
HAL Id: hal-01438643
https://hal.science/hal-01438643v1

Submitted on 17 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Uncertainty quantification through the Monte Carlo
method in a cloud computing setting

Americo Cunha Jr, Rafael Nasser, Rubens Sampaio, Hélio Lopes, Karin
Breitman

To cite this version:
Americo Cunha Jr, Rafael Nasser, Rubens Sampaio, Hélio Lopes, Karin Breitman. Uncertainty quan-
tification through the Monte Carlo method in a cloud computing setting. Computer Physics Commu-
nications, 2014, 185 (5), pp.1355 - 1363. �10.1016/j.cpc.2014.01.006�. �hal-01438643�

https://hal.science/hal-01438643v1
https://hal.archives-ouvertes.fr

A. Cunha Jr, R. Nasser, R. Sampaio, H. Lopes and K. Breitman, “Uncer-
tainty quantification through Monte Carlo method in a cloud computing
setting”, Computer Physics Communications, 185 (2014) 13551363
http://dx.doi.org/10.1016/j.cpc.2014.01.006

Uncertainty quantification through Monte Carlo

method in a cloud computing setting

Americo Cunha Jra, Rafael Nasserb,
Rubens Sampaioa, Hélio Lopesb,∗, Karin Breitmanb

aDepartment of Mechanical Engineering, PUC–Rio
Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro - RJ, Brazil - 22453-900

bDepartment of Informatics, PUC–Rio
Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro - RJ, Brazil - 22453-900

Abstract

The Monte Carlo (MC) method is the most common technique used for un-
certainty quantification, due to its simplicity and good statistical results.
However, its computational cost is extremely high, and, in many cases, pro-
hibitive. Fortunately, the MC algorithm is easily parallelizable, which allows
its use in simulations where the computation of a single realization is very
costly. This work presents a methodology for the parallelization of the MC
method, in the context of cloud computing. This strategy is based on the
MapReduce paradigm, and allows an efficient distribution of tasks in the
cloud. This methodology is illustrated on a problem of structural dynamics
that is subject to uncertainties. The results show that the technique is ca-
pable of producing good results concerning statistical moments of low order.
It is shown that even a simple problem may require many realizations for
convergence of histograms, which makes the cloud computing strategy very
attractive (due to its high scalability capacity and low-cost). Additionally,
the results regarding the time of processing and storage space usage allow
one to qualify this new methodology as a solution for simulations that require
a number of MC realizations beyond the standard.

Keywords: uncertainty quantification, cloud computing, Monte Carlo
method, parallel algorithm, MapReduce

∗Corresponding author. Tel.:+55-21-3527-1500; e-mail: lopes@inf.puc-rio.br

1. Introduction

Most of the predictions that are necessary for decision making in engineer-
ing, economics, actuarial sciences, and so on., are made based on computer
models. These models are based on assumptions that may or may not be in
accordance with reality. Thus, a model can have uncertainties on its predic-
tions, due to possible wrong assumptions made during its conception. This
source of variability on the response of a model is called model uncertainty
[1]. In addition to modeling errors, the response of a model is also subject to
variabilities due to uncertainties on model parameters, which may be due to
measurement errors, imperfections in the manufacturing process, and other
factors. This second source of randomness on the models response is called
data uncertainty [1].

One way to take into account these uncertainties is to use the theory of
probability, to describe the uncertain parameters as random variables, ran-
dom processes, and/or random fields. This approach allows one to obtain
a model where it is possible to quantify the variability of the response. For
instance, the reader can see from [2, 3] where techniques of stochastic model-
ing are applied to describe the dynamics of a drillstring. Other applications
in structural dynamics can be seen in [4, 5]. It is also worth mentioning the
contributions of [6], in the context of hydraulic fracturing, [7], for estimation
of financial reserves, and in [8] for the analysis of structures built by heteroge-
neous hyperelastic materials. For a deeper insight into stochastic modeling,
with an emphasis in structural dynamics, the reader is encouraged to read
[1, 9, 10].

To compute the propagation of uncertainties of the random parameters
through the model, the most used technique in the literature is the Monte
Carlo (MC) method [11]. This technique generates several realizations (sam-
ples) of the random parameters according to their distributions (stochastic
model). Each of these realizations defines a deterministic problem, which is
solved (processing) using a deterministic technique, generating an amount
of data. Then, all of these data are combined through statistics to access
the response of the random system under analysis [12, 13, 14]. A general
overview of the MC algorithm can be seen in the Figure 1.

The MC method does not require that one implements a new computer
code to simulate a stochastic model. If a deterministic code to simulate a
similar deterministic model is available, the stochastic simulation can be per-
formed by running the deterministic program several times, changing only the

2

Monte Carlo method

samples
generation

stochastic
model

processing

deterministic
model

output
data statistics

response

Figure 1: General overview of Monte Carlo algorithm.

parameters that are randomly generated. This nonintrusive characteristic is
a great advantage of MC when compared with other methods for uncertainty
quantification, such as generalized Polynomial Chaos (gPC), [15], which de-
mands a new code for each new random system that one wants to simulate.
Additionally, if the MC simulation is performed for a large number of sam-
ples, it completely describes the statistical behavior of the random system.
Unfortunately, MC is a very time-consuming method, which makes unfea-
sible its use for complex simulations, when the processing time of a single
realization is very large or the number of realizations to an accurate result is
huge [12, 13, 14].

Meanwhile, the MC method algorithm can easily be parallelized because
each realization can be done separately and then aggregated to calculate the
statistics. The parallelization of the MC algorithm allows one to obtain sig-
nificant gains in terms of processing time, which can enable the use of the
MC method in complex simulations. In this context, cloud computing can
be a very fruitful tool to enable the use of the MC method to access complex
stochastic models because it is a natural environment for implementation of
parallelization strategies. Moreover, in theory, cloud computing offers almost
infinite scalability in terms of storage space, memory and processing capa-
bility, with a financial cost significantly lower than the one that is necessary
to acquire a traditional cluster with the same capacity.

In this spirit, this work presents a methodology for implementing the MC
method in a cloud computing setting, which is inspired by the MapReduce

3

paradigm [16]. This approach consists of splitting, among several instances
of the cloud environment, the MC calculation, processing each one of these
tasks in parallel, and finally merging the results into a single instance to
compute the statistics. As an example, the methodology is applied to a
simple problem of stochastic structural dynamics. The use of cloud in not
new in the context of engineering and sciences [17]. We would like to mention
the work of Ari and Muhtaroglu [18] that proposes a cloud computing service
for finite element analysis, the work of Jorissen et al. [19] that proposes a
scientific cloud computing platform that offers high performance computation
capability for materials simulations, and the work of Wang et al. [20] that
discusses the Cumulus cloud based project with its applications to scientific
computing, just to cite a few.

This paper is organized as follows. Section 2 makes a brief presentation of
the cloud computing concept. Section 3 presents a parallelization strategy for
the MC method in the context of cloud computing. Section 4 describes the
case of study in which the proposed methodology is exemplified. Section 5
presents and discusses the statistics done with the data and the convergence
of the results. Finally, section 6 presents the conclusions and highlights the
main contribution of this work.

2. Cloud computing

Traditionally, the term cloud is a metaphor about the way the Internet
is usually represented in network diagrams. In these diagrams, the icon of
the cloud represents all the technologies that make the Internet work, ignor-
ing the infrastructure and complexity that it includes. Likewise, the term
cloud has been used as an abstraction for a combination of various computer
technologies and paradigms, e.g., virtualization, utility computing, grid com-
puting, service-oriented architecture and others, which together provide com-
putational resources on demand, such as storage, database, bandwidth and
processing [21].

Therefore, cloud computing can be understood as a style of computing
where information technology capabilities are elastic, scalable, and are pro-
vided as services to the users via the Internet [22, 23]. In this style of comput-
ing, the computational resources are provided for the users on demand, as a
pay-as-you-go business model, where they only need to pay for the resources
that were effectively used. Due to its great potential for solving practical
problems of computing, it is recognized as one of the top five emerging tech-

4

nologies that will have a major impact on the quality of science and society
over the next 20 years [24].

The reader can see from [25] a detailed comparison between three cloud
providers (Amazon EC2, Microsoft Azure and Rackspace) and a traditional
cluster of machines. These experiments were done using the well-known NAS
parallel benchmarks as an example of general scientific application. That
article demonstrates that the cloud can have a higher performance and cost
efficiency than a traditional cluster.

Furthermore, a traditional cluster require huge investments in hardware
and in their maintenance and one can not “turn off resources contracts”,
while they are unnecessary, to save money. Then, traditional clusters are
almost prohibitive for scientific research without large financial resources.

In a cloud computing environment one pays only per hour of use of one
virtual machine. Other costs of this platform are the shared/redundant stor-
age and data transfers. For the data transfer, all inbound data transfers (i.e.,
data going to the cloud) are free and the price for outbound data transfers
(i.e., data going out of the cloud) is a small cost that depends on the volume
of data transferred.

Given these characteristics, it is easy to imagine a situation where compu-
tational resources can be turned on and off according to demand, providing
unprecedented savings compared with acquisition and maintenance of a tra-
ditional cluster. In addition, if it is possible to parallelize the execution, the
total duration of the process can be minimized using more virtual machines
of the cloud.

3. Parallelization of Monte Carlo method in the cloud

The strategy to run the MC algorithm in parallel, as proposed in this
work is influenced by the MapReduce paradigm [16], which was originally
presented to support the processing of large collections of data in parallel
and distributed environments. This paradigm consists in two phases: the
first (Map) divides the computational job into several partitions and each
partition is executed in parallel by different machines; the second phase (Re-
duce) collects the partial results returned by each machine, aggregates partial
results and computes a response to the computational job.

We propose a MapReduce strategy for parallel execution in the cloud of
the MC method that is composed of three steps: split, process, and merge.
The split and the process steps correspond to the Map, while the merge

5

corresponds to the Reduce step. This strategy of parallelization was im-
plemented in a cloud computing setting called McCloud [26, 27], which runs
on the Microsoft Windows Azure platform (http://www.windowsazure.com).
A general overview of the strategy can be seen in Figure 2, and a detailed
description of each step is made below.

Figure 2: General overview of Monte Carlo parallelization strategy in the cloud.

3.1. Split

First of all, the split step establishes the number of cloud virtual machines
to be used and turns then on. Then, it divides a MC simulation with NMC

realizations into tasks and puts them into a queue. Each one of these tasks
is composed of an ensemble of Nserial realizations to be simulated. Thus,
it is necessary to process a number of tasks equal to Ntasks = NMC/Nserial.
These tasks are distributed in a uniform manner (approximately) among the
virtual machines [26, 27]. It is important to note that the number of tasks
and virtual machines influences directly in the total simulation processing
time and the financial expenses of the cloud computing service.

In the simulations above, the realizations of the random parameters are
obtained by the use of a pseudorandom numbers generator. This generator
deterministically constructs sequences of numbers indexed by the value of
a seed, which emulates a set of random numbers. It happens that, if two
instances of tasks have the same seed, they will generate the same sequence
of random numbers. In this case, part of these results will be redundant at
the end of the simulation.

To avoid the possibility of repeated seeds, it is necessary to adopt a
strategy of seed distribution among the virtual machines. This strategy must

6

generate one seed for each virtual machine, and guarantee that the sequence
of random numbers generated in each one of these machines is different from
the sequences generated on the other machines. There are several ways to
define a distribution strategy and we will not discuss this in detail because
it is quite simple. To see the strategy adopted in the example of section 5,
the reader may consult [26, 27].

3.2. Process

The process step uses the available virtual machines to pick and process,
in an asynchronous way, task by task in the queue. Thus, in theory, the
execution is as fast as the number of virtual machines used. In practice,
there is a limit to efficiency gain because of the existence of overhead, such
as input/output of data and managing parallelization. Thus, one of the
challenges that must be solved for an efficient simulation, at a low-cost,
is the determination of an optimal number of virtual machines to be used
[26, 27]. Currently, this optimization process occurs empirically. However,
in future works, we will seek to rationalize it, according to the nature of the
simulations involved.

At this step, there is a criterion of tolerance against failures. When a
task is caught from the queue by a virtual machine, it has a time limit to be
executed. If it is not performed in this time, it is put back into the queue
for another virtual machine to try and run it. Thus, a hardware or machine
communication problem does not overtake the execution of MC simulation.

The output data generated by each executed task is saved onto the hard
disk for subsequent post-processing. The total amount of storage space used
by a MC simulation is proportional to the number of realizations. Therefore,
this step also requires attention in terms of storage space usage because the
demand for hard disk space may become unfeasible for a simulation with a
large number of realizations.

To reduce the storage space usage in the example of section 5, we chose
to calculate the mean and standard deviation using the strategy of pair-
wise parallel and incremental updates of the statistical moments described
in [28], which uses the Welford-Knuth algorithm [29, 30]. Thus, for each
executed task, instead of saving all the simulation data for subsequent cal-
culation of the statistical moments, we save only the mean and the centered
sum of squares. For the calculation of the histograms, the random variables
of interest were identified before the processing step, and their realizations

7

were saved for being used in the histogram construction, during the post-
processing step. This strategy is exemplified in Figure 3, which shows the
parallelization of a MC simulation, with 16 realizations, that aims to calcu-
late the square of an integer random number between 0 and 9.

Figure 3: Exemplification of the strategy for parallel calculation of statistics.

3.3. Merge

The merge step starts when the last task in a virtual machine finishes.
This can occur in any virtual machine. This step reads, from the hard disk,
all the information contained in the output data from the simulations, and
combines them through statistics to obtain relevant information about the
problem under analysis. At the end of this stage, the saved data are discarded
and only the merged result is stored, to reduce future costs of data storage.

8

4. Case of study

4.1. Physical system

The system of interest in this study case is an elastic bar fixed at a rigid
wall, on the left side, and attached to a lumped mass and two springs (one
linear and one nonlinear), on the right side, such as illustrated in Figure 4.
The stochastic nonlinear dynamics of this system was investigated in [31, 32,
33, 34], where the reader can see more details about the modeling procedure
presented below. For simplicity, from now on, this system will be called the
fixed-mass-spring bar or simply the bar.

x

u(x, t)

L

k

kNL

m

Figure 4: Sketch of a bar fixed at one end and attached to two springs and a mass on the
other end.

4.2. Model equation

The physical quantity of interest is the bar displacement field u, which
depends on the position x and the time t, and evolves, for all (x, t) ∈ (0, L)×
(0, T), according to the following hyperbolic partial differential equation

ρA
∂2u

∂t2
+ c

∂u

∂t
=

∂

∂x

(
EA

∂u

∂x

)
+ f(x, t), (1)

where ρ is mass density, A is the cross section area, c is the damping coeffi-
cient, E is the elastic modulus, and f is a distributed external force, which
depends on x and t.

The boundary conditions for this problem are given by

9

u(0, t) = 0, (2)

and

EA
∂u

∂x
(L, t) = −ku(L, t)− kNL

(
u(L, t)

)3 −m ∂2u

∂t2
(L, t), (3)

where k is the stiffness of the linear spring, kNL is the stiffness of the nonlinear
spring, and m is the lumped mass.

The initial position and the initial velocity of the bar are

u(x, 0) = u0(x), (4)

and

∂u

∂t
(x, 0) = v0(x), (5)

where u0 and v0 are known functions of x, defined for 0 ≤ x ≤ L.

4.3. Discretization of the model equation

To approximate the solution of the initial/boundary value problem given
by Eqs.(1) to (5), we employ the Galerkin method [35]. This results in the
following system of ordinary differential equations

[M] ü(t) + [C] u̇(t) + [K]u(t) = f(t) + fNL

(
u̇(t)

)
, (6)

supplemented by the following pair of initial conditions

u(0) = u0 and u̇(0) = v0, (7)

where u(t) is the vector of RN in which the n-th component is the un(t),
[M] is the mass matrix, [C] is the damping matrix, and [K] is the stiffness
matrix. Additionally, f(t), fNL

(
u(t)

)
, u0, and v0 are vectors of RN , which

respectively represent the external force, the nonlinear force, the initial po-
sition, and the initial velocity. The initial value problem defined by Eqs.(6)
and (7) has its solution approximated by the Newmark method [36, 35].

10

4.4. Stochastic model

To introduce randomness in the bar model, we assume that the external
force f is a random field proportional to a normalized Gaussian white noise.
Moreover, the elastic modulus is assumed to be a random variable.

The probability distribution of E is characterized by its probability den-
sity function (PDF) pE : (0,∞) → R, which is specified, based only on the
known information about this parameter, by the maximum entropy principle
[37, 38, 39, 40].

The maximum entropy principle says that, among all the probability
distributions consistent with the current known information of E, to choose
the one that maximizes its entropy. Thus, to specify pE, it is necessary to
maximize the entropy function

S [pE] = −
∫ ∞
0

pE(ξ) ln
(
pE(ξ)

)
dξ, (8)

subjected to the constraints (known information) imposed by∫ ∞
0

pE(ξ)dξ = 1, (9)

E [E] = µE <∞, (10)

and

E
[
ln (E)

]
<∞, (11)

where E [·] is the expected value operator, and µE is the mean value of E.
Regarding the known information, the Eq.(9) is the normalization condi-

tion of the random variable, the Eq.(10) means that the mean value of E is
known, and the Eq.(11) is a sufficient condition to ensure that U have finite
variance [37].

The desired distribution is the gamma, whose PDF is given by

pE(ξ) = 1(0,∞)
1

µE

(
1

δ2E

)(1

δ2E

)
1

Γ(1/δ2E)

(
ξ

µE

)(1

δ2E
− 1

)
exp

(
− ξ

δ2EµE

)
,

(12)

11

where the symbol 1(0,∞) denotes the indicator function of the interval (0,∞),
δE is a dispersion factor, and the Γ indicates the gamma function.

Due to the randomness of F and E, the displacement of the bar becomes
a random field U , which evolves according to the following stochastic partial
differential equation

ρA
∂2U

∂t2
+ c

∂U

∂t
=

∂

∂x

(
E(θ)A

∂U

∂x

)
+ F (x, t, θ). (13)

The boundary conditions now read as

U(0, t, θ) = 0, (14)

and

EA
∂U

∂x
(L, t, θ) = −kU(L, t, θ)− kNL

(
U(L, t, θ)

)3 −m ∂2U

∂t2
(L, t, θ), (15)

for 0 < t < T and θ ∈ Θ, while the initial conditions are

U(x, 0, θ) = u0(x), (16)

and

∂U

∂t
(x, 0, θ) = v0(x), (17)

for 0 ≤ x ≤ L and θ ∈ Θ, where Θ denotes the sample space in which we
are working.

5. Numerical experiments

We employ the MC method in the cloud to approximate the solution of
the stochastic initial/boundary value problem defined by Eqs.(13) to (17).
This procedure uses a sampling strategy with the number of realizations
always being equal to a power of four. In this procedure, each realization of
the random parameters defines a new initial value problem given by Eqs.(6)
and (7), which is solved deterministically as described in section 4.3. Then,
these results are combined through statistics.

The implementation of the MC method was conducted in MATLAB, with
the aid of two executable files. The first one, which is executed in each one

12

of the virtual machines, generates realizations of the random parameters
and performs the determinist calculations to solve the associated variational
problem. The other executable computes the statistics of the output data
generated by the first executable.

5.1. Probability density function

A random variable is completely characterized by its PDF. The knowledge
of the PDF allows us to obtain all the statistical moments of the random
variable and to calculate the probability of any event associated with it. So,
we start our analysis with the PDF estimation.

The estimations for the PDF of the (normalized1) bar right extreme dis-
placement for a fixed instant of time, is shown in Figure 5 for different values
of the total number of realizations in MC simulations. We can note that as
the number of samples in the MC simulation increases, small differences may
be noted on the peaks of successive estimations of the PDF.

We use a convergence criterion based on a residue of the random vari-
able U(L, T, θ), defined as the absolute value of the difference between two
successive approximations of pU(L,T,·), i.e.,

RU(L,T,·) =
∣∣∣p4nU(L,T,·) − pnU(L,T,·)

∣∣∣ , (18)

where the superscript n indicates the number of realizations in the MC sim-
ulation. In this case, we say that the MC simulation reached a satisfactory
result if this residue is less than a prescribed tolerance ε, i.e., RU(L,T,·) < ε
for all θ ∈ Θ. For instance, ε = 0.05.

The reader can observe the distribution of the residue of U(L, T, θ), for
several values of MC realizations, in the Figure 6. Note that although the
residue decreases with the increase of the MC realizations, only one simula-
tion with 1, 048, 576 samples was able to fulfill the convergence criterion.

Therefore, despite the number of samples used in the MC simulation is
very high and the problem is relatively simple, the tolerance achieved was
relatively low. It is common to observe in the literature some works that
analyze problems much more complex, for instance [41, 42, 43], among many
others, using some hundreds of samples.

