Skip to content

slingdata-io/sling-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

logo

Slings from a data source to a data target.

Installation

pip install sling or pip install sling[arrow] for streaming.

Then you should be able to run sling --help from command line.

Running a Extract-Load Task

CLI

sling run --src-conn MY_PG --src-stream myschema.mytable \
  --tgt-conn YOUR_SNOWFLAKE --tgt-object yourschema.yourtable \
  --mode full-refresh

Or passing a yaml/json string or file

cat '
source: MY_POSTGRES
target: MY_SNOWFLAKE

# default config options which apply to all streams
defaults:
  mode: full-refresh
  object: new_schema.{stream_schema}_{stream_table}

streams:
  my_schema.*:
' > /path/to/replication.yaml

sling run -r /path/to/replication.yaml

Using the Replication class

Run a replication from file:

import yaml
from sling import Replication

# From a YAML file
replication = Replication(file_path="path/to/replication.yaml")
replication.run()

# Or load into object
with open('path/to/replication.yaml') as file:
  config = yaml.load(file, Loader=yaml.FullLoader)

replication = Replication(**config)

replication.run()

Build a replication dynamically:

from sling import Replication, ReplicationStream, Mode

# build sling replication
streams = {}
for (folder, table_name) in list(folders):
  streams[folder] = ReplicationStream(
    mode=Mode.FULL_REFRESH, object=table_name, primary_key='_hash_id')

replication = Replication(
  source='aws_s3',
  target='snowflake',
  streams=streams,
  env=dict(SLING_STREAM_URL_COLUMN='true', SLING_LOADED_AT_COLUMN='true'),
  debug=True,
)

replication.run()

Using the Sling Class

For more direct control and streaming capabilities, you can use the Sling class, which mirrors the CLI interface.

Basic Usage with run() method

import os
from sling import Sling, Mode

# Set postgres & snowflake connection
# see https://docs.slingdata.io/connections/database-connections
os.environ["POSTGRES"] = 'postgres://...'
os.environ["SNOWFLAKE"] = 'snowflake://...'

# Database to database transfer
Sling(
    src_conn="postgres",
    src_stream="public.users",
    tgt_conn="snowflake",
    tgt_object="public.users_copy",
    mode=Mode.FULL_REFRESH
).run()

# Database to file
Sling(
    src_conn="postgres", 
    src_stream="select * from users where active = true",
    tgt_object="file:///tmp/active_users.csv"
).run()

# File to database
Sling(
    src_stream="file:///path/to/data.csv",
    tgt_conn="snowflake",
    tgt_object="public.imported_data"
).run()

Input Streaming - Python Data to Target

πŸ’‘ Tip: Install pip install sling[arrow] for better streaming performance and improved data type handling.

πŸ“Š DataFrame Support: The input parameter accepts lists of dictionaries, pandas DataFrames, or polars DataFrames. DataFrame support preserves data types when using Arrow format.

⚠️ Note: Be careful with large numbers of Sling invocations using input or stream() methods when working with external systems (databases, file systems). Each call re-opens the connection since it invokes the underlying sling binary. For better performance and connection reuse, consider using the Replication class instead, which maintains open connections across multiple operations.

import os
from sling import Sling, Format

# Set postgres connection
# see https://docs.slingdata.io/connections/database-connections
os.environ["POSTGRES"] = 'postgres://...'

# Stream Python data to CSV file
data = [
    {"id": 1, "name": "John", "age": 30},
    {"id": 2, "name": "Jane", "age": 25},
    {"id": 3, "name": "Bob", "age": 35}
]

Sling(
    input=data,
    tgt_object="file:///tmp/output.csv"
).run()

# Stream Python data to database
Sling(
    input=data,
    tgt_conn="postgres",
    tgt_object="public.users"
).run()

# Stream Python data to JSON Lines file
Sling(
    input=data,
    tgt_object="file:///tmp/output.jsonl",
    tgt_options={"format": Format.JSONLINES}
).run()

# Stream from generator (memory efficient for large datasets)
def data_generator():
    for i in range(10000):
        yield {"id": i, "value": f"item_{i}", "timestamp": "2023-01-01"}

Sling(input=data_generator(), tgt_object="file:///tmp/large_dataset.csv").run()

# Stream pandas DataFrame to database
import pandas as pd

df = pd.DataFrame({
    "id": [1, 2, 3, 4],
    "name": ["Alice", "Bob", "Charlie", "Diana"],
    "age": [25, 30, 35, 28],
    "salary": [50000, 60000, 70000, 55000]
})

Sling(
    input=df,
    tgt_conn="postgres",
    tgt_object="public.employees"
).run()

# Stream polars DataFrame to CSV file
import polars as pl

df = pl.DataFrame({
    "product_id": [101, 102, 103],
    "product_name": ["Laptop", "Mouse", "Keyboard"],
    "price": [999.99, 25.50, 75.00],
    "in_stock": [True, False, True]
})

Sling(
    input=df,
    tgt_object="file:///tmp/products.csv"
).run()

# DataFrame with column selection
Sling(
    input=df,
    select=["product_name", "price"],  # Only export specific columns
    tgt_object="file:///tmp/product_prices.csv"
).run()

Output Streaming with stream()

import os
from sling import Sling

# Set postgres connection
# see https://docs.slingdata.io/connections/database-connections
os.environ["POSTGRES"] = 'postgres://...'

# Stream data from database
sling = Sling(
    src_conn="postgres",
    src_stream="public.users",
    limit=1000
)

for record in sling.stream():
    print(f"User: {record['name']}, Age: {record['age']}")

# Stream data from file
sling = Sling(
    src_stream="file:///path/to/data.csv"
)

# Process records one by one (memory efficient)
for record in sling.stream():
    # Process each record
    processed_data = transform_record(record)
    # Could save to another system, send to API, etc.

# Stream with parameters
sling = Sling(
    src_conn="postgres",
    src_stream="public.orders",
    select=["order_id", "customer_name", "total"],
    where="total > 100",
    limit=500
)

records = list(sling.stream())
print(f"Found {len(records)} high-value orders")

Round-trip Examples

import os
from sling import Sling

# Set postgres connection
# see https://docs.slingdata.io/connections/database-connections
os.environ["POSTGRES"] = 'postgres://...'

# Python β†’ File β†’ Python
original_data = [
    {"id": 1, "name": "Alice", "score": 95.5},
    {"id": 2, "name": "Bob", "score": 87.2}
]

# Step 1: Python data to file
sling_write = Sling(
    input=original_data,
    tgt_object="file:///tmp/scores.csv"
)
sling_write.run()

# Step 2: File back to Python
sling_read = Sling(
    src_stream="file:///tmp/scores.csv"
)
loaded_data = list(sling_read.stream())

# Python β†’ Database β†’ Python (with transformations)
sling_to_db = Sling(
    input=original_data,
    tgt_conn="postgres",
    tgt_object="public.temp_scores"
)
sling_to_db.run()

sling_from_db = Sling(
    src_conn="postgres", 
    src_stream="select *, score * 1.1 as boosted_score from public.temp_scores",
)
transformed_data = list(sling_from_db.stream())

# DataFrame β†’ Database β†’ DataFrame (with pandas/polars)
import pandas as pd

# Start with pandas DataFrame
df = pd.DataFrame({
    "user_id": [1, 2, 3],
    "purchase_amount": [100.50, 250.75, 75.25],
    "category": ["electronics", "clothing", "books"]
})

# Write DataFrame to database
Sling(
    input=df,
    tgt_conn="postgres",
    tgt_object="public.purchases"
).run()

# Read back with SQL transformations as pandas DataFrame
sling_query = Sling(
    src_conn="postgres",
    src_stream="""
        SELECT category, 
               COUNT(*) as purchase_count,
               AVG(purchase_amount) as avg_amount
        FROM public.purchases 
        GROUP BY category
    """
)
summary_data = list(sling_query.stream())
summary_df = pd.DataFrame(summary_data)
print(summary_df)

Using the Pipeline class

Run a Pipeline:

from sling import Pipeline
from sling.hooks import StepLog, StepCopy, StepReplication, StepHTTP, StepCommand

# From a YAML file
pipeline = Pipeline(file_path="path/to/pipeline.yaml")
pipeline.run()

# Or using Hook objects for type safety
pipeline = Pipeline(
    steps=[
        StepLog(message="Hello world"),
        StepCopy(from_="sftp//path/to/file", to="aws_s3/path/to/file"),
        StepReplication(path="path/to/replication.yaml"),
        StepHTTP(url="https://trigger.webhook.com"),
        StepCommand(command=["ls", "-l"], print_output=True)
    ],
    env={"MY_VAR": "value"}
)
pipeline.run()

# Or programmatically using dictionaries
pipeline = Pipeline(
    steps=[
        {"type": "log", "message": "Hello world"},
        {"type": "copy", "from": "sftp//path/to/file", "to": "aws_s3/path/to/file"},
        {"type": "replication", "path": "path/to/replication.yaml"},
        {"type": "http", "url": "https://trigger.webhook.com"},
        {"type": "command", "command": ["ls", "-l"], "print": True}
    ],
    env={"MY_VAR": "value"}
)
pipeline.run()

Testing

pytest sling/tests/tests.py -v
pytest sling/tests/test_sling_class.py -v

About

Python wrapper for the Sling CLI tool

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 6

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy