-series/multinode.py @@ -106,7 +106,8 @@ def main(save_every: int, total_epochs: int, batch_size: int, snapshot_path: str parser = argparse.ArgumentParser(description='simple distributed training job') parser.add_argument('total_epochs', type=int, help='Total epochs to train the model') parser.add_argument('save_every', type=int, help='How often to save a snapshot') - parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') + parser.add_argument('--batch_size', default=32, type=int, + help='Input batch size on each device (default: %(default)s)') args = parser.parse_args() main(args.save_every, args.total_epochs, args.batch_size) diff --git a/distributed/ddp-tutorial-series/single_gpu.py b/distributed/ddp-tutorial-series/single_gpu.py index e91ab81cc1..1e5359a6e0 100644 --- a/distributed/ddp-tutorial-series/single_gpu.py +++ b/distributed/ddp-tutorial-series/single_gpu.py @@ -11,7 +11,7 @@ def __init__( train_data: DataLoader, optimizer: torch.optim.Optimizer, gpu_id: int, - save_every: int, + save_every: int, ) -> None: self.gpu_id = gpu_id self.model = model.to(gpu_id) @@ -75,8 +75,9 @@ def main(device, total_epochs, save_every, batch_size): parser = argparse.ArgumentParser(description='simple distributed training job') parser.add_argument('total_epochs', type=int, help='Total epochs to train the model') parser.add_argument('save_every', type=int, help='How often to save a snapshot') - parser.add_argument('--batch_size', default=32, type=int, help='Input batch size on each device (default: 32)') + parser.add_argument('--batch_size', default=32, type=int, + help='Input batch size on each device (default: %(default)s)') args = parser.parse_args() - + device = 0 # shorthand for cuda:0 main(device, args.total_epochs, args.save_every, args.batch_size) diff --git a/distributed/rpc/batch/reinforce.py b/distributed/rpc/batch/reinforce.py index 13a06315de..4d6baddcfe 100644 --- a/distributed/rpc/batch/reinforce.py +++ b/distributed/rpc/batch/reinforce.py @@ -21,11 +21,11 @@ parser = argparse.ArgumentParser(description='PyTorch RPC Batch RL example') parser.add_argument('--gamma', type=float, default=1.0, metavar='G', - help='discount factor (default: 1.0)') + help='discount factor (default: %(default)s)') parser.add_argument('--seed', type=int, default=543, metavar='N', - help='random seed (default: 543)') + help='random seed (default: %(default)s)') parser.add_argument('--num-episode', type=int, default=10, metavar='E', - help='number of episodes (default: 10)') + help='number of episodes (default: %(default)s)') args = parser.parse_args() torch.manual_seed(args.seed) diff --git a/distributed/rpc/rl/main.py b/distributed/rpc/rl/main.py index 91451ecc84..4365f37f5e 100644 --- a/distributed/rpc/rl/main.py +++ b/distributed/rpc/rl/main.py @@ -21,11 +21,11 @@ parser.add_argument('--world-size', type=int, default=2, metavar='W', help='world size for RPC, rank 0 is the agent, others are observers') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', - help='discount factor (default: 0.99)') + help='discount factor (default: %(default)s)') parser.add_argument('--seed', type=int, default=543, metavar='N', - help='random seed (default: 543)') + help='random seed (default: %(default)s)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', - help='interval between training status logs (default: 10)') + help='interval between training status logs (default: %(default)s)') args = parser.parse_args() torch.manual_seed(args.seed) diff --git a/gat/main.py b/gat/main.py index 9c143af8ec..87b59349d3 100644 --- a/gat/main.py +++ b/gat/main.py @@ -292,21 +292,21 @@ def test(model, criterion, input, target, mask): parser = argparse.ArgumentParser(description='PyTorch Graph Attention Network') parser.add_argument('--epochs', type=int, default=300, - help='number of epochs to train (default: 300)') + help='number of epochs to train (default: %(default)s)') parser.add_argument('--lr', type=float, default=0.005, - help='learning rate (default: 0.005)') + help='learning rate (default: %(default)s)') parser.add_argument('--l2', type=float, default=5e-4, - help='weight decay (default: 6e-4)') + help='weight decay (default: %(default)s)') parser.add_argument('--dropout-p', type=float, default=0.6, - help='dropout probability (default: 0.6)') + help='dropout probability (default: %(default)s)') parser.add_argument('--hidden-dim', type=int, default=64, - help='dimension of the hidden representation (default: 64)') + help='dimension of the hidden representation (default: %(default)s)') parser.add_argument('--num-heads', type=int, default=8, - help='number of the attention heads (default: 4)') + help='number of the attention heads (default: %(default)s)') parser.add_argument('--concat-heads', action='store_true', default=False, - help='wether to concatinate attention heads, or average over them (default: False)') + help='wether to concatinate attention heads, or average over them (default: %(default)s)') parser.add_argument('--val-every', type=int, default=20, - help='epochs to wait for print training and validation evaluation (default: 20)') + help='epochs to wait for print training and validation evaluation (default: %(default)s)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--no-mps', action='store_true', default=False, @@ -314,7 +314,7 @@ def test(model, criterion, input, target, mask): parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=13, metavar='S', - help='random seed (default: 13)') + help='random seed (default: %(default)s)') args = parser.parse_args() torch.manual_seed(args.seed) @@ -372,4 +372,4 @@ def test(model, criterion, input, target, mask): if args.dry_run: break loss_test, acc_test = test(gat_net, criterion, (features, adj_mat), labels, idx_test) - print(f'Test set results: loss {loss_test:.4f} accuracy {acc_test:.4f}') \ No newline at end of file + print(f'Test set results: loss {loss_test:.4f} accuracy {acc_test:.4f}') diff --git a/gcn/main.py b/gcn/main.py index 5c8362b576..80b0c6ce14 100644 --- a/gcn/main.py +++ b/gcn/main.py @@ -203,19 +203,19 @@ def test(model, criterion, input, target, mask): parser = argparse.ArgumentParser(description='PyTorch Graph Convolutional Network') parser.add_argument('--epochs', type=int, default=200, - help='number of epochs to train (default: 200)') + help='number of epochs to train (default: %(default)s)') parser.add_argument('--lr', type=float, default=0.01, - help='learning rate (default: 0.01)') + help='learning rate (default: %(default)s)') parser.add_argument('--l2', type=float, default=5e-4, - help='weight decay (default: 5e-4)') + help='weight decay (default: %(default)s)') parser.add_argument('--dropout-p', type=float, default=0.5, - help='dropout probability (default: 0.5)') + help='dropout probability (default: %(default)s)') parser.add_argument('--hidden-dim', type=int, default=16, - help='dimension of the hidden representation (default: 16)') + help='dimension of the hidden representation (default: %(default)s)') parser.add_argument('--val-every', type=int, default=20, - help='epochs to wait for print training and validation evaluation (default: 20)') + help='epochs to wait for print training and validation evaluation (default: %(default)s)') parser.add_argument('--include-bias', action='store_true', default=False, - help='use bias term in convolutions (default: False)') + help='use bias term in convolutions (default: %(default)s)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--no-mps', action='store_true', default=False, @@ -223,7 +223,7 @@ def test(model, criterion, input, target, mask): parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=42, metavar='S', - help='random seed (default: 42)') + help='random seed (default: %(default)s)') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() @@ -260,4 +260,4 @@ def test(model, criterion, input, target, mask): break loss_test, acc_test = test(gcn, criterion, (features, adj_mat), labels, idx_test) - print(f'Test set results: loss {loss_test:.4f} accuracy {acc_test:.4f}') \ No newline at end of file + print(f'Test set results: loss {loss_test:.4f} accuracy {acc_test:.4f}') diff --git a/imagenet/main.py b/imagenet/main.py index cc32d50733..52805271ae 100644 --- a/imagenet/main.py +++ b/imagenet/main.py @@ -27,21 +27,21 @@ parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('data', metavar='DIR', nargs='?', default='imagenet', - help='path to dataset (default: imagenet)') + help='path to dataset (default: %(default)s)') parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + - ' (default: resnet18)') + ' (default: %(default)s)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', - help='number of data loading workers (default: 4)') + help='number of data loading workers (default: %(default)s)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', - help='mini-batch size (default: 256), this is the total ' + help='mini-batch size (default: %(default)s), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, @@ -49,12 +49,12 @@ parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, - metavar='W', help='weight decay (default: 1e-4)', + metavar='W', help='weight decay (default: %(default)s)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=10, type=int, - metavar='N', help='print frequency (default: 10)') + metavar='N', help='print frequency (default: %(default)s)') parser.add_argument('--resume', default='', type=str, metavar='PATH', - help='path to latest checkpoint (default: none)') + help='path to latest checkpoint (default: %(default)s)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', diff --git a/legacy/snli/util.py b/legacy/snli/util.py index 1bc8e0b2cc..7a4552c227 100644 --- a/legacy/snli/util.py +++ b/legacy/snli/util.py @@ -23,7 +23,7 @@ def get_args(): parser.add_argument('--epochs', type=int, default=50, help='the number of total epochs to run.') parser.add_argument('--batch_size', type=int, default=128, - help='batch size. (default: 128)') + help='batch size. (default: %(default)s)') parser.add_argument('--d_embed', type=int, default=100, help='the size of each embedding vector.') parser.add_argument('--d_proj', type=int, default=300, @@ -31,10 +31,10 @@ def get_args(): parser.add_argument('--d_hidden', type=int, default=300, help='the number of features in the hidden state.') parser.add_argument('--n_layers', type=int, default=1, - help='the number of recurrent layers. (default: 50)') + help='the number of recurrent layers. (default: %(default)s)') parser.add_argument('--log_every', type=int, default=50, help='iteration period to output log.') - parser.add_argument('--lr',type=float, default=.001, + parser.add_argument('--lr', type=float, default=.001, help='initial learning rate.') parser.add_argument('--dev_every', type=int, default=1000, help='log period of validation results.') @@ -51,7 +51,7 @@ def get_args(): parser.add_argument('--train_embed', action='store_false', dest='fix_emb', help='enable embedding word training.') parser.add_argument('--gpu', type=int, default=0, - help='gpu id to use. (default: 0)') + help='gpu id to use. (default: %(default)s)') parser.add_argument('--save_path', type=str, default='results', help='save path of results.') parser.add_argument('--vector_cache', type=str, default=os.path.join(os.getcwd(), '.vector_cache/input_vectors.pt'), diff --git a/mnist/main.py b/mnist/main.py index 184dc4744f..d2f45fbd4f 100644 --- a/mnist/main.py +++ b/mnist/main.py @@ -73,15 +73,15 @@ def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', - help='input batch size for training (default: 64)') + help='input batch size for training (default: %(default)s)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', - help='input batch size for testing (default: 1000)') + help='input batch size for testing (default: %(default)s)') parser.add_argument('--epochs', type=int, default=14, metavar='N', - help='number of epochs to train (default: 14)') + help='number of epochs to train (default: %(default)s)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', - help='learning rate (default: 1.0)') + help='learning rate (default: %(default)s)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', - help='Learning rate step gamma (default: 0.7)') + help='Learning rate step gamma (default: %(default)s)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--no-mps', action='store_true', default=False, @@ -89,7 +89,7 @@ def main(): parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', - help='random seed (default: 1)') + help='random seed (default: %(default)s)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, diff --git a/mnist_forward_forward/main.py b/mnist_forward_forward/main.py index a175126067..b90b04d36f 100644 --- a/mnist_forward_forward/main.py +++ b/mnist_forward_forward/main.py @@ -92,14 +92,14 @@ def train(self, x_pos, x_neg): type=int, default=1000, metavar="N", - help="number of epochs to train (default: 1000)", + help="number of epochs to train (default: %(default)s)", ) parser.add_argument( "--lr", type=float, default=0.03, metavar="LR", - help="learning rate (default: 0.03)", + help="learning rate (default: %(default)s)", ) parser.add_argument( "--no_cuda", action="store_true", default=False, help="disables CUDA training" @@ -108,7 +108,7 @@ def train(self, x_pos, x_neg): "--no_mps", action="store_true", default=False, help="disables MPS training" ) parser.add_argument( - "--seed", type=int, default=1, metavar="S", help="random seed (default: 1)" + "--seed", type=int, default=1, metavar="S", help="random seed (default: %(default)s)" ) parser.add_argument( "--save_model", diff --git a/mnist_hogwild/main.py b/mnist_hogwild/main.py index 6fa449233d..e71b929c9c 100644 --- a/mnist_hogwild/main.py +++ b/mnist_hogwild/main.py @@ -12,21 +12,21 @@ # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', - help='input batch size for training (default: 64)') + help='input batch size for training (default: %(default)s)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', - help='input batch size for testing (default: 1000)') + help='input batch size for testing (default: %(default)s)') parser.add_argument('--epochs', type=int, default=10, metavar='N', - help='number of epochs to train (default: 10)') + help='number of epochs to train (default: %(default)s)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', - help='learning rate (default: 0.01)') + help='learning rate (default: %(default)s)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', - help='SGD momentum (default: 0.5)') + help='SGD momentum (default: %(default)s)') parser.add_argument('--seed', type=int, default=1, metavar='S', - help='random seed (default: 1)') + help='random seed (default: %(default)s)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--num-processes', type=int, default=2, metavar='N', - help='how many training processes to use (default: 2)') + help='how many training processes to use (default: %(default)s)') parser.add_argument('--cuda', action='store_true', default=False, help='enables CUDA training') parser.add_argument('--mps', action='store_true', default=False, diff --git a/mnist_rnn/main.py b/mnist_rnn/main.py index 2fa64c00d6..753579fa0b 100644 --- a/mnist_rnn/main.py +++ b/mnist_rnn/main.py @@ -82,15 +82,15 @@ def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example using RNN') parser.add_argument('--batch-size', type=int, default=64, metavar='N', - help='input batch size for training (default: 64)') + help='input batch size for training (default: %(default)s)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', - help='input batch size for testing (default: 1000)') + help='input batch size for testing (default: %(default)s)') parser.add_argument('--epochs', type=int, default=14, metavar='N', - help='number of epochs to train (default: 14)') + help='number of epochs to train (default: %(default)s)') parser.add_argument('--lr', type=float, default=0.1, metavar='LR', - help='learning rate (default: 0.1)') + help='learning rate (default: %(default)s)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', - help='learning rate step gamma (default: 0.7)') + help='learning rate step gamma (default: %(default)s)') parser.add_argument('--cuda', action='store_true', default=False, help='enables CUDA training') parser.add_argument('--mps', action="store_true", default=False, @@ -98,7 +98,7 @@ def main(): parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', - help='random seed (default: 1)') + help='random seed (default: %(default)s)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, diff --git a/reinforcement_learning/actor_critic.py b/reinforcement_learning/actor_critic.py index c5a3ee6d79..1987d2cf98 100644 --- a/reinforcement_learning/actor_critic.py +++ b/reinforcement_learning/actor_critic.py @@ -14,13 +14,13 @@ parser = argparse.ArgumentParser(description='PyTorch actor-critic example') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', - help='discount factor (default: 0.99)') + help='discount factor (default: %(default)s)') parser.add_argument('--seed', type=int, default=543, metavar='N', - help='random seed (default: 543)') + help='random seed (default: %(default)s)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=10, metavar='N', - help='interval between training status logs (default: 10)') + help='interval between training status logs (default: %(default)s)') args = parser.parse_args() diff --git a/reinforcement_learning/reinforce.py b/reinforcement_learning/reinforce.py index 961598174c..7455551247 100644 --- a/reinforcement_learning/reinforce.py +++ b/reinforcement_learning/reinforce.py @@ -12,13 +12,13 @@ parser = argparse.ArgumentParser(description='PyTorch REINFORCE example') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', - help='discount factor (default: 0.99)') + help='discount factor (default: %(default)s)') parser.add_argument('--seed', type=int, default=543, metavar='N', - help='random seed (default: 543)') + help='random seed (default: %(default)s)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=10, metavar='N', - help='interval between training status logs (default: 10)') + help='interval between training status logs (default: %(default)s)') args = parser.parse_args() diff --git a/siamese_network/main.py b/siamese_network/main.py index 8f420a9b01..6fa87677f4 100644 --- a/siamese_network/main.py +++ b/siamese_network/main.py @@ -238,15 +238,15 @@ def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch Siamese network Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', - help='input batch size for training (default: 64)') + help='input batch size for training (default: %(default)s)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', - help='input batch size for testing (default: 1000)') + help='input batch size for testing (default: %(default)s)') parser.add_argument('--epochs', type=int, default=14, metavar='N', - help='number of epochs to train (default: 14)') + help='number of epochs to train (default: %(default)s)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', - help='learning rate (default: 1.0)') + help='learning rate (default: %(default)s)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', - help='Learning rate step gamma (default: 0.7)') + help='Learning rate step gamma (default: %(default)s)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--no-mps', action='store_true', default=False, @@ -254,7 +254,7 @@ def main(): parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', - help='random seed (default: 1)') + help='random seed (default: %(default)s)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, diff --git a/vae/main.py b/vae/main.py index d69833fbe0..23d619f2cd 100644 --- a/vae/main.py +++ b/vae/main.py @@ -10,15 +10,15 @@ parser = argparse.ArgumentParser(description='VAE MNIST Example') parser.add_argument('--batch-size', type=int, default=128, metavar='N', - help='input batch size for training (default: 128)') + help='input batch size for training (default: %(default)s)') parser.add_argument('--epochs', type=int, default=10, metavar='N', - help='number of epochs to train (default: 10)') + help='number of epochs to train (default: %(default)s)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--no-mps', action='store_true', default=False, - help='disables macOS GPU training') + help='disables macOS GPU training') parser.add_argument('--seed', type=int, default=1, metavar='S', - help='random seed (default: 1)') + help='random seed (default: %(default)s)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() diff --git a/word_language_model/generate.py b/word_language_model/generate.py index 13bd8abfcd..ba0f2dae73 100644 --- a/word_language_model/generate.py +++ b/word_language_model/generate.py @@ -24,7 +24,7 @@ parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--mps', action='store_true', default=False, - help='enables macOS GPU training') + help='enables macOS GPU training') parser.add_argument('--temperature', type=float, default=1.0, help='temperature - higher will increase diversity') parser.add_argument('--log-interval', type=int, default=100, @@ -39,7 +39,7 @@ if torch.backends.mps.is_available(): if not args.mps: print("WARNING: You have mps device, to enable macOS GPU run with --mps.") - + use_mps = args.mps and torch.backends.mps.is_available() if args.cuda: device = torch.device("cuda") diff --git a/word_language_model/main.py b/word_language_model/main.py index 23bda03e73..c3a8d47f41 100644 --- a/word_language_model/main.py +++ b/word_language_model/main.py @@ -40,7 +40,7 @@ parser.add_argument('--cuda', action='store_true', default=False, help='use CUDA') parser.add_argument('--mps', action='store_true', default=False, - help='enables macOS GPU training') + help='enables macOS GPU training') parser.add_argument('--log-interval', type=int, default=200, metavar='N', help='report interval') parser.add_argument('--save', type=str, default='model.pt', pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy