Skip to content

Compute a moving sample Pearson product-moment correlation distance incrementally.

License

Notifications You must be signed in to change notification settings

stdlib-js/stats-incr-mpcorrdist

About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

incrmpcorrdist

NPM version Build Status Coverage Status

Compute a moving sample Pearson product-moment correlation distance incrementally.

The sample Pearson product-moment correlation distance is defined as

$$d_{x,y} = 1 - r_{x,y} = 1 - \frac{\mathop{\mathrm{cov_n(x,y)}}}{\sigma_x \sigma_y}$$

where r is the sample Pearson product-moment correlation coefficient, cov(x,y) is the sample covariance, and σ corresponds to the sample standard deviation. As r resides on the interval [-1,1], d resides on the interval [0,2].

Installation

npm install @stdlib/stats-incr-mpcorrdist

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var incrmpcorrdist = require( '@stdlib/stats-incr-mpcorrdist' );

incrmpcorrdist( window[, mx, my] )

Returns an accumulator function which incrementally computes a moving sample Pearson product-moment correlation distance. The window parameter defines the number of values over which to compute the moving sample Pearson product-moment correlation distance.

var accumulator = incrmpcorrdist( 3 );

If means are already known, provide mx and my arguments.

var accumulator = incrmpcorrdist( 3, 5.0, -3.14 );

accumulator( [x, y] )

If provided input values x and y, the accumulator function returns an updated sample Pearson product-moment correlation distance. If not provided input values x and y, the accumulator function returns the current sample Pearson product-moment correlation distance.

var accumulator = incrmpcorrdist( 3 );

var r = accumulator();
// returns null

// Fill the window...
r = accumulator( 2.0, 1.0 ); // [(2.0, 1.0)]
// returns 1.0

r = accumulator( -5.0, 3.14 ); // [(2.0, 1.0), (-5.0, 3.14)]
// returns ~2.0

r = accumulator( 3.0, -1.0 ); // [(2.0, 1.0), (-5.0, 3.14), (3.0, -1.0)]
// returns ~1.925

// Window begins sliding...
r = accumulator( 5.0, -9.5 ); // [(-5.0, 3.14), (3.0, -1.0), (5.0, -9.5)]
// returns ~1.863

r = accumulator( -5.0, 1.5 ); // [(3.0, -1.0), (5.0, -9.5), (-5.0, 1.5)]
// returns ~1.803

r = accumulator();
// returns ~1.803

Notes

  • Input values are not type checked. If provided NaN or a value which, when used in computations, results in NaN, the accumulated value is NaN for at least W-1 future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
  • As W (x,y) pairs are needed to fill the window buffer, the first W-1 returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
  • Due to limitations inherent in representing numeric values using floating-point format (i.e., the inability to represent numeric values with infinite precision), the sample correlation distance between perfectly correlated random variables may not be 0 or 2. In fact, the sample correlation distance is not guaranteed to be strictly on the interval [0,2]. Any computed distance should, however, be within floating-point roundoff error.

Examples

var randu = require( '@stdlib/random-base-randu' );
var incrmpcorrdist = require( '@stdlib/stats-incr-mpcorrdist' );

var accumulator;
var x;
var y;
var i;

// Initialize an accumulator:
accumulator = incrmpcorrdist( 5 );

// For each simulated datum, update the moving sample correlation distance...
for ( i = 0; i < 100; i++ ) {
    x = randu() * 100.0;
    y = randu() * 100.0;
    accumulator( x, y );
}
console.log( accumulator() );

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy