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Abstract

This paper presents an indicator-based multi-objective local search (IBMOLS)
to solve a multi-objective optimization problem. The problem concerns the
selection and scheduling of observations for an agile Earth observing satel-
lite. The mission of an Earth observing satellite is to obtain photographs of
the Earth surface to satisfy user requirements. Requests from several users
have to be managed before transmitting an order, which is a sequence of
selected acquisitions, to the satellite. The obtained sequence has to optimize
two objectives under operation constraints. The objectives are to maximize
the total profit of the selected acquisitions and simultaneously to ensure the
fairness of resource sharing by minimizing the maximum profit difference
between users. Experiments are conducted on realistic instances. Hypervol-
umes of the approximate Pareto fronts are computed and the results from
IBMOLS are compared with the results from the biased random-key genetic
algorithm (BRKGA).
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1. Introduction and Background

This paper addresses a multi-objective optimization problem associated
with selecting and scheduling observations of an agile Earth observing satel-
lite. We consider the case where multiple users order requests to the satel-
lite. A local search is proposed to solve the problem and experiments are
conducted on realistic instances.

The mission of Earth observing satellites (EOSs) is to obtain photographs
of the Earth surface, in order to satisfy the requirements from users. EOSs
can acquire photographs, while moving along their orbits. They spend a pe-
riod of several days to perform a cycle of orbit. The whole area of the Earth
is viewed, when the satellites complete a full cycle [13]. EOSs carry differ-
ent instruments depending on their usages, e.g. optical camera or infrared
camera. Most of them operate at low altitudes. Hence, when they move over
the visible areas of the required photographs, the photographs can be cap-
tured as in Figure 1. Then, the satellites will try to transfer the data of the
acquired images directly to the ground station center after acquiring them,
if possible. Otherwise, the data are stored in the on-board limited memory
until the satellites are in the possible transferring range to the ground station
center.

Satellite direction

Earth surface

Captured photograph

Candidate photographs

Figure 1: The satellite captures the photographs [23].

Among the various types of EOSs, only so-called “agile” satellites are con-
sidered in this paper. An agile EOS is equipped with only one fixed on-board
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camera, but the satellite uses an attitude and orbit control system (AOCS)
to be able to turn around three axes: roll, pitch, and yaw [18]. An example
of an agile satellite is PLEIADES, which was developed by the CNES, the
French Space Agency. The starting time for taking each image of this satel-
lite is not fixed, but it must be in a given time interval, which is called a
time window. Therefore, an agile satellite has an important advantage when
compared to a non-agile satellite. On the one hand, this gives agile satellite
better efficiency of the whole system. On the other hand, the problem of
selecting and scheduling the candidate images is more difficult to solve, since
the search space under consideration is larger [19].

In this work, the satellite management process is considered when several
users order requests to a ground station center. The requests cannot be
assigned directly to a satellite; the ground station center has to select and
schedule the candidate images, according to some limitations of the satellite,
before the obtained sequence is transmitted.

For solving the Earth observation scheduling problem, there are several
studies on agile EOSs. For example, a combination of genetic algorithm
and simulated annealing was proposed to solve this problem in [21]. The
performance of the proposed algorithm was compared with the simulated
annealing alone. In [19], four methods consisting of a greedy algorithm, a
dynamic programming procedure, a constraint programming model, and a
local search method were applied in order to solve a simplified version of the
scheduling problem for agile EOSs.

The ROADEF 2003 challenge was about the management problem of
an agile EOS mission (see http://challenge.roadef.org/2003/en/). The
challenge aims at finding a feasible schedule that maximizes the total profit,
computed from the sum of request gains, which are associated with the com-
plete or partial acquisition of each request. All the data description and
optimization criterion are explained in [29]. Note that the problem consid-
ered in this challenge was a simplified version of the real Earth observation
satellite management problem; for example, neither data download nor en-
ergy and thermal limitations are taken into account.

The winner of this challenge used an algorithm based on simulated anneal-
ing for solving the scheduling problem [16]. The second prize winner proposed
an algorithm based on tabu search [8]. The authors adapted the unified tabu
search algorithm [7], which was developed for the vehicle routing problem
with time windows. Moreover, a tabu search algorithm hybridized with a
systematic search was applied to solve this problem in [13]. All these works
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considered the scheduling problem for an agile EOS as a mono-objective
optimization problem (total profit maximization).

