diff --git a/deslib/__init__.py b/deslib/__init__.py index 3d62b68..8d75c30 100644 --- a/deslib/__init__.py +++ b/deslib/__init__.py @@ -23,4 +23,4 @@ # list of all modules available in the library __all__ = ['des', 'dcs', 'static', 'util', 'tests'] -__version__ = '0.4.dev' +__version__ = '0.3.7' diff --git a/examples/example_calibrating_classifiers.py b/examples/example_calibrating_classifiers.py index 7c115ff..54dacec 100644 --- a/examples/example_calibrating_classifiers.py +++ b/examples/example_calibrating_classifiers.py @@ -93,7 +93,7 @@ # DS methods. calibrated_pool = [] for clf in pool_classifiers: - calibrated = CalibratedClassifierCV(base_estimator=clf, cv='prefit') + calibrated = CalibratedClassifierCV(estimator=clf, cv='prefit') calibrated.fit(X_dsel, y_dsel) calibrated_pool.append(calibrated) diff --git a/examples/plot_random_forest.py b/examples/plot_random_forest.py index fdd4caa..7cc35fb 100644 --- a/examples/plot_random_forest.py +++ b/examples/plot_random_forest.py @@ -43,7 +43,8 @@ rng = np.random.RandomState(42) # Fetch a classification dataset from OpenML -data = fetch_openml(name='credit-g', version=1, cache=False, as_frame=False) +data = fetch_openml(name='phoneme', version=1, + cache=False, as_frame=False) X = data.data y = data.target # split the data into training and test data @@ -57,7 +58,7 @@ RF.fit(X_train, y_train) X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train, - test_size=0.50, + test_size=0.750, random_state=rng) stacked = StackedClassifier(RF, LogisticRegression()) diff --git a/setup.py b/setup.py index 0cc1f10..59dfdd4 100644 --- a/setup.py +++ b/setup.py @@ -11,7 +11,7 @@ README = f.read() setup(name='DESlib', - version='0.4.dev', + version='0.3.7', url='https://github.com/Menelau/DESlib', maintainer='Rafael M. O. Cruz, L. G. Hafemann', maintainer_email='rafaelmenelau@gmail.com', pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy