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Spatial correlation of CO at UofT near surface leve
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* GEM-MACH-GHG (Polavarapu et. al.) model Sources of CO : Blomass burning, anthropogenic, biogenic, The forecast ensemble provides a state Observations at each of the 17 stations are available every hour
with 0.9° grid spacing and 81 levels conversion of CH, to CO. Correlation length scale ~ 1000 km dependent estimation of correlation. Obs error = 100 y .
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Modifications and testing : ' Dl
> Variable localization (Kang et. al.) has been ‘
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observations do not impact the meteorogical 60°S |-Alrm2000- ki thinned to one per 100 km.
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» These modifications are tested in a simulated . :
observation framework. The 65t ensemble 20— RMSE averagedifromO0-10km 90°W 0° 90°F 180°
member is designated the truth. Observations WBPNET @ ¢ oo control : : : : ; ;
are drawn from the truth run. N HYPNET BT 1 oA » With a 30% prior flux uncertainty, the error in flux contributes ~ 5 ppb to RMSE In
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Experiments with assimilation of IR = . The EnKF-based assimilation of CO observations leads to a benefit of about
meteorological observations only are run to 16 [---ieenvbeenioniien | | o .
ascertain the contribution of various error o VU 5 — 20 ppb. The benefit is proportional to the RMSE.
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* Uncertainty in Initial Conditions (met. fields, CO) %’ 20y e Est!mate CO using real observations.
» Imperfections in the meteorological model or N I * Estimate fluxes of CO, and CO.
. Imperfections in the surface flux of CO . 11 y ’ ﬁ - * Increase the ol:_)servatlon W|_ndow from a few hours to a few days .
» Errors in chemistry - reaction with OH (sink) oo ¥l (11 IIHFETEN I ﬂr » Allow observations of the winds to update CO, and CO.
and conversion from CH, to CO. These are o PR EY BT T \ y; J ﬂ
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