Skip to content

test_gradient_all Device Type test regression with Numpy >= 2.0.0 #132450

@123epsilon

Description

@123epsilon

🐛 Describe the bug

When running the device type test test_gradient_all using numpy==2.0.0 or numpy==2.0.1 I get the following failure for all dtypes:

AssertionError: The length of the sequences mismatch: 2 != 1

This is due to the np.gradient function producing fewer tensors in its output than expected in v2.0.0 - I have been able to confirm that installing numpy==1.26.4 and then running the test causes the test to pass.

To reproduce:

# ... setup pytorch ( I set it up from source)
pip install numpy==2.0.1
python test/test_torch.py -k TestTorchDeviceTypeCPU.test_gradient_all --verbose
...
# we get the failure
AssertionError: The length of the sequences mismatch: 2 != 1

pip install numpy==1.26.4
python test/test_torch.py -k TestTorchDeviceTypeCPU.test_gradient_all --verbose
...
# tests pass
OK

Honestly I haven't looked too deeply into the test logic, but I do know that it is the call to np.gradient that is causing the failure. I don't know what an appropriate solution, if any, is since this doesn't technically affect the correctness of torch.gradient - perhaps raise an issue in numpy?

Versions

PyTorch version: 2.4.0a0+gitc84e248
Is debug build: False
CUDA used to build PyTorch: N/A
ROCM used to build PyTorch: 6.0.32831-204d35d16

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.1
Libc version: glibc-2.35

Python version: 3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-6.2.0-39-generic-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7713 64-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 1
Core(s) per socket: 64
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3720.7029
CPU min MHz: 1500.0000
BogoMIPS: 3992.24
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin brs arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization: AMD-V
L1d cache: 4 MiB (128 instances)
L1i cache: 4 MiB (128 instances)
L2 cache: 64 MiB (128 instances)
L3 cache: 512 MiB (16 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-63
NUMA node1 CPU(s): 64-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==2.0.0
[pip3] optree==0.12.1
[pip3] torch==2.4.0a0+gitc84e248
[conda] numpy 2.0.0 pypi_0 pypi
[conda] optree 0.12.1 pypi_0 pypi
[conda] torch 2.4.0a0+gitc84e248 pypi_0 pypi

cc @ezyang @albanD @gqchen @pearu @nikitaved @soulitzer @Varal7 @xmfan @seemethere @malfet @pytorch/pytorch-dev-infra @mruberry @ZainRizvi @rgommers

Metadata

Metadata

Assignees

No one assigned

    Labels

    actionablemodule: autogradRelated to torch.autograd, and the autograd engine in generalmodule: ciRelated to continuous integrationmodule: numpyRelated to numpy support, and also numpy compatibility of our operatorsmodule: testsIssues related to tests (not the torch.testing module)triagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    Status

    Done

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      pFad - Phonifier reborn

      Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

      Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


      Alternative Proxies:

      Alternative Proxy

      pFad Proxy

      pFad v3 Proxy

      pFad v4 Proxy