This example leads us to reflect about the number of realizations required
to obtain statistical independence of the results. In this context, the use of

1By normalized we mean a random variable with zero mean and unit standard deviation

13

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

norm. displacement at x = L and t = T

p
ro

b
a
b
il
it

y
d
e
n
si

ty
fu

n
c
ti

o
n

(a) 16, 384 realizations

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

norm. displacement at x = L and t = T

p
ro

b
a
b
il
it

y
d
e
n
si

ty
fu

n
c
ti

o
n

(b) 65, 536 realizations

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

norm. displacement at x = L and t = T

p
ro

b
a
b
il
it

y
d
e
n
si

ty
fu

n
c
ti

o
n

(c) 262, 144 realizations

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

norm. displacement at x = L and t = T

p
ro

b
a
b
il
it

y
d
e
n
si

ty
fu

n
c
ti

o
n

(d) 1, 048, 576 realizations

Figure 5: This Figure illustrates estimations for the PDF of the (normalized) random vari-
able U(L, T, ·), for different values of the total number of realizations in MC simulations:
(a) 16, 384 realizations, (b) 65, 536 realizations, (c) 262, 144 realizations and (d) 1, 048, 576
realizations.

MC in a cloud computing setting appears to be a viable solution, able to
make the work feasible at a low-cost.

5.2. Mean and standard deviation

Figure 7 shows the evolution of the bar right extreme displacement mean
(blue line) and an envelope of reliability (grey shadow) around it, obtained by
adding and subtracting one standard deviation around the mean. This figure
shows these graphs for different values of the total number of realizations in
MC simulations.

The first conclusion we can draw from these results is that the low-order
statistics, from the qualitative point of view, do not undergo major changes

14

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

norm. disp. at x = L and t = T

re
si

d
u
e

o
f

d
is

p
l.

P
D

F

65 536

262 144
1 048 576

Figure 6: This figure illustrates the residue of the U(L, T, ·) PDF.

when the total number of realizations is higher than 16, 384. However, based
on a purely visual analysis, we can not conclude anything quantitatively.

To investigate the quantitative differences on the results, we define the
residue of U(L, ·, ·) mean or standard deviation similarly to the one defined to
Eq.(18), by changing the PDF for the mean or standard deviation of U(L, ·, ·)
only.

Figure 8 illustrates the evolution of several residues of the U(L, ·, ·) mean,
and Figure 9 illustrates the evolution of several residues of the U(L, ·, ·) stan-
dard deviation. We note that, the logarithm of the mean value residues are
almost always less than O(10−6), for the case of statistics with larger sam-
ples, and presents an alternate behavior between large drops and climbs, (as
seen in Figure 8). On the other hand, the logarithm of the standard devi-
ation residue is greater than O(10−6) in the initial instants. This behavior
is not maintained after 2 ms, when the residue curves keep their alternate
behavior, but almost always below O(10−6), as shown in Figure 9. These
results show that statistics of first and second order may be obtained with
great accuracy using the methodology presented in this work.

5.3. Costs analysis for the processing time

In what follows we will present an evaluation of the time spent by MC
simulations based on the number of realizations. All the simulations were
performed only once, without discarding any samples. Also, 20 virtual ma-

15

0 2 4 6 8 10
−600

−400

−200

0

200

400

600

time (ms)

d
is

p
la

c
e
m

e
n
t

a
t
x

=
L

(µ
m

)

mean value
mean ± std. dev.

(a) 16, 384 realizations

0 2 4 6 8 10
−600

−400

−200

0

200

400

600

time (ms)

d
is

p
la

c
e
m

e
n
t

a
t
x

=
L

(µ
m

)

mean value
mean ± std. dev.

(b) 65, 536 realizations

0 2 4 6 8 10
−600

−400

−200

0

200

400

600

time (ms)

d
is

p
la

c
e
m

e
n
t

a
t
x

=
L

(µ
m

)

mean value
mean ± std. dev.

(c) 262, 144 realizations

0 2 4 6 8 10
−600

−400

−200

0

200

400

600

time (ms)

d
is

p
la

c
e
m

e
n
t

a
t
x

=
L

(µ
m

)

mean value
mean ± std. dev.

(d) 1, 048, 576 realizations

Figure 7: This Figure illustrates the mean value (blue line) and a confidence interval (grey
shadow) with one standard deviation, of the random process U(L, ·, ·), for different values
of the total number of realizations in MC simulations: : (a) 16, 384 realizations, (b) 65, 536
realizations, (c) 262, 144 realizations and (d) 1, 048, 576 realizations.

chines were used for the experiment, one for control and the other 19 for
processing. Each task runned uses Nserial = 256.

A comparison between the computational time spent by each one of the
MC simulations in the cloud, and the corresponding speed-up factors com-
pared with a serial simulation can be seen in the Table 1. In this table the
column NMC represents the total number of realizations of the experiment;
the column tasks represents the number of tasks to be processed; the columns
split, process and merge represent the time, in milliseconds, consumed in each
stage of our parallelization strategy; the column total represents, in minutes,
the total time spent by the parallel MC simulation (split + process + merge);
the column serial shows, in minutes, the processing time of a MC simulation

16

0 2 4 6 8 10
10

−12

10
−10

10
−8

10
−6

10
−4

time (ms)

re
si

d
u
e

o
f

d
is

p
.

m
e
a
n

65 536

262 144
1 048 576

Figure 8: This figure illustrates the evolution of residue of the U(L, ·, ·) mean.

0 2 4 6 8 10
10

−12

10
−10

10
−8

10
−6

10
−4

time (ms)

re
si

d
u
e

o
f

d
is

p
.

st
d
.

d
e
v
.

65 536

262 144
1 048 576

Figure 9: This figure illustrates the evolution of the residue of the U(L, ·, ·) standard
deviation.

for the same problem executed in serial; and the column speed-up shows a
metric of the parallel simulation performance, defined as the ratio between
the serial and the total time of simulation.

Before discussing the analysis of the results, we should indicate that the
serial time, shown in the first line of the Table 1, was obtained by extrapola-
tion of the average processing time spent to run a single task in two virtual
machines of the cloud. To obtain this average time the task was repeated 10
times (5 times in each VM).

17

Table 1: Comparison between the computational time spent (using 19 VMs) by each one
of the MC simulations in the cloud, and the corresponding speed-up factors compared to
a serial simulation.

NMC tasks split process merge total serial speed-up
(ms) (ms) (ms) (min) (min)

256 1 — 111 998 2 250 1.9 1.9 1.0
16 384 64 500 451 397 11 875 7.7 127.3 16.5
65 536 256 2 328 1 576 711 27 031 26.7 509.3 19.0

262 144 1024 7 609 6 078 757 89 450 102.9 2 037.0 19.8
1 048 576 4096 37 766 24 422 238 336 799 413.3 8 148.1 19.7

The first thing that we can note in the Table 1 is that the computational
cost of the split and merge tasks are almost negligible when compared to
the time spent by the process. Hence the importance of adopting a strategy
of parallelism for the processing step. Also, we can see that, in all of the
experiments, the strategy of parallelism in the cloud provided performance
gains, and such gains are greater as the number of realizations increases.
This shows the efficiency of our parallelization strategy in the case of study
analyzed. Moreover, the speed-up observed is close to the number of virtual
machines used, which indicates that the implementation of the McCloud
setting is good.

In order to evaluate the efficiency of the parallelization done in the cloud,
we studied how the processing time of the MC simulation, with 1, 048, 576
realizations, varies as a function of the number of virtual machines used to
perform the task. As can be seen in the Table 2, the processing time decays
monotonically as the number of VMs increases. This decreasing behavior is
almost linear in logarithmic scale, as shown in the Figure 10, and indicates
the effectiveness of the parallelization of MC tasks in the cloud.

The small deviations from the theoretical curve of parallelization, that
can be seen in the Figure 10, are due to the management of tasks by the
cloud. However, in the range analyzed, between 4 and 99 virtual machines,
these performance losses are negligible and do not compromise the efficiency
of parallelization strategy.

18

Table 2: Comparison between the computational time spent (using 19 VMs) by each one
of the MC simulations in the cloud, and the corresponding speed-up factors compared to
a serial simulation.

VMs split process merge total speed-up cost
(ms) (ms) (ms) (min) (US$)

4 37 734 117 637 861 431 691 1968.5 4.0 17.15
5 34 062 99 041 631 354 791 1657.2 4.7 18.23
6 37 923 78 040 047 343 105 1307.0 6.0 17.39
7 36 982 66 989 658 348 603 1122.9 7.0 17.63
8 27 390 58 431 244 349 099 980.1 8.0 18.11
9 29 407 51 818 238 343 720 869.9 9.0 18.11

10 28 015 46 564 270 332 119 782.1 10.0 18.83
11 28 734 42 192 535 334 432 709.3 11.0 17.99
12 27 687 38 611 499 341 308 649.7 12.0 18.11
13 34 874 36 039 896 334 806 606.8 12.9 19.55
14 36 359 33 412 517 338 696 563.1 13.9 19.31
15 36 499 31 199 806 343 874 526.3 14.8 18.83
16 38 576 29 215 641 338 014 493.2 15.8 20.03
17 40 484 27 406 752 340 522 463.1 16.8 19.19
18 39 015 25 800 653 335 214 436.3 17.9 20.27
19 37 766 24 422 238 336 799 413.3 18.9 19.07
29 29 282 16 000 466 343 036 272.9 28.6 21.71
39 29 547 11 927 263 346 594 205.1 38.0 24.23
60 31 547 7 891 904 327 392 137.5 56.7 29.63
80 25 328 5 900 347 33 709 99.3 78.5 29.63
99 29 578 4 834 623 340 015 86.7 89.9 36.47

Table 2 also shows that the speed-up increases monotonically as the num-
ber of VMs grows. This behavior can be better appreciated in the Figure 11,
where the reader can verify that the values obtained for the speed-up are
very close to the theoretical values, that would be obtained if there were no
delays due to cloud management. The reader can note, also, that the mea-
sured values The corresponding to larger numbers of VMs (60, 80 and 99) are
farther away from the theoretical reference. This occurs by the accumulation

19

100 101 102
101

102

103

104

number of virtual machines

C
P

U
ti

m
e

(m
in

)

cloud
theoretical

Figure 10: CPU time of a MC simulation, with 1 048 576 realizations, as function of the
numbers of virtual machines.

of management delays, which are larger for a higher amount of VMs.

5.4. Costs analysis for the storage space

A comparison between the storage space used by each one of the MC sim-
ulations in the cloud, and the financial cost associated with each simulation
can be seen in Table 3. In this table the column space represents the total
storage space, in MB, temporarily used by the simulation, and the column
cost represents the cost of this experiment in US dollars.

