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Abstract. Irrigated cultivation exerts a significant influence
on the local climate and the hydrological cycle. The North
China Plain (NCP) is known for its intricate agricultural sys-
tem, marked by expansive cropland, high productivity, com-
pact rotation, a semi-arid climate, and intensive irrigation
practices. As a result, there has been considerable attention
on the potential impact of this intensive irrigated agriculture
on the local climate. However, studying the irrigation impact
in this region has been challenging due to the lack of an ac-
curate simulation of crop phenology and irrigation practices
within the climate model. By incorporating double cropping
with interactive irrigation, our study extends the capabilities
of the Weather Research Forecast (WRF) model, which has
previously demonstrated commendable performance in sim-
ulating single-cropping scenarios. This allows for two-way
feedback between irrigated crops and climate, further en-
abling the inclusion of irrigation feedback from both ground
and vegetation perspectives. The improved crop modeling
system shows significant enhancement in capturing vegeta-
tion and irrigation patterns, which is evidenced by its ability
to identify crop stages, estimate field biomass, predict crop
yield, and project monthly leaf area index. The improved
simulation of large-scale irrigated crops in the NCP can fur-
ther enhance our understanding of the intricate relationship
between agricultural development and climate change.

1 Introduction

Agriculture serves as one of the primary drivers of land-use
changes (Goldewijk, 2001) and the largest consumer of wa-
ter resources globally (Foley et al., 2011). To increase crop
productivity and feed the exploding population, irrigation has
rapidly expanded in the past decades and accounts for over
70 % of the global freshwater withdrawal today. This inten-
sive and extensive irrigation undoubtedly exerts a signifi-
cant influence on the hydroclimate (McDermid et al., 2023;
Siebert et al., 2010). While it is widely acknowledged that ir-
rigation has a cooling and moistening effect on a global scale
(Cook et al., 2011; Lo et al., 2021; Pokhrel et al., 2012; Puma
and Cook, 2010), its influence is non-linear and location-
specific at regional scales, as it greatly depends on the agri-
cultural and climatic conditions of the region in which it is
deployed (Fan et al., 2023; Im et al., 2014; Kang and Eltahir,
2018, 2019; Pei et al., 2016; Tuinenburg et al., 2014; Wey
et al., 2015; Yang et al., 2019). Consequently, these com-
plex and unpredictable changes induced by irrigation have
attracted considerable attention, underscoring the need to im-
prove crop representation and effectively simulate the inter-
actions between irrigated cultivation and regional climate.

Numerous studies have simulated the irrigated crops using
traditional agricultural models (DeJonge et al., 2012; Mene-
fee et al., 2021) or offline land surface models (Lombardozzi
et al., 2020; Yin et al., 2020). However, while the vegetation
patterns and irrigation practices gradually alter the climatic
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processes, the changing climate also influences back onto
crop growth (Ahmed et al., 2015; Choi et al., 2017; Pielke
et al., 2007; Ramankutty et al., 2006; Yang and Wang, 2023).
This two-way interactive feedback between irrigated agri-
culture and climate can only be captured when employing
an interactive crop system within the climate models (Chen
and Xie, 2011; Harding et al., 2015; Lu et al., 2015). These
interactive crop models can not only capture the temporal
pattern of crop growth but also depict spatial heterogeneity
at regional scales with relatively fast computational speed
(Chen and Xie, 2011; Liu et al., 2016; Oleson et al., 2013;
Yin and van Laar, 2005). When simulating the water forc-
ings that sustain crop growth, some models simply assume
no irrigation (Liu et al., 2016), while others incorporate irri-
gation with a fixed amount (Vira et al., 2020) or dynamically
adjust the irrigation amount based on daily soil conditions
(Ozdogan et al., 2010; Qian et al., 2013; Valayamkunnath et
al., 2021; L. Wu et al., 2018; Yang et al., 2016, 2017, 2019,
2020). With these algorithms to simulate crop phenology and
irrigation behavior, multiple studies have reported significant
enhancements in dynamic vegetation predictions and a better
understanding of irrigation impact (Xu et al., 2019; Yang et
al., 2016; Zhang et al., 2020).

However, irrigated agriculture has not been explicitly rep-
resented in most regional climate models. One key issue is
the inadequate coupling between the crop module and the ir-
rigation module. For instance, many studies adopt prescribed
vegetation, which means that the crop growth may not be
sensitive to the water forcings (Lu et al., 2015). Also, the
irrigation activation is often prescribed by date rather than
following the actual crop season. The missing connection be-
tween crop and irrigation introduces uncertainties in captur-
ing the climatic processes, as both crop physiology and cli-
mate variations dynamically influence each other (Fang et al.,
2001; Porter and Semenov, 2005). The second issue is the ap-
plicability. Global-scale datasets related to cropland factors
have not kept pace with other vegetation mappings (Oleson
et al., 2013), and thus, schemes are predominantly developed
and calibrated on field scale in the United States, which are
mostly rainfed cropland (Menefee et al., 2021). Therefore,
regionalizing the models and improving their adaptation for
large-scale irrigation over other parts of the world have be-
come imperative.

Previous studies have shown that the regionalization pro-
cess significantly improves the model performance. This pro-
cess includes not only parameter calibration (Hong et al.,
2015; Liu et al., 2010; Park and Park, 2021; Xie et al., 2007)
but also algorithm modifications to enhance the model’s ap-
plicability to different regions (Bou-Zeid et al., 2007; Livneh
and Lettenmaier, 2013; Song et al., 2022). For instance, re-
calibration has been shown to significantly enhance crop pre-
diction accuracy in northeastern China and southwestern Eu-
rope (Asmus et al., 2023; Yu et al., 2022). Introducing new
tuning factors into the default equation can aid in simulat-
ing unique vegetation patterns within specific study domains

(L. Wu et al., 2018). Upgrading a variable such as the irriga-
tion threshold from a single constant to a spatially varied 2D
variable can better capture the spatial variability of irrigation
application (Xu et al., 2019; Zhang et al., 2020). Addition-
ally, incorporating new irrigation methods for paddy crop-
land improved irrigation predictions for southern Asia (Yao
et al., 2022). These enhancements underscore the importance
and efficacy of regionalization in improving the simulation in
irrigated agriculture.

As a key agricultural region, the North China Plain (NCP)
encompasses more than 40 % of China’s total harvested area
(FAO, 2019). Approximately two-thirds of the land within
the NCP is dedicated to cropland, contributing to nearly half
of the nation’s wheat production and one-third of the corn
production (Wang et al., 2008). However, the annual precip-
itation in the NCP is only around 800 mm, which is nearly
half of that in southern China (Zhe et al., 2014), increasing
its dependency on irrigation. Spatially, approximately 40 %
of the farmland in the NCP relies on irrigation (Portmann et
al., 2010; Siebert et al., 2013). The significant effects of ir-
rigation on the relatively dry climate in the NCP have been
demonstrated (e.g., Fan et al., 2023). Thus, the NCP is an
ideal test bed for studying irrigated crops and climate feed-
back, rooted not only in its extensive cropland and high pro-
ductivity but also in its semi-arid background and intense
irrigation. This specific crop rotation exerts a profound in-
fluence on vegetation patterns and irrigation requirements,
consequently leading to notable regional climate modifica-
tions (Jiang et al., 2021). This crop rotation greatly affects
the vegetation pattern and irrigation demand, further altering
the regional climate (Jeong et al., 2014). Furthermore, the
spring irrigation, which is supplied for winter-season crop-
ping during a relatively dry season, can have a particularly
pronounced impact on the local climate (Fan et al., 2023;
L. Wu et al., 2018). However, most current crop models in
land surface models (LSMs) primarily account for single
cropping. Therefore, it is necessary to consider this distinc-
tive double-cropping rotation, along with other local charac-
teristics, to accurately capture the crop growth and irrigation
activities.

Given the unique characteristics of the NCP, our research
aims to simulate the irrigated crop growth with a double-
cropping rotation, which is specifically tailored for the NCP
and its surrounding region. To achieve this, the Noah land
surface model with multiparameterization options (Noah-
MP) (Niu et al., 2011) has been selected, as it already encom-
passes several functions related to cultivation simulation and
has consistently exhibited exemplary performance in previ-
ous studies when simulating single-cropping scenarios (Liu
et al., 2016; Xu et al., 2019; Zhang et al., 2020). Its crop
model is already implemented within the Weather Research
and Forecasting Model (WRF) (Skamarock et al., 2019) to
enable two-way nested feedback between the crop system
and climate dynamics. While conducting parameter calibra-
tion and adopting local inputs to capture more local details,

Geosci. Model Dev., 17, 6929–6947, 2024 https://doi.org/10.5194/gmd-17-6929-2024



Y. Fan et al.: Irrigated double cropping in the North China Plain with WRF 6931

we also try to integrate satellite data to assess the model’s
ability in large-scale simulation. By integrating and regional-
izing the crop modeling system, this study primarily focuses
on the model development and its predictability assessment
in crop phenology and irrigation requirements, which repre-
sents a promising avenue for advancing our understanding
of the coupled human–natural system. The incorporation of
satellite input also holds the potential to enhance the applica-
bility of our approach in various regions beyond the current
study area.

2 Model description and experiment design

The study domain is centered on the NCP, encompassing
a significant portion of China’s cropland. Given the unique
characteristics of this region, we anticipate that the model
will exhibit the following capabilities:

– accurate representation of the general vegetation and ir-
rigation patterns in the NCP region, especially the pres-
ence of double crop seasons,

– integration of direct interactions between crops, irriga-
tion, and climate, with sensitivity of each factor to the
other two (in other words, the model should account for
the influence of crop growth and irrigation practices on
the local climate, while also considering the impact of
climate conditions on crop development and irrigation
requirements).

2.1 Study area

Figure 1 illustrates some key background variables, out-
lining the NCP region within black boxes. The topogra-
phy and cropland fraction are basic geostatic inputs for the
WRF, initially retrieved from the United States Geological
Survey and Moderate-resolution Imaging Spectroradiome-
ter (MODIS), respectively. Notably, the NCP region, being
the largest plain in eastern China, exhibits an average ele-
vation below 100 m (Fig. 1a), contributing to its suitability
for cultivation. Despite the high cropland fraction exceed-
ing 95 % in most of the pluvial area (Fig. 1b), the climatol-
ogy annual precipitation (retrieved from China Meteorolog-
ical Forcing Dataset) in 2000–2009 was merely half that of
southern China (Fig. 1c), highlighting the need for irrigation.
According to the FAO AQUASTAT database (Siebert et al.,
2013), irrigated cropland constituted more than 70 % of the
total land use in the pluvial area in 2005 (Fig. 1d).

2.2 Model configuration and experiment design

The study employs the Advanced Research version of the
WRF Model (version 4.5), a non-hydrostatic numerical
weather prediction model that has been widely adopted in
regional studies. The model domain is shown in Fig. 1. This

study only employs a single domain, which is depicted as
the entire map in Fig. 1, while the inner black box in Fig. 1
serves solely as identification of the NCP region. The hori-
zontal grid spacing is 27 km, with 38 vertical layers in the
atmosphere and 4 soil layers below the ground. Its physi-
cal options mostly follow Fan et al. (2023), including the
WRF double-moment five-class microphysical parameteriza-
tion (Hong et al., 2004), the Rapid Radiative Transfer Model
as the longwave radiation scheme (Mlawer et al., 1997), the
Dudhia shortwave radiation scheme (Dudhia, 1989), the Yon-
sei University planetary boundary layer scheme (Hong et al.,
2006), the scale-aware New Simplified Arakawa–Schubert
scheme (Han and Pan, 2011; Kwon and Hong, 2017), and
the Noah-MP land surface model coupled with our improved
crop and irrigation schemes (Ek et al., 2003). The initial and
lateral boundary conditions are obtained from the 6-hourly
ERA-Interim reanalysis dataset, which helps to reduce the
uncertainty arising from the boundary condition (Dee et al.,
2011).

We commence by calibrating the crop growth and irriga-
tion behavior in 2005, representing normal conditions based
on the East Asian Summer Monsoon Index (following the
definition from Li and Zeng, 2002). To account for the typical
sowing of winter wheat in the autumn of the preceding year,
all simulations are initiated on 1 March 2004. This allows
for a spin-up period of at least 6 months before the 2004–
2005 crop season, ensuring that the model was appropriately
initialized for accurate simulations. Subsequently, a 10-year
period spanning 2005 to 2014 is employed for validation, uti-
lizing long-term data to assess the overall performance and
the stability of both crop prediction and irrigation simulation,
respectively.

Detailed information regarding all WRF simulations can
be found in Table 1, which provides a detailed description
of how vegetation, crops, and irrigation are simulated in
our study. All models are inactive in the control experiment
(CTL), in which static vegetation, with predefined monthly
patterns from satellite data, is employed. The crop and irriga-
tion model can be applied either in the default version or the
improved version. The default crop model is conducted using
the original scheme proposed by Liu et al. (2016) and param-
eters derived from Zhang et al. (2020), while the improved
crop model involved both modifications to the algorithms
and recalibration of the parameters. In order to exclusively
demonstrate the advancements made by the crop model, the
irrigation component remains inactive in both CROPdef and
CROPnew. This implies that no supplementary water is intro-
duced to the cropland, thereby highlighting the impact solely
attributed to the crop model. The added value of our im-
provements to the irrigation model can be discerned through
a straightforward comparison between IRRdef and IRRnew
simulations. In IRRdef, the default version of dynamic ir-
rigation is derived from He et al. (2023) and serves as the
baseline for the improved version. In the default version, the
target soil moisture availability as a parameter threshold is
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Figure 1. (a) Topography (m), (b) cropland fraction (%), (c) annual precipitation (mm d−1), and (d) irrigated land fraction (%).

Table 1. Description of all WRF simulations.

WRF simulation Model

Vegetation Crop Irrigation

CTL Prescribed input
CROPdef Predicted by crop model default version
CROPnew Predicted by crop model improved version
IRRdef Predicted by crop model improved version default version
IRRnew Predicted by crop model improved version improved version

uniformly set to 0.8, as suggested by Fan et al. (2023), while
in the improved version, there is spatial variability between
provinces. The detailed improvements made to the crop and
irrigation models will be explained in Sect. 2.3 and 2.4, re-
spectively.

2.3 Modification of the crop model

2.3.1 Crop area and vegetation fraction (FVEG)
prediction

In order to achieve efficient computation, the crop module
developed by Liu et al. (2016) is selected as the foundation
for crop simulation. This particular crop model is initially
designed for crop fields and thus applied uniformly to all the
grids within the domain. However, to extend its application
to a larger domain that has various land-use types, the model
needs to be exclusively activated on crop grids, while non-
crop grids still utilize prescribed vegetation as the CTL. A
crop grid is defined based on MODIS land-use classification
as either “Croplands” or “Cropland/Natural Vegetation Mo-
saics”. This definition aligns with Fan et al. (2023) and is
similar to the approach employed by Yu et al. (2022), who
set a threshold of 50 % cropland percentage, since the ma-
jority of grids in the NCP region contain over 90 % cropland
(Fig. 1b).

Although the dynamic leaf area index (LAI) and stem area
index (SAI) can be calculated based on crop growth and cli-
mate conditions, the default crop model simply assumes the
FVEG to be 95 % for all grids at all times (red line in Fig. 2)
to represent the dense vegetation in the crop field. However,
this fixed value is not appropriate for regional-scale applica-
tions. FVEG is a fractional factor that determines the pro-
portion of solar radiation captured by the canopy, as well as
the contribution of vegetation to the ground-released energy.
Considering the long-term impact of vegetative radiation and
canopy interception (Liu et al., 2020; Wang et al., 2007),
FVEG should be correlated with the vegetation growth with
spatial and seasonal variation. Therefore, we first try to corre-
late the FVEG with the LAI and SAI using the empirical rela-
tionships (shown in Eq. 1 and the thick black line in Fig. 2).
This equation is proposed by Niu et al. (2011) and further
tested by L. Wu et al. (2018) in the NCP region. However,
according to the MODIS observation retrieved from the in-
put of the CTL, it is imperative to note that the original curve
underestimates the FVEG at low LAI+SAI and overesti-
mates it at high LAI+SAI, which poses a potential risk to
the reliability of the predictions. More specifically, at the on-
set of the crop season (when LAI+SAI is small), accurate
LAI+SAI estimation leads to an underestimation of the cal-
culated FVEG. This, in turn, results in reduced shortwave
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Figure 2. Satellite-based daily FVEG (vegetation fraction) and LAI+SAI (sum of leaf area index and stem area index) over the crop
season are represented by colorful dots for each grid in the NCP. Different-colored dots indicate different crop types. The lines display the
relationships that we attempted to simulate with the FVEG based on LAI+SAI.

radiation intercepted by vegetation and a slower rate of pho-
tosynthesis. Consequently, the leaf growth is undervalued in
the next time step, and a lower LAI creates a larger bias
on the FVEG prediction. This positive feedback continues
to accumulate underestimation during subsequent iterations
and, ultimately, results in the failure of the entire crop sea-
son. Similarly, the curve exhibits an exaggerated FVEG dur-
ing the flourishing period (when LAI+SAI is large), which
easily leads to uncontrollable overgrowth. This susceptibility
underscores the necessity to consider and address this inher-
ent limitation. Even when employing the best-fitting curve,
this issue persists for almost half of the grids (for those who
have greater FVEG at low LAI+SAI or lower FVEG at high
LAI+SAI). Therefore, we finally adopt the adjusted line by
proposing a constraint on the range of FVEG, limiting it to
[0.25, 0.75] instead of utilizing the full range of [0, 1]. This
allows for a slight overestimation in the initial stages and
an underestimation towards the end, ensuring a successful
startup and a steady progression toward its peak. The adjust-
ment on this equation enables the spatial and temporal varia-
tions of FVEG, as well as the vegetation responses to the irri-
gation application. Quantitatively, the adjusted curve demon-
strates improved performance compared to the one extracted
by Niu et al. (2011), achieving an R-square score of approx-
imately 0.8, suggesting a commendable fit of the adjusted
curve. It is worth noting that this validation focuses solely on
the crop season in the NCP. When adopting this crop model
in other regions, a recalibration would be required to ensure
that the equation exhibits a slight overestimation during the
initial stages and an underestimation towards the later stages
of crop growth. Equations (1) and (2) below represent the
original FVEG equation by Niu et al. (2011) and the adjusted

FVEG suggested in this study, respectively:

original FVEG= 1− e(−0.52×(LAI+SAI)), FVEGε [0,1] (1)

adjusted FVEG= 0.75− 0.5× e(−0.52×(LAI+SAI))

FVEGε [0.25,0.75]. (2)

2.3.2 From single cropping to double cropping

The default model only considers single cropping, allow-
ing different crops spatially but only one crop type per grid.
However, NCP widely adopts double-cropping rotation, as
evident from satellite vegetation patterns (Qiu et al., 2022;
Wu et al., 2010; Yan et al., 2014; Yuan et al., 2020). The first
growing season typically begins in late spring to early sum-
mer and extends until mid-autumn to late autumn, followed
immediately by the second growing season which stops just
before the restart of the first growing season. And it is neces-
sary to consider the second crop season in the irrigated crop
system because the dry soil in the winter and spring probably
requires a significant irrigation supply (Fan et al., 2023; Koch
et al., 2020; L. Wu et al., 2018; Yang et al., 2016). Accord-
ing to the crop prevalence (Qiu et al., 2022; Wu et al., 2010),
we select winter wheat and summer maize for the double-
cropping region (shown in orange in Fig. 3a), as identified
by satellite data (Qiu et al., 2022), and spring maize for the
single-cropping region (shown in blue in Fig. 3a).

The planting and harvesting dates are fed into the crop
model to define crop seasons, whose spatial variability is
claimed to be beneficial to the accuracy of crop growth pre-
diction (Xu et al., 2019; Zhang et al., 2020). The harvest-
ing date of the spring maize is assigned to be 15 d after the
physiological maturity date obtained from a satellite-based
post-processed dataset (Luo et al., 2020). The planting date
is determined as 15 d prior to the V3 stage, which represents
the early vegetative stage of maize when the third leaf is fully
expanded. Similarly, for double-cropping regions, the matu-
rity dates of wheat and maize, with a 15 d buffer, mark the
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end of the respective cropping seasons, while the subsequent
cropping season starts 5 d later. The “15 d” buffer and “5 d”
interval are roughly defined according to the LAI pattern in
Luo et al. (2020). A few grids not covered by the satellite
dataset are assigned 1 May (121st Julian day) and 11 Octo-
ber (284th Julian day) as the default planting and harvest-
ing date for maize, respectively, based on a field study (Yu
et al., 2022). The planting date and the harvesting date also
display similar spatial patterns to those generated by Wu et
al. (2010).

2.3.3 Input setting and parameter calibration

Starting with the parameters for 1-year corn in Bondville
(Zhang et al., 2020), we chose the Yucheng (36.83° N,
116.57° E) and Shenyang (41.52° N, 123.39° E) stations for
calibration because of their availability of long-term data
(National Ecosystem Research Network of China and Na-
tional Science and Technology Infrastructure of China,
2023). As shown in Fig. 3a, Yucheng represents a double-
cropping system as a typical representation of the NCP re-
gion, while Shenyang, located nearby, represents a single-
cropping system. The availability of long-term data at these
stations ensures the reliability and robustness of our calibra-
tion process.

Based on the defined cropping area, the planting and har-
vesting dates are determined using the method outlined in
Sect. 2.3.2. The chronological sequence of these dates is pre-
sented in Fig. 3b–e. In regions with a single-cropping sys-
tem, spring maize is typically planted in May and harvested
in September. On the other hand, in those double-cropping
regions, winter wheat is usually harvested in late May or
early June, immediately followed by the planting of summer
maize. Next, the maize harvest generally takes place in late
September or early October, again followed by the planting
of winter wheat, which continues to grow until the next year.

In the case of spring maize and summer maize, we first
try to adopt the parameters from previous studies to keep
the generality and only recalibrate them if necessary. For in-
stance, large regional uncertainties may exist in the Rubisco
capacity (Vcmx25) and the leaf area per living leaf biomass
(BIO2LAI) for summer maize (Yu et al., 2022; Zhang et
al., 2020), which probably require local validation. Con-
versely, a new set of parameters is developed specifically for
winter wheat, drawing upon statistical information from the
Yucheng station, satellite datasets, and other agronomy stud-
ies (Zhang et al., 1991, 2023). More specifically, the cali-
bration for winter wheat includes the identification of crop
stage, the calculation of general growth rate, and the estab-
lishment of carbohydrate allocation. It is important to high-
light that the calibration process was specifically carried out
with the incorporation of updated irrigation algorithms be-
cause the high productivity observed in the NCP is predom-
inantly supported by irrigation in reality. Table S1 provides
the adjusted parameters for wheat and maize, along with the

supporting scientific references. Parameters are initially re-
calibrated in Yucheng and Shenyang using station data. Sub-
sequently, these parameters are applied to the whole domain,
with validation of vegetation pattern (i.e., the LAI, FVEG,
grain mass, and crop calendar) conducted to ensure their spa-
tial applicability to the whole region.

The recalibration starts from crop-stage identification,
since it relies purely on the accumulated GDD (growing
degree day) and is less affected by other crop parameters.
The GDD-related parameters are retrieved from Zhang et
al. (2020) and Zhang et al. (1991) and then validated with
the heading date and maturity date retrieved from the satel-
lite data (Luo et al., 2020). The crop stage comprises the
pre-planting stage; three vegetative stages (emergence, ini-
tial vegetative, post-vegetative); two reproductive stages (ini-
tial reproductive, post-reproductive); and, finally, one matu-
rity stage. During the vegetative stage, the majority of carbo-
hydrates are allocated to the leaves and stems, while in the
reproductive stage, the allocation shifts towards the grain.

Next, the general growth rate including BIO2LAI can be
extracted from the station data, and Vcmx25 can also be es-
timated using the monthly satellite data of the gross primary
product (GPP) and the LAI, since the photosynthesis rate
and the LAI can be considered linearly related, especially
on sunny days when the canopy temperature is around 25 °C
(He et al., 2023). The GPP and LAI that we adopted for val-
idation are initially derived from MODIS products but have
undergone further post-processing to generate a more contin-
uous monthly pattern (Wang et al., 2020; Yuan et al., 2020).
Furthermore, the AVCMX, which represents the crop sen-
sitivity to the temperature, can be determined by the gradi-
ent of biomass accumulation (Huang et al., 2022), especially
in spring and autumn with greater temperature changes. For
maize, the values of VCMX25 and AVCMX have simply fol-
lowed the previous studies, while BIO2LAI is subject to re-
calibration, as its necessity of recalibration has been demon-
strated by Yu et al. (2022).

Following the establishment of the general photosynthe-
sis rate, we proceed to fine-tune the distribution of carbohy-
drates among the leaf, stem, and grain compartments, based
on the annual cycle of leaf mass and stem data obtained
from the station data. Any remaining carbohydrates are al-
located to the root. In cases where the recalibration of the
distribution scheme alone does not yield satisfactory predic-
tions, adjustments to the turnover and translocation rates are
implemented. Additionally, the crop yield will be validated
through comparisons with remotely sensed estimations from
Grogan et al. (2022).

2.4 Modification of the irrigation model

Since our study focuses on the NCP, which predominantly
practices dryland cultivation (Zhu et al., 2014), the irrigation
methods will mostly pertain to dryland irrigation, exclud-
ing grassland irrigation and paddy field irrigation (Huang et
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Figure 3. Spatial distribution of (a) the cropping system with two stations used for calibration and (b–e) the harvest date and planting date
for wheat and maize over a year based on chronological order. “E. Apr” and “L. Apr” are the abbreviations for early and late April.

al., 2021). To avoid difficulties in modeling canopy intercep-
tion and surface losses inherent in sprinkler and fast flooding
techniques, we opt for drip irrigation using the Noah-MP ver-
sion 5.0 model (He et al., 2023). This choice simplifies the
system while maximizing water resource utilization. The de-
fault irrigation module is employed from the planting date to
the harvesting date. In order to establish a stronger connec-
tion between irrigation and crop growth, irrigation is initiated
when the crop is planted and stopped when the crop is har-
vested. Thus, a reciprocal relationship between crop growth
and irrigation is established. As an example, the introduction
of irrigation can lead to a cooling effect, consequently decel-
erating the GDD (growing degree day) accumulation, slow-
ing down crop growth and extending the crop season. This,
in turn, requires a longer irrigation period.

The default irrigation can be activated anytime when soil
moisture is below a certain threshold within the growing
season, which might not be realistic in large-scale applica-
tions. In accordance with previous investigations, we add
constraints that the irrigation is implemented solely during
the local time window of 06:00 to 10:00 to minimize evap-
orative losses (Ozdogan et al., 2010; Qian et al., 2013; Yang
et al., 2016). Furthermore, the inclusion of winter cultivation
necessitates the imposition of temperature limitation, as irri-
gation under freezing conditions is deemed impractical and
detrimental to winter wheat (Yang et al., 2016). To make sure
the soil is appropriate for irrigation, we check whether the
mean temperature of the uppermost soil layer within the pre-
ceding 24 h period exceeds 5 °C. Additionally, we follow the
rules from the default irrigation model that the irrigation can
be promptly suspended in the presence of precipitation ex-
ceeding a threshold rate of 1 mm h−1.

Irrigation is required when the soil moisture is lower than
the predefined irrigation threshold called the management al-
lowable deficit (MAD). MAD is a decimal number between
0 and 1, indicating the cursor between the wilting and the
saturated soil moisture. The expected soil moisture after irri-
gation (SMCLIM) is defined by the MAD, and the soil water
deficit is the gap between current soil moisture availability

(SMCAVL) and SMCLIM. The total irrigation amount is the
integrated deficit of all soil layers. Thus, the default daily
irrigation amount is resolved as follows, based on the soil
moisture and vegetation fraction, which is fixed to be 0.95:∫
(SMCLIM−SMCAVL)× 0.95.

When adopting it to large-scale irrigation, we improve the
irrigation amount by replacing the constant 0.95 with IR-
RFRA, i.e., the irrigation land fraction map around year 2005
from the Food Agriculture Organization database (Siebert et
al., 2013), as follows:∫
(SMCLIM−SMCAVL)× IRRFRA.

It is also stated that the MAD calibrated on a county level
significantly enhances the irrigation prediction (Xu et al.,
2019; Zhang et al., 2020). Similarly, we calibrated the irri-
gation threshold province by province using the updated ir-
rigation function and finally applied this MAD spatial map
to IRRnew. As a comparison, IRRdef only adopts 0.8 as a
uniform threshold, which is simply calibrated by the national
total amount (Fan et al., 2023).

3 Results

3.1 Irrigation simulation

Figure 4 visually illustrates the enhanced predictive capabil-
ity of our model in accurately capturing the irrigation pattern.
It is challenging to obtain a grid-based observation irrigation
map that covers the entirety of eastern China; thus, we mainly
adopt the province-based statistical dataset (National Bureau
of Statistics of China, 2005). However, it is only provided
as annual agricultural water usage, which not only com-
prises irrigation but also husbandry, forestry, and fishery con-
sumption (National Bureau of Statistics of China, 2005). So,
firstly, agricultural water withdrawal (Fig. 4a) is converted to
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net irrigation (Fig. 4b) by multiplying the provincial ratios
from Zhu et al. (2012). For better visualization, irrigation is
redistributed to each crop grid based on the irrigation frac-
tion (Fig. 4c). In other words, the weighted provincial mean
value of the redistribution map (Fig. 4d) is the same as the
statistical irrigation usage (Fig. 4b). Surprisingly, in Fig. 4d,
the annual irrigation outside the NCP, such as the southern
coastal region, is much more intense than that in the NCP
region. This is likely because the statistical “irrigation with-
drawal” also includes the great consumption used for other
crop types such as raising rice in the extensive paddy field.
Our model, however, is currently designed to primarily simu-
late dryland irrigation and may not accurately represent water
usage in other specific crop types (Yao et al., 2022). Thus, for
provinces outside the NCP, we induce another satellite-based
dataset, while keeping the realistic statistic for our targeted
NCP region. Its irrigation amount is grid-based (Fig. 4e) and
highly similar to the irrigation land fraction, but it proba-
bly has greater uncertainty since it is not a direct measure-
ment but an empirical estimation based on the water budget
(Zhang et al., 2022). Conclusively, the statistical irrigation
in the targeted NCP (i.e., Beijing, Tianjin, Hebei, Shandong,
and Henan, following D. Wu et al., 2018) is coupled with the
satellite-based irrigation in other regions to be the final irri-
gation map we used for calibration and validation (Fig. 4f).

The default irrigation scheme (Fig. 4g) exhibits a tendency
to overestimate irrigation in the central NCP, deviating from
the observed pattern where irrigation is more prevalent in
the western part along the mountain. As expected, the imple-
mentation of the spatially varied irrigation threshold demon-
strates a considerable improvement (Fig. 4h), closely resem-
bling the observed spatial variability. Figure 4i presents the
province-based MAD threshold we adopted, which is cali-
brated using the observation. Certain provinces in the NCP
exhibit higher thresholds, even approaching 1, indicating the
model’s attempt to achieve a near-saturation level of the soil.
To assess the uncertainty raised from the initial conditions,
we conducted nine other simulations starting on consecu-
tive days beginning from 2 until 10 March, together with IR-
Rnew starting on 1 March, composing a 10-member ensem-
ble with different initial conditions. The ensemble variability
depicted in Fig. 4j is predominantly less than 0.05 mm d−1,
which is notably smaller in comparison to the annual irriga-
tion amount. This suggests that the spin-up time utilized in
the simulation is sufficient, and the initial conditions do not
introduce significant uncertainty to the irrigation simulation,
which further reinforces the reliability and robustness of the
model in capturing the irrigation dynamics.

Figure 5 offers a visual representation of the long-term im-
pact of the scheme improvement on the irrigation pattern,
showcasing the average results over a 10-year period. The
lines depict the monthly irrigation levels, while the bars rep-
resent average LAI values across all crop grids in the NCP re-
gion. The default irrigation scheme tends to apply excessive
irrigation during the winter season, which can be attributed

to the relatively drier soil conditions and thus larger gap be-
tween the soil moisture and the MAD threshold. However,
irrigation under freezing conditions is deemed impractical
and detrimental to winter wheat (Yang et al., 2016). Thus,
despite the intense winter irrigation, the corresponding vege-
tation growth, as indicated by the LAI, shows insignificant
improvement in winter. On the other hand, the improved
model effectively avoids unnecessary winter irrigation, al-
lowing for a greater allocation of water resources during the
spring, summer, and fall seasons when crop growth is more
pronounced. Consequently, this strategic water distribution
leads to more flourishing vegetation, especially during the
summer cropping season. In summary, the improved model
provides enhanced water support to the crops while also con-
serving irrigation consumption on an annual basis.

Figure 6 presents irrigation impact on energy partition
by depicting the differences between the irrigation simu-
lation (IRRnew) and the non-irrigation simulation (CROP-
new). The upper panel visualizes the spatial changes, while
the lower panel illustrates the monthly averaged changes
for the entire NCP region (represented by the blue line)
and the double-cropping region (represented by the orange
line). As expected, the increased soil moisture contributes
to a higher latent heat flux, with a maximum increase over
40 W m−2. Conversely, irrigation-induced evaporation cools
the surface, leading to a reduction in sensible heat flux, with
the sharpest decrease around 30 W m−2. The cooler surface
also reduced longwave radiation emitted from the surface,
causing increases in net radiation with the greatest change
about 15 W m−2. Overall, the increase in latent heat flux sur-
passes the decrease in sensible heat flux, and when com-
bined, their changes partially balance out to equal the net
radiation. The most substantial changes are observed in the
south of Hebei Province, which aligns with the irrigation
fraction map (Fig. 4c). In the lower panel, all monthly pat-
terns exhibit two peaks, with a larger peak in June and a
smaller peak in September. The monthly pattern within the
double-cropping area shows more pronounced changes and a
more distinct two-peak structure. Furthermore, the irrigation
responses of all variables display similar spatial and tem-
poral patterns to the irrigation amount, indicating a strong
correlation between irrigation application and these observed
changes.

3.2 Evaluation of crop growth

The evaluation of the crop simulation encompasses several
key aspects, including crop stage identification, annual cycle
of leaf and stem mass, crop yield prediction, and general LAI
simulation. These components will be scrutinized to assess
the validity and accuracy of the crop simulation.
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Figure 4. Spatial maps of 2005 (a) agricultural usage, (b) estimated irrigation usage, (c) irrigation fraction (same as Fig. 1d), (d) statistical
irrigation, (e) satellite irrigation, (f) target irrigation, (g) simulated irrigation using the default irrigation scheme (IRRdef), (h) simulated
irrigation using improved irrigation scheme (IRRnew), (i) MAD (manageable allowable deficit) irrigation threshold adopted in IRRnew, and
(j) irrigation range among 10 ensemble members using different initial conditions. For easy comparison, all panels with shades of blue (a, b,
d, e, f, g, h) adopt the same color scale.

Figure 5. Monthly irrigation (lines) and the LAI (bars) using the de-
fault irrigation scheme (IRRdef) and the improved irrigation scheme
(IRRnew). Monthly values are the average of all crop grids in the
NCP over the period of 2005–2014.

3.2.1 Validation of biomass in Yucheng and Shenyang

The station-based biomass in the year 2005 is adopted for
calibration (Fig. 7a–d). The biomass cycle in Yucheng clearly
exhibits two distinct peaks, representing two crop seasons.

Implementation of double-cropping function reshapes the
pattern from single-peak to double-peak, and the application
of irrigation extends the winter wheat growth, shifting the
peak to the right side and resulting in a better match with
the observation. Furthermore, the improvements in the irriga-
tion model lead to significant enhancements at the Yucheng
station, particularly for summer maize. This aligns with the
previous conclusions, as well as the suboptimal maize growth
under water stress conditions captured by another crop model
(Song and Jin, 2020), further approving the positive influ-
ence of the improved irrigation model on crop growth. On
the other hand, irrigation is not intensely adopted in north-
eastern China and, thus, does not make a noticeable impact
in Shenyang (Fig. 7b and d). The long-term biomass results,
displayed in Fig. 7e–g, provide additional long-term valida-
tion for the crop simulation. While the model does not fully
capture the inter-annual variability, it does exhibit some fluc-
tuations that align with observed patterns. For instance, the
winter wheat crop in Yucheng shows poorer growth in 2012,
while the crop in Shenyang performs worse in 2010.
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Figure 6. Irrigation-induced changes (IRRnew−CROPnew) in the climatology spatial pattern (upper panels) and mean monthly pattern
(lower panels) of various variables, including irrigation, soil moisture, skin temperature, latent heat flux, sensible heat flux, and net radiation.
The blue lines represent the average value for all grids in the North China Plain (NCP), while the orange lines correspond to the double-
cropping area only.