Our work considers the acquisition scheduling problem of an agile EOS,
where the requests emanate from several different users. We need to opti-
mize two objective functions, which are to maximize a total profit and si-
multaneously ensure the fairness of resource sharing for all users. Thus, this
problem is modeled as a multi-objective optimization problem. The second
objective, which is added in order to ensure the fairness, amounts to mini-
mize the maximum profit difference between users. Some researchers studied
multi-objective optimization problems for space applications [1][10][30]. Fur-
thermore, some literature considered as an objective the fairness among users
[20]. Multiple end-users of agile EOSs were considered and sharing principles
were adopted to select the subset of candidates based on utility levels. In [3]
and [17], the use of two objective functions related to fairness and efficiency
was proposed. Three ways were discussed for solving this sharing problem:
the first one gives priority to fairness, the second one to efficiency, and the
third one computes a set of trade-offs to help a human to make decisions.
For the multicriteria methods, instead of building a complete set of nondom-
inated solutions, the authors only searched for a decision close to the line
with a specified slope on the objective function plane. In [6], the selecting
and scheduling requests for the multi-satellite, multi-orbit, and multi-user
were studied, and tabu search was used to solve the problem. The fairness
was taken into account, but it was not considered as an objective function.
The authors borrowed an ordered weighted average from [31] to ensure the
fairness of the solutions. The experiments test these algorithms with the
data instances provided by the CNES.

This paper proposes an indicator-based multi-objective local search, which
is a multi-objective metaheuristic algorithm, for selecting and scheduling the
subset of candidate photographs. Section 2 presents the description of the
multi-user Earth observation scheduling problem. Then, the indicator-based
multi-objective local search is explained in Section 3. Section 4 presents the
computational results. This section compares the results from the indicator-
based multi-objective local search and from the biased random-key genetic
algorithm. Finally, conclusions and perspectives are discussed in Section 5.

4



2. Problem description

2.1. Informal presentation

The instances, which are modified from the ROADEF 2003 challenge
instances, will be described in detail. They will be used in the experiments,
for testing the performance of the proposed algorithm in our work.

Each request can be of two types: mono or stereo. Each area is taken
only once for mono requests, whereas for stereo requests, each area must be
acquired twice in the same direction but from different angles. Two possible
shapes of request, which are a spot or a polygon, can be required. The
spot is a small circular area with a radius of less than 10 km. The polygon
is a polygonal area ranging from 20 to 100 km. Both shapes have to be
managed by transforming the requests into several rectangular shapes called
strips. Each polygon is decomposed into several strips of the same width
but with variable lengths. A spot is considered as a single strip. Each strip
can be taken once at a time by the camera on the satellite. An example of
request shapes and order for taking the strips after management is illustrated
in Figure 2. There are two possible directions to acquire each strip. Both
directions are parallel to the length of the strip, but in the opposite directions
as shown in Figure 3. Among two of them, only one acquired direction can
be selected. The strip, associated with one possible acquired direction, is
called an acquisition. Thus, each strip consists of two possible acquisitions.
The interval of possible starting times for taking each acquisition can be
computed, depending on the acquired direction, from the earliest and latest
visible time of the two extremities of the strip, and the acquired duration
time of the strip.

Each acquisition generates a profit. Thus, for the observation scheduling
problem, the objective is total profit maximization. The total profit is com-
puted depending on the acquired area of each request. The profit of each
acquired request can be computed by using a piecewise linear function of
gain. This function is associated with a fraction of the acquired useful area
over the whole area of each request, as illustrated in Figure 4. The more area
of the request is acquired, the more profit is generated.

2.2. Formal description

A set of nr requests originate from the users. These requests lead to han-
dling ns strips from which 2ns acquisitions are possible. To each request i, are
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Figure 2: Example of both request’s shapes and order for taking the strips after manage-
ment [19].
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Figure 3: A polygonal area is decomposed into several strips; each strip can be acquired
according to two possible directions [19].

associated the user U [i]i=1..nu who orders it, its gain G[i] for a complete acqui-
sition, its surface area S[i], and its mono/stereo characteristic St[i] ∈ {0 / 1}.

The major constraints to fulfill are related to the start time to process a
selected acquisition within its time window according to the duration time to
acquire it, necessary transition times between two consecutive acquisitions,
and satisfying stereo constraints.

