-
Notifications
You must be signed in to change notification settings - Fork 48
Open
Description
🐛 Describe the bug
Thanks for looking into.
simply importing VideoDecoder
causes ffmpeg error:
from torchcodec.decoders import VideoDecoder
this causes following error:
RuntimeError: Could not load libtorchcodec. Likely causes:
1. FFmpeg is not properly installed in your environment. We support
versions 4, 5, 6 and 7.
2. The PyTorch version (2.7.1+cu128) is not compatible with
this version of TorchCodec. Refer to the version compatibility
table:
https://github.com/pytorch/torchcodec?tab=readme-ov-file#installing-torchcodec.
3. Another runtime dependency; see exceptions below.
The following exceptions were raised as we tried to load libtorchcodec:
[start of libtorchcodec loading traceback]
FFmpeg version 7: libavutil.so.59: cannot open shared object file: No such file or directory
FFmpeg version 6: libavformat.so.60: cannot open shared object file: No such file or directory
FFmpeg version 5: libavutil.so.57: cannot open shared object file: No such file or directory
FFmpeg version 4: libavutil.so.56: cannot open shared object file: No such file or directory
[end of libtorchcodec loading traceback].
but I do have GPU attached ffmpeg I built from source, by doing ffmpeg -version
:
ffmpeg version N-***-*** Copyright (c) 2000-2025 the FFmpeg developers
built with gcc 13 (Ubuntu 13.3.0-6ubuntu2~24.04)
configuration: --enable-gpl --enable-nonfree --enable-shared --enable-cuda-nvcc --enable-cuvid --enable-nvdec --enable-nvenc --enable-libnpp --enable-libx264 --enable-libx265 --enable-libwebp --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64
libavutil 60. 3.100 / 60. 3.100
libavcodec 62. 3.101 / 62. 3.101
libavformat 62. 1.100 / 62. 1.100
libavdevice 62. 0.100 / 62. 0.100
libavfilter 11. 0.100 / 11. 0.100
libswscale 9. 0.100 / 9. 0.100
libswresample 6. 0.100 / 6. 0.100
Exiting with exit code 0
ldd $(which ffmpeg)
also returns correct output. all required libraries for ffmpeg have been linked to ffmpeg. output of ffmpeg -decoders | grep -i nvidia
also returns:
ffmpeg version N-***-*** Copyright (c) 2000-2025 the FFmpeg developers
built with gcc 13 (Ubuntu 13.3.0-6ubuntu2~24.04)
configuration: --enable-gpl --enable-nonfree --enable-shared --enable-cuda-nvcc --enable-cuvid --enable-nvdec --enable-nvenc --enable-libnpp --enable-libx264 --enable-libx265 --enable-libwebp --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64
libavutil 60. 3.100 / 60. 3.100
libavcodec 62. 3.101 / 62. 3.101
libavformat 62. 1.100 / 62. 1.100
libavdevice 62. 0.100 / 62. 0.100
libavfilter 11. 0.100 / 11. 0.100
libswscale 9. 0.100 / 9. 0.100
libswresample 6. 0.100 / 6. 0.100
V..... av1_cuvid Nvidia CUVID AV1 decoder (codec av1)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
have you guys hardcoded recognizable ffmpeg version name in the code?
I appreciate any advice.
Versions
PyTorch version: 2.7.1+cu128
Is debug build: False
CUDA used to build PyTorch: 12.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 24.04.2 LTS (x86_64)
GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version: Could not collect
CMake version: version 3.28.3
Libc version: glibc-2.39
Python version: 3.12.3 (main, May 26 2025, 18:50:19) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.11.0-26-generic-x86_64-with-glibc2.39
Is CUDA available: True
CUDA runtime version: 12.8.93
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080
Nvidia driver version: 570.133.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.10.2
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.10.2
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 5950X 16-Core Processor
CPU family: 25
Model: 33
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 1
Stepping: 2
Frequency boost: enabled
CPU(s) scaling MHz: 37%
CPU max MHz: 5084.0000
CPU min MHz: 550.0000
BogoMIPS: 6799.51
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm debug_swap
Virtualization: AMD-V
L1d cache: 512 KiB (16 instances)
L1i cache: 512 KiB (16 instances)
L2 cache: 8 MiB (16 instances)
L3 cache: 64 MiB (2 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; Safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.1.2
[pip3] nvidia-cublas-cu12==12.8.3.14
[pip3] nvidia-cuda-cupti-cu12==12.8.57
[pip3] nvidia-cuda-nvrtc-cu12==12.8.61
[pip3] nvidia-cuda-runtime-cu12==12.8.57
[pip3] nvidia-cudnn-cu12==9.7.1.26
[pip3] nvidia-cufft-cu12==11.3.3.41
[pip3] nvidia-curand-cu12==10.3.9.55
[pip3] nvidia-cusolver-cu12==11.7.2.55
[pip3] nvidia-cusparse-cu12==12.5.7.53
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvtx-cu12==12.8.55
[pip3] torch==2.7.1+cu128
[pip3] torchcodec==0.4.0+cu128
[pip3] torchvision==0.22.1+cu128
[pip3] triton==3.3.1
Metadata
Metadata
Assignees
Labels
No labels