3.2.2 Validation of crop calendar and grain mass

To evaluate the performance of the stage identification pro-
cess within the crop model, we compare the 10-year mean
heading and maturity dates from each simulation with the
satellite estimations (top and middle panels in Fig. 8). Since
the model accumulates carbon to grain starting from the ini-
tial reproductive stage, we regarded the start of the initial re-
productive stage as the heading date, which aligns with the
heading date identified by the time of the maximum LAI in
the satellite estimation. Similarly, the transition day from the
post-reproductive stage to the maturity stage is regarded as
the maturity date. According to the algorithm, the heading
and maturity dates can be regarded as rough indicators of the
transition from the vegetative stage to the reproductive stage,
and ultimately to the maturity stage. This validation process
allows us to assess the model’s ability to accurately simulate
the temporal development of crop growth.

Figure 8 shows the progressive improvements made by
each step of the model modification in predicting the crop
phenology. Typically, winter wheat heads in March and ma-
tures in May, while maize heads in August and matures in
September. The default crop model only considers single
cropping without winter wheat. Moreover, the heading date
of CROPdef is observed to be one or two months earlier than
the observations, and the maturity date also exhibits devia-
tions, being earlier in the NCP. This suggests that employ-

ing a uniform starting and ending time is not suitable for a
regional domain. The enhanced crop model, CROPnew, in-
corporates double cropping and spatially varied planting and
harvesting dates, resulting in more accurate crop growth du-
ration across the two seasons. The early bias is further miti-
gated by irrigation, as the presence of moist soil induces pri-
mary cooling, subsequently decelerating temperature accu-
mulation and postponing the growth stage.

Similar enhancement can be observed when assessing
the crop yield (bottom panels in Fig. 8). Due to the lim-
ited availability of grid-scale yield data, the computed 2015
crop yield from the Global Agro-Ecological Zones (GAEZ)
model is used as the observational benchmark (Grogan et al.,
2022). The initial CROPdef simulation only considers a sin-
gle maize season, and it proves to be inadequate for the heav-
ily irrigated NCP region, even with the exaggerated assump-
tion of a fixed FVEG value of 0.95. Despite the recalibration
of parameters and adjustments to the planting and harvesting
dates, which realizes the double-cropping simulations in the
CROPnew simulation, production in the NCP region is still
severely hindered by the limited water availability. Similar to
the previous validation of crop calendar, the activation of the
irrigation in IRRnew noticeably promotes the crop growth.
This highlights the importance of irrigation in sustaining the
compact rotation and high productivity in the NCP. In con-
clusion, each of the following factors – implementation of
double cropping, adoption of spatially varying input, and in-
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Figure 7. Biomass comparison between simulation and station data at Yucheng and Shenyang. Black dots indicate station observations,
while the lines represent the simulation results. Panels (a)–(d) illustrate the annual cycle of each simulation for the year 2005 as well as the
corresponding station data. Panels (e)–(h) present the 10-year biomass of IRRnew (with the improved crop and improved irrigation model)
alongside the station data.

tegration of irrigation – holds significant importance in accu-
rately simulating the crop calendar and grain yield.

3.2.3 Validation of the long-term LAI and FVEG

In comparison to winter wheat, the simulation of maize does
not exhibit a perfect match with the observed data, as fewer
parameters have undergone recalibration. However, despite
these imperfections, the model demonstrates a reasonable

performance in simulating crop growth, especially when con-
sidering its overall predictability across the entire NCP re-
gion. This is evident in the validation of the monthly LAI,
whose accuracy plays a crucial role in determining land–
atmosphere interaction and energy partitioning (Liu et al.,
2016). Figure 9 compares the simplest crop model and the fi-
nal integrated system with observations, emphasizing the re-
markable improvement achieved through the integration and
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Figure 8. Comparison of the crop growth calendar and yield by comparing the heading date, maturity date, and annual yield for wheat and
maize between the observation (OBS) and simulations (CROPdef using the default crop model, CROPnew using the improved crop model,
and IRRnew using both the improved crop model and the improved irrigation model).

regionalization processes. Figure S1 provides an extended
version inclusive of all simulations and the whole simula-
tion domain, thoroughly visualizing the gradual improve-
ment made by each step. The observed LAI demonstrates a
gradual increase until May, with a slight decline in June, indi-
cating the harvest of winter wheat. In the second crop season,
there is a notable rise in the LAI during July and August, re-
flecting substantial growth and vegetation development dur-
ing this period, followed by a gradual decline in September
and October.

It becomes evident that CROPdef lacks representation of
the first crop season and exhibits an early and truncated sec-
ond crop season in the NCP. The inclusion of irrigation, both
in the IRRdef and IRRnew models, significantly enhances
crop growth in the double-cropping region, highlighting the
crucial role of irrigation in this region. Conversely, the crops
in northeastern China, where rain-fed agriculture predomi-
nates, exhibit reasonably satisfactory growth even without
irrigation. This regional disparity in crop sensitivity to irri-
gation can be aptly captured by the improved system. In line
with the previous figures, IRRnew proves particularly benefi-
cial for the growth of summer maize. Its avoidance of unnec-
essary irrigation during the freezing winter months allows for
greater resource allocation during the productive summer pe-
riod, resulting in improved growth and development. Gener-
ally, the IRRnew simulation successfully captures the spatial
and temporal LAI patterns, particularly in the NCP region,
which demonstrates a superior capability in accurately rep-

resenting the dynamics of crop growth compared to the ini-
tial crop model. In addition to the LAI, the joint crop mod-
eling system also demonstrates reasonable predictability in
monthly FVEG (Fig. S2). Consequently, this expanded func-
tionality offers valuable opportunities to conduct sensitiv-
ity tests, enabling a deeper understanding of the agriculture-
related climate response.

3.2.4 Quantitative validation of long-term irrigation
and yield

To further quantify the accuracy and stability of the sim-
ulation, Fig. 10 compared the irrigation intensity and crop
yield from IRRnew results with the province-based statistics
data spanning the entire period from 2005 to 2014. Each dot
represents one province, and most provinces are simply de-
picted by gray dots. Three provinces with large cropland ex-
tent in the NCP – Shandong, Henan, and Hebei – are de-
picted by red dots, with horizontal and vertical error bars
showing the inter-annual variability of observation and simu-
lation, respectively. Most of the dots, especially the red dots,
are located in close proximity to the diagonal line, indicat-
ing a reasonably accurate predictability of irrigation amounts
and crop yields. The comparable lengths of the horizontal
and vertical error bars suggest that the uncertainties associ-
ated with the observation and simulation, respectively, are
at least comparable. Furthermore, the model demonstrates
greater accuracy and reliability in simulating winter wheat,
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Figure 9. Monthly LAI patterns of the satellite observation (OBS), simulation with default crop model only (CROPdef), and simulation with
improved crop and improved irrigation (IRRnew) from March (MAR) to October (OCT).

which underwent more comprehensive calibration compared
to the maize.

4 Discussion and conclusion

The validation process has brought several limitations of the
current model to light. To start with, the model design re-
stricts the simulation to only one crop type per grid. This
simplification may contribute to inaccuracies in predicting
the leaf mass of summer maize at the Yucheng station, which
can be revealed by the inconsistency of LAI observations
(Fig. 9) in the NCP region and the leaf mass at the Yucheng
station (Fig. 7). While the LAI values indicate that Septem-
ber should have a smaller LAI compared to July (Fig. 9), the
station data suggest that September actually has a greater leaf
mass than July (Fig. 7). This discrepancy is likely attributed
to two factors. Firstly, the specific leaf area, or BIO2LAI in
the model, varies across different crop stages, as supported
by both station data and the existing literature (Amanullah,
2015; Zhou et al., 2020). In other words, the leaves may be
thinner in July, while they become thicker in September. The
second reason is that the observed LAI pattern represents a
spatial average value over the grid, which may contain a di-
verse range of crops. Consequently, the specific station data
for summer maize may not align well with the spatially aver-
aged LAI. Since this study primarily focuses on the regional
scale rather than individual field points, we prioritize match-
ing the spatial LAI pattern while partially sacrificing the ac-
curacy in predicting station biomass. As a result, the simu-
lated LAI pattern is well-matched in the NCP region, while
the predicted leaf mass for summer maize may not closely
align with the station data. Conversely, winter wheat greatly,
even exclusively, dominates the first crop season, and thus
the station data and spatial pattern are consistent and can both
be captured by the model (Figs. 7 and 9). Also, the predicted
LAI is completely cleared up after harvesting, since each grid

can only predict one type of growth pattern, which is differ-
ent from the gradual fading observed in June and October.

It is important to acknowledge that the model performance
may be less satisfactory in the southern NCP. There is some
underestimation of the LAI compared with northern China.
This could potentially be attributed to the limited predictabil-
ity of FVEG. Even in regions where the model currently ex-
hibits reasonable performance can uncertainty arise from the
model’s sensitivity to soil moisture (Wang, 2005). Adopting
satellite-based estimated irrigation datasets may also intro-
duce uncertainty; thus, it becomes crucial to conduct model
sensitivity tests under varying water forcings for future irri-
gation impact studies. To enhance our understanding of the
irrigation impact on regional climate, our study focuses on
simulating irrigated crop growth in the NCP region using the
WRF model. In order to improve the model’s capabilities, we
have implemented the following enhancements:

– incorporating the winter crop season and facilitating
double cropping, which was previously absent in the
WRF system;

– establishing a linkage between the FVEG and crop-
based LAI to capture spatial and seasonal variations, as
well as enabling its sensitivity to water forcings;

– calibrating parameters and utilizing local input data for
winter wheat and maize to accurately represent the gen-
eral vegetation patterns in the NCP region;

– integrating the irrigation scheme with the crop simula-
tion, activating irrigation based on the crop stage to ac-
count for the climate’s impact on the irrigation season;

– implementing a temperature check before irrigation to
prevent harmful irrigation during freezing periods;

– calibrating the irrigation threshold on a province-by-
province basis to ensure more realistic estimates of ir-
rigation amounts.
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Figure 10. Validation of the climatological mean of annual irrigation and crop yield across provinces. The red dots correspond to the three
provinces with extensive cropland coverage in the North China Plain (NCP), while the horizontal and vertical error bars depict the inter-
annual variability of observation and simulation, respectively. The gray dots represent the remaining provinces.

These enhancements significantly improve the model’s
performance in identifying crop stages, estimating field
biomass, predicting crop yield, and projecting monthly leaf
area index. Importantly, our study demonstrates the reason-
able performance of this regional-scale application in the
NCP region, despite the distinct climate background com-
pared to the model’s original development in the central
United States. This implies the potential application of the
WRF in other agricultural zones. And most of our valida-
tion data are derived from satellite observations, indicating
the possibility of adopting this model in regions even with
limited ground-based data. Also, the integrated crop system
clearly highlights the significance of an appropriate irrigation
scheme in the NCP region. Future studies will connect the
irrigated system with the groundwater layer, since the NCP
heavily relied on groundwater-supplied irrigation. Ground-
water depletion can also lead to hydrological changes (An et
al., 2021; Famiglietti, 2014), further impacting the interac-
tions between cultivation and climate.

Code availability. The source code for double cropping with in-
teractive irrigation is published at https://doi.org/10.5281/zenodo.
10729554 (Fan, 2024).

Data availability. The climatology precipitation is retrieved from
the China Meteorological Forcing Dataset and is adopted for pre-
cipitation validation. It is produced by Cold and Arid Regions Sci-
ence Data Center and is available at https://doi.org/10.3972/westdc.
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LAI dataset was initially from Sun Yat-sen University (Yuan et
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