A solution is defined by a sequence of selected acquisitions and a se-
quence of acquisition starting times. Then, given a set of request profits
{rp1, rp2, . . . , rpi, . . . , rpnr} and a set of user profits {up1, up2, . . . , upj, . . . , upnu},

6



1

0 1
x

0.1

0.4 0.7

0.4

P(x)

Figure 4: Piecewise linear function of gain P (x) depending on the effective ratio x of
acquired area [29].

the following objective functions values are computed:

(1) the total profit:∑nu

j=1 upj

(2) the maximum profit difference between each pair of users:

max(j,j́)(|upj − upj́|),

∀j 6= j́ : upj =
∑

i |U [i]=j

rpi,

∀i : rpi = G[i] · S[i] · P ( si
S[i]

),

where si is the area partially taken for request i.

In this work, the set of solutions on the approximate Pareto front will be
obtained after solving the model briefly presented above by maximizing the
first objective and minimizing the second objective. It should be noted that
a lot of objective functions are possible to ensure fairness between the users.
Notably, the choice made only compares two users and is not as precise as
for instance the minimization to the average. It can also lead to solutions
that are of no interest to a decision maker (for instance, the one taking no
picture). However, the choice is motivated by the fact that it is easy to
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compute, notably in an incremental way. Moreover, the obtained solutions
must satisfy the imperative constraints. Then, the decision maker can choose
the preferred sequence from the set of solutions on the approximate Pareto
front and transmits it to the satellite for operating the mission.

3. Indicator-Based Multi-objective Local Search

In this section, we propose an indicator-based multi-objective local search
(IBMOLS) approach to solve the multi-user observation scheduling problem
for an agile EOS. IBMOLS is a generic algorithm, which combines the use of
basic local search and a binary indicator from IBEA. It was initially proposed
in [2].

IBMOLS is an iterated local search. Before starting the first iteration, the
approximate Pareto front PO is generated as an empty set and it is updated
at the end of each iteration. In each iteration of IBMOLS, it starts by
generating the initial population P . Adapted to our problem, two procedures
are used in this work. The first one is applied for the first iteration and
the second one is applied for the other iterations. Then, the nondominated
solutions in the population P are stored in the archive set A. The fitness
values of all individuals in the population P are computed by using the
indicator based on the hypervolume concept from [33] and the local search
step is applied for each individual. After that, the updated population P
is combined with the archive set A and the nondominated solutions of this
combined set are stored in the new archive set A. If the archive set A changes,
the process returns to apply the local search step. Otherwise, this iteration
is finished and the final archive set A is obtained. Then, the approximate
Pareto front PO will be updated by combining the obtained archive set A
with the approximate Pareto front PO, and the set of nondominated solutions
from the combined set becomes the new approximate Pareto front PO. If it
does not satisfy the stopping criteria, a new initial population P is generated
for the next iteration of IBMOLS. The flowchart of the IBMOLS overview is
illustrated in Figure 5.

3.1. Population generation – First iteration

For the first iteration of IBMOLS, N individuals are randomly generated
to become the initial population. Each individual represents one solution,
which is a sequence of selected acquisitions.
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Figure 5: Flowchart of the IBMOLS overview.
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The flowchart of the initial population generation for the first iteration
is shown in Figure 6. All acquisitions are assigned to be the members of
the selected acquisition set. For each acquisition depending on a random or-
der, it is checked whether it satisfies the sufficient transition time constraint
and the time window constraint. The solution is coded as a sequence and
it is easy to precompute intervals and check feasibility. Note that a more
advanced alternative should be to use Simple Temporal Networks [25]. If
it satisfies both constraints, the starting time is computed and fixed in the
starting time set. Moreover, the acquisition, which concerns the opposite
acquired direction of the same strip, is removed from the selected acquisi-
tion set. Otherwise, the considered acquisition is removed. The process for
checking these constraints is repeated until all acquisitions in the selected
acquisition set are tested. After that, the temporary selected acquisition set
and starting time set are obtained. In this step, the stereo constraint has to
be checked for each selected acquisition one by one in the temporary set. If
the considered acquisition comes from the stereo strip, its twin must also be
assigned. If its linked acquisition is not assigned, the considered acquisition
is removed. When all selected acquisitions are checked, the starting time set
is re-computed.

3.2. Population generation – Other iterations

In IBMOLS, an iterated local search is used for searching for the non-
dominated solutions by starting the search from different initial populations.
A perturbation mechanism is applied in order to escape from local optima.
However, the number of modified solution components must be accurately
defined. If too high number of modified components is set, better solutions
could be found but with a very low probability. On the other hand, if too
small number of modified components is defined, the local search will fall
back into the local optimum just visited [22].