Observing the data in Table 3 we can see that our parallelization strategy
used fairly little storage space, even for a large number of MC realizations.
Additionally, the financial cost, even for the most complex simulation, is very
small; which is a major advantage when compared to the costs of acquiring
and maintaining a traditional cluster.

20

100 101 102
100

101

102

number of virtual machines

S
p
e
e
d
-u

p

measured
theoretical

Figure 11: Speed-up of a MC simulation, with 1 048 576 realizations, as function of the
numbers of virtual machines.

Table 3: Comparison between the storage space used by each one of the MC simulations
in the cloud, and the financial cost associated with each simulation.

NMC space cost
(MB) (US$)

16 384 12.4 5.39
65 536 49.0 5.39

262 144 195.2 7.67
1 048 576 780.8 19.07

6. Concluding remarks

We present a strategy for parallelizing the Monte Carlo method in the
context of cloud computing, using the fundamental idea of the MapReduce

21

paradigm. This strategy is described in detail and illustrated in the simula-
tion of a simple problem of stochastic structural dynamics. The simulation
results show good accuracy for low-order statistics, low storage space usage,
and that the performance gains increase with the number of Monte Carlo
realizations. It was also illustrated that even a simple problem can require
many realizations for the convergence of histograms, which makes the cloud
computing strategy very attractive, due to its high scalability capacity and
low-cost. Thus, this article demonstrates that the advent of cloud comput-
ing can become an important enabler for the adoption of the MC method to
compute the propagation of uncertainty in complex stochastic models.

Acknowledgments

The authors are indebted to the Brazilian agencies CNPq, CAPES, and
FAPERJ for the financial support given to this research. By the free use
of the Windows Azure platform, the authors are very grateful to Microsoft
Corporation. Also, they wish to thank the anonymous referee, for useful
comments and suggestions.

References

[1] C. Soize, Random matrix theory for modeling uncertainties in com-
putational mechanics, Computer Methods in Applied Mechanics and
Engineering 194 (2005) 1333–1366. doi:10.1016/j.cma.2004.06.038.

[2] T. G. Ritto, R. Sampaio, Stochastic drill-string dynamics with un-
certainty on the imposed speed and on the bit-rock parameters, In-
ternational Journal for Uncertainty Quantification 2 (2012) 111–124.
doi:10.1615/Int.J.UncertaintyQuantification.v2.i2.

[3] T. G. Ritto, M. R. Escalante, R. Sampaio, M. B. Rosales, Drill-string
horizontal dynamics with uncertainty on the frictional force, Journal of
Sound and Vibration 332 (2013) 145–153. doi:10.1016/j.jsv.2012.08.007.

[4] T. G. Ritto, C. Soize, R. Sampaio, Non-linear dynamics of a
drill-string with uncertain model of the bit rock interaction, In-
ternational Journal of Non-Linear Mechanics 44 (2009) 865–876.
doi:10.1016/j.ijnonlinmec.2009.06.003.

22

[5] T. G. Ritto, R. Sampaio, F. Rochinha, Model uncertainties of flexible
structures vibrations induced by internal flows, Journal of the Brazil-
ian Society of Mechanical Sciences and Engineering 33 (2011) 373–380.
doi:10.1590/S1678-58782011000300014.

[6] S. Zio, F. Rochinha, A stochastic collocation approach for uncer-
tainty quantification in hydraulic fracture numerical simulation, In-
ternational Journal for Uncertainty Quantification 2 (2012) 145–160.
doi:10.1615/Int.J.UncertaintyQuantification.v2.i2.

[7] H. Lopes, J. Barcellos, J. Kubrusly, C. Fernandes, A non-parametric
method for incurred but not reported claim reserve estimation, In-
ternational Journal for Uncertainty Quantification 2 (2012) 39–51.
doi:10.1615/Int.J.UncertaintyQuantification.v2.i1.40.

[8] A. Clément, C. Soize, J. Yvonnet, Uncertainty quantification in com-
putational stochastic multiscale analysis of nonlinear elastic materials,
Computer Methods in Applied Mechanics and Engineering 254 (2013)
61–82. doi:10.1016/j.cma.2012.10.016.

[9] C. Soize, A comprehensive overview of a non-parametric probabilis-
tic approach of model uncertainties for predictive models in struc-
tural dynamics, Journal of Sound and Vibration 288 (2005) 623–652.
doi:10.1016/j.jsv.2005.07.009.

[10] C. Soize, Stochastic modeling of uncertainties in computational struc-
tural dynamics - Recent theoretical advances, Journal of Sound and
Vibration 332 (2013) 2379–2395. doi:10.1016/j.jsv.2011.10.010.

[11] N. Metropolis, S. Ulam, The Monte Carlo Method, Journal of the Amer-
ican Statistical Association 44 (1949) 335–341. doi:10.2307/2280232.

[12] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer,
New York, 2001.

[13] R. W. Shonkwiler, F. Mendivil, Explorations in Monte Carlo Methods,
Springer, New York, 2009.

[14] C. P. Robert, G. Casella, Monte Carlo Statistical Methods, Springer,
New York, 2010.

23

[15] D. Xiu, G. E. Karniadakis, The Wiener-Askey Polynomial Chaos for
stochastic differential equations, SIAM Journal on Scientific Computing
24 (2002) 619–644. doi:10.1137/S1064827501387826.

[16] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large
clusters, in: OSDI, 2004.

[17] J. Shiers, Grid today, clouds on the horizon, Computer Physics Com-
munications 180 (2009) 559–563. doi:10.1016/j.cpc.2008.11.027.

[18] I. Ari, N. Muhtaroglu, Design and implementation of a cloud computing
service for finite element analysis, Advances in Engineering Software 60-
61 (2013) 122–135. doi:10.1016/j.advengsoft.2012.10.003.

[19] K. Jorissen, F. Vila, J. J. Rehr, A high performance scientific cloud com-
puting environment for materials simulations, Computer Physics Com-
munications 183 (2012) 1911–1919. doi:10.1016/j.cpc.2012.04.010.

[20] L. Wang, M. Kunze, J. Tao, G. von Laszewski, Towards building a cloud
for scientific applications, Advances in Engineering Software 42 (2011)
714–722. doi:10.1016/j.advengsoft.2011.05.007.

[21] T. Velte, A. Velte, R. Elsenpeter, Cloud Computing, A Practical Ap-
proach, McGraw-Hill Osborne Media, New York, 2009.

[22] D. Cearley, Hype Cycle for Application Development, Tech. Rep.
G00147982, Gartner Group (2009).

[23] L. M. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break
in the clouds: towards a cloud definition, Computer Communication
Review 39 (2008) 50–55.

[24] R. Buyya, J. Broberg, A. M. Goscinski, Cloud computing: Principles
and paradigms.

[25] E. Roloff, M. Diener, A. Carissimi, P. O. A. Navaux, High perfor-
mance computing in the cloud: Deployment, performance and cost
efficiency, in: Cloud Computing Technology and Science (Cloud-
Com), 2012 IEEE 4th International Conference on, 2012, pp. 371–378.
doi:10.1109/CloudCom.2012.6427549.

24

[26] R. Nasser, McCloud Service Framework: Development Services of Monte
Carlo Simulation in the Cloud, M.Sc. Dissertation, Pontif́ıcia Universi-
dade Católica do Rio de Janeiro, Rio de Janeiro, (in portuguese) (2012).

[27] R. Nasser, A. Cunha Jr, H. Lopes, K. Breitman, R. Sampaio, McCloud:
Easy and quick way to run Monte Carlo simulations in the cloud, (sub-
mitted for publication) (2013).

[28] J. Bennett, R. Grout, P. Pebay, D. Roe, D. Thompson, Numerically
stable, single-pass, parallel statistics algorithms, in: IEEE Interna-
tional Conference on Cluster Computing and Workshops 2009, 2009.
doi:10.1109/CLUSTR.2009.5289161.

[29] B. P. Welford, Note on a method for calculating corrected
sums of squares and products, Technometric 4 (1962) 419–420.
doi:10.1080/00401706.1962.10490022.

[30] D. E. Knuth, The Art of Computer Programming, volume 2: Seminu-
merical Algorithms, 3rd Edition, Addison-Wesley, Boston, 1998.

[31] A. Cunha Jr, R. Sampaio, Effect of an attached end mass in the dy-
namics of uncertainty nonlinear continuous random system, Mecánica
Computacional 31 (2012) 2673–2683.

[32] A. Cunha Jr, R. Sampaio, Uncertainty propagation in the dynamics
of a nonlinear random bar, in: Proceedings of the XV International
Symposium on Dynamic Problems of Mechanics, 2013.

[33] A. Cunha Jr, R. Sampaio, Analysis of the nonlinear stochastic dynamics
of an elastic bar with an attached end mass, in: Proceedings of the III
South-East Conference on Computational Mechanics, 2013.

[34] A. Cunha Jr, R. Sampaio, On the nonlinear stochastic dynamics of
a continuous system with discrete attached elements, (submitted for
publication) (2013).

[35] T. J. R. Hughes, The Finite Element Method, Dover Publications,
New York, 2000.

[36] N. Newmark, A method of computation for structural dynamics, Journal
of the Engineering Mechanics Division 85 (1959) 67–94.

25

[37] C. Soize, A nonparametric model of random uncertainties for reduced
matrix models in structural dynamics, Probabilistic Engineering Me-
chanics 15 (2000) 277 – 294. doi:10.1016/S0266-8920(99)00028-4.

[38] C. Shannon, A mathematical theory of communication, Bell System
Technical Journal 27 (1948) 379– 423.

[39] E. T. Jaynes, Information theory and statistical mechanics, Physical
Review Series II 106 (1957) 620–630. doi:10.1103/PhysRev.106.620.

[40] E. T. Jaynes, Information theory and statistical mechanics II, Physical
Review Series II 108 (1957) 171–190. doi:10.1103/PhysRev.108.171.

[41] P. Spanos, A. Kontsos, A multiscale Monte Carlo finite element
method for determining mechanical properties of polymer nanocom-
posites, Probabilistic Engineering Mechanics 23 (2008) 456–470.
doi:10.1016/j.probengmech.2007.09.002.

[42] B. Liang, S. Mahadevan, Error and uncertainty quantification and
sensitivity analysis in mechanics computational models, Interna-
tional Journal for Uncertainty Quantification 1 (2011) 147–161.
doi:10.1615/IntJUncertaintyQuantification.v1.i2.30.

[43] S. Murugan, R. Chowdhury, S. Adhikari, M. Friswell, Helicopter aeroe-
lastic analysis with spatially uncertain rotor blade properties, Aerospace
Science and Technology 16 (2012) 29 –39. doi:10.1016/j.ast.2011.02.004.

26