For the perturbation, an individual is generated by modifying a solution
from the approximate Pareto front PO of the current iteration. In this work,
the solutions in the approximate Pareto front are randomly selected. The
number of selected solutions is equal to the size N of the initial population.
Each solution contains the selected acquisition set. It is modified by removing
some acquisitions in the random position j from the selected acquisition set.
In this work, we set the number of removed elements about 1/4 of the size
#orig of the original selected acquisition set. Moreover, during removing, the
stereo constraint has to be checked. If the removed acquisition is a part of
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Figure 6: Flowchart of the initial randomly generated population (IBMOLS).
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the stereo request, its twin must also be removed. The acquisition removing
is repeated until the number #modif of the remaining acquisitions in the
selected acquisition set is less than or equal to 3/4 of the size #orig of the
original set. Then, the modified selected acquisition set will become a part
of the individual, which is a member of the initial population in the next
iteration. The population generation by using the perturbation is depicted
in Algorithm 1.

Algorithm 1 Procedure of the population generating by using the pertur-
bation

for i := 1 to N do

Step 1: Original individual selection
Select randomly an individual from the approximate Pareto front PO.
The selected individual contains the selected acquisition set.

Step 2: Element removing
repeat

Step 2.1: Select randomly the removing position j.
Step 2.2: Remove the acquisition in position j.
Step 2.3: Verify the stereo constraint.
if The removed acquisition is a part of stereo request then

Remove the twin of removed acquisition.
end if

until #modif ≤ 3
4
#orig

Step 3: Counter increment
i← i + 1

end for

In the process of perturbation, we have to avoid the generation of any
already visited solution. Therefore, the number of removed acquisitions is
pre-computed. If it is less than or equal to one, the perturbation will generate
the individual, which has been visited. In this case, the random generation
will be used to generate the individual, instead of using the perturbation.
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3.3. Local search step

The local search step starts from an individual in population P and move
iteratively to a neighbor. In the original IBMOLS, a first improvement strat-
egy is used to select the neighbor. However, in this work, a best improvement
strategy is preferred. During the neighborhood exploration, the fitness val-
ues of each neighbor are computed. The neighbor with the best fitness is
generated and selected for replacing the worst solution in the population.
The neighborhood of all individuals in population P are explored. The pop-
ulation and the archive set are updated. If the updated archive set A does
not change, the local search step will be stopped. Otherwise, another local
search step is performed.

From the selected solution in the archive, the best neighbor
is searched as follows. Each acquisition is considered in a given
order. If the acquisition is scheduled in the sequence, the process
is straightforward: removing the acquisition just leads to the new
solution objectives to be updated. If the acquisition is a stereo
one, both scheduled acquisitions are removed from the sequence.
If the acquisition is not in the sequence, we try to insert it in the
sequence. In the case of a stereo acquisitions, both tasks are tested
for inclusion but the principle remains the same as follows.

The acquisition is tried for insertion between two scheduled ones
in the sequence. However, the feasibility of the insertion has to be
checked as the operational constraints must hold. The insertion
of an acquisition implies that the already scheduled ones after the
insertion place may need to be shifted to the right, delaying them
as illustrated in Figure 7. This can be checked easily by a precom-
puting process. For a scheduled acquisition id, the latest possible
starting time Q(id) is computed as follows. For the last scheduled
acquisition saN , its latest starting time Q(N) can be computed by

Q(N) = Tmax(saN)

where Tmax denotes the latest starting time of an acquisition.
For the other acquisitions said, where 1 ≤ id ≤ N − 1, their latest

starting times Q(id) are given by

Q(id) = min(Tmax(said), Q(id + 1)−Du(said+1)−Dt(said, said+1))

where Du and Dt stand for the duration time of an acquisition and
the transition time between two acquisitions, respectively.
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sa1 sa2 sa3 sa4 sa5

Insertion position

time

sa1 sa2 sa3 sa4 sa5

time

Acq k

The acquired sequence before insertion

The acquisitions, which stay behind the insertion position, 
are moved to the back as late as possible

Figure 7: A large space is prepared for the insertion of the unassigned acquisition.

Example of the latest starting time Q(id) computation is shown
in Figure 8.

Then the possibility to insert an acquisition Acq k is tested using
the following rules:

• the acquisition Acq k can be inserted in the first position (po-
sition 1) of the selected acquisition set, only if

Tmin(Acq k) + Du(Acq k) + Dt(Acq k, sa1) ≤ Q(1)

• the acquisition Acq k can be inserted in the middle position id
(position 2 to N) of the selected acquisition set, only if

taid−1 + Du(said−1) + Dt(said−1, Acq k) ≤ Tmax(Acq k)

and
Tk + Du(Acq k) + Dt(Acq k, said) ≤ Q(id)

where Tk = max(Tmin(Acq k), taid−1+Du(said−1)+Dt(said−1, Acq k))

• the acquisition Acq k can be inserted in the last position (po-
sition N + 1) of the selected acquisition set, only if

taN + Du(saN) + Dt(saN , Acq k) ≤ Tmax(Acq k)
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First case:

Second case:

time

time

Figure 8: Example of the latest starting time Q(id) computation

4. Computational Results

The methods were tested on modified instances from the ROADEF 2003
challenge (http://challenge.roadef.org/2003/en/sujet.php) (TestSet A,
B, and X). They are modified for 4-user requirements and the format of in-
stance names are changed to a b c, where a is the number of requests, b

is the number of stereo requests, and c is the number of strips. The mod-
ified instances are publicly available and can be downloaded from: http:

//www.laas.fr/files/ROC/4U-EOS.zip.

4.1. Biased random-key genetic algorithm

We presented the biased random-key genetic algorithm (BRKGA) for
solving this Earth observation scheduling problem in [27][28]. Genetic algo-
rithms are metaheuristic search methods, which can solve large-size problem
instances and obtain satisfying solutions in an acceptable time [26]. They
start by generating a population of p chromosomes, and then involve three
mechanisms: selection, crossover, and mutation, to generate the new chro-
mosomes for the next generation and repeat the iterations until some stop-
ping conditions are satisfied. BRKGA combines genetic algorithm and the
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concept of random key [11]. It has different ways to select two parents for
the crossover operation, compared with the original of random-key genetic
algorithm (RKGA) [4]. In [27][28], parameter values of BRKGA were ex-
perimentally tuned. The population size of BRKGA was set equal to the
length of the random-key chromosome or twice the number of strips. For
next population generation of BRKGA, the size of the three parts (the elite
set, the mutant set, and the crossover offspring set) was set in accordance
with the recommended values in [12]. For the elite set part, all the objec-
tive functions must be taken into account for the fitness of each chromo-
some. Thus, we chose a selecting method from several efficient algorithms,
e.g., Nondominated Sorting Genetic Algorithm (NSGA-II) [9], S metric se-
lection Evolutionary Multi-objective Optimization Algorithm (SMS-EMOA)
[5], Indicator-Based Evolutionary Algorithm (IBEA) [33] in order to use in
the selection process. The size of the elite set was equal to the number of
non-repeated schedules from the nondominated solutions, but it was not over
0.15p. The size of mutant set was equal to 0.3p. The probability of elite ele-
ment inheritance for crossover operation was set to 0.6. Moreover, BRKGA
used encoding and decoding steps for managing the solution. For the de-
coding step, the basic decoding was implemented in [27]. Several decoding
procedures have been proposed in [27, 28]. We will test IBMOLS agains the
best version of the algorithm.

In each iteration of BRKGA, the nondominated solutions were stored in
an archive. If there was at least one solution from the current population
that can dominate some solutions in the archive, the archive was updated.
Therefore, we used the number of iterations since the latest archive improve-
ment to be a stopping criterion. The stopping value was set to 50. The
hybrid decoding method obtained the best solutions.

4.2. IBMOLS evaluation

In this work, the indicator-based multi-objective local search (IBMOLS) is
used to solve the Earth observation scheduling problem. The obtained results
are compared with the results from BRKGA. Some parameter values have to
be tuned. Thus, we set a value of 10 for the population sizes. Moreover, as
previously, we chose a number of 50 iterations since the latest approximate
Pareto set improvement to be the stopping criterion.

As suggested in [14], the hyper volume metric [32] was used.
The hypervolume represents the size of the area dominated by the
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approximation generated by an algorithm. It is based on com-
puting the volume (area in the bi-objective case) dominated by
a given Pareto-front approximation. The hypervolume metric re-
quires a reference point consisting of a reference value for each of
the two objectives. Here we use 0 for total profit maximization
and the maximum sum of profits per user for the second objective.
These values are the worst possible values for each objective.

Both proposed algorithms are implemented in C++ and thirty runs per
instance are tested. Hypervolumes of the approximate Pareto front are com-
puted by using a reference point of 0 for the first objective (maximizing the
total profit) and the maximum of the profit summations of each user for the
second one (minimizing the profit difference between users). The hypervol-
ume values, which are obtained from both proposed algorithms, are plotted
by box plots.

We compare the results between BRKGA and IBMOLS. For BRKGA,
the results were obtained from the hybrid decoding, which used the selection
method of indicator-based evolutionary algorithm (IBEA) for selecting the
preferred chromosomes to become the elite set. Moreover, the selection of the
dominant solution was used to manage the elite set in the hybrid decoding
process. For IBMOLS, the results are obtained by using the neighborhood
structure, which consists of the insertion and removing of the mono and stereo
acquisitions. The method of feasibility checking, which computes the latest
starting time before checking insertion feasibility, is applied. For generating
the initial population, the random generation is used in the first iteration
and the perturbation is applied in the other iterations. The number of 50
iterations since the latest archive improvement is used as a stopping criterion
for both BRKGA and IBMOLS. The box plots of hypervolume values and
the average computation time of BRKGA and IBMOLS for TestSet A, B,
and X are presented in Figure 9, 10, and 11, respectively. For each instance,
the first column illustrates the results from BRKGA and the second column
shows the results from IBMOLS. Moreover, we also use a Mann-Whitney
statistical test [15] for comparing the results from both algorithms.

For BRKGA, the results of the smallest instance (instance 2 0 2) cannot
be reached. Indeed, the population size, which is equal to twice of the number
of strips, is too small for generating the new generation from the three sets
of chromosomes in BRKGA process.

In the comparison, the box plots show that IBMOLS obtains better me-
dian values of the hypervolume for all instances and better standard devia-
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Figure 9: Comparison of hypervolume values of the approximate Pareto front between
BRKGA and IBMOLS of TestSet A (for each method, the average computation times are
indicated in parentheses).
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Figure 10: Comparison of hypervolume values of the approximate Pareto front between
BRKGA and IBMOLS of TestSet B (for each method, the average computation times are
indicated in parentheses).
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Figure 11: Comparison of hypervolume values of the approximate Pareto front between
BRKGA and IBMOLS of TestSet X (for each method, the average computation times are
indicated in parentheses).
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tions for most of the results. Moreover, IBMOLS spends less computation
time than BRKGA, especially for large instances. Additionally, the statis-
tical test reveals that the results of IBMOLS are significantly better than
those of BRKGA. Figure 12 illustrates the improvement of the hypervol-
ume values versus the computation times for some instances of TestSet A,
B, and X. In each graph, the improvement of hypervolume values between
BRKGA process and IBMOLS process is analyzed. The results show that
IBMOLS obtains solutions closer to the Pareto optimal solutions for medium
and large instances. Moreover, it can also converge to the Pareto optimal
solutions faster than BRKGA.

Finally, the best approximate Pareto fronts of some instances in TestSet
A, B and X, which are obtained from IBMOLS, are illustrated in Figure
13. For each instance, the total profit is presented on x-axis and the maxi-
mum profit difference between users is presented on y-axis. The hypervolume
value of each approximate Pareto front is also indicated. The figure shows
that IBMOLS can obtain good nondominated solutions on the approximate
Pareto fronts for all instances. Moreover, the best total profit values of Test-
Set A, B, and X, which are obtained from IBMOLS and from the winners
of ROADEF 2003 challenge [8][16], are compared in Table 1. Although our
work considers two objective functions simultaneously, IBMOLS can reach
values of best total profit, the values of which are quite close to the results
from the winners of ROADEF 2003 challenge. Indeed, for TestSets A, B, and
X, the relative deviation of IBMOLS is 1.7%, 3.7%, and 3.4%, respectively;
over all instances, this deviation is then only 3.0%.

5. Conclusions and future works

An indicator-based multi-objective local search (IBMOLS) is used for
solving a multi-objective optimization problem associated with selecting and
scheduling observations of an agile Earth observing satellite. The ROADEF
2003 challenge instances are modified in order to take account explicitly of
4-user requirements. Two objective functions, maximizing the total profit
and minimizing the maximum profit difference between users for the fairness
of resource sharing, are considered and the imperative constraints must be
satisfied. The implementation was done and the results, which are obtained
from IBMOLS and the biased random-key genetic algorithm (BRKGA), are
compared.

For BRKGA, random-key encoding generates each chromosome in the
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population and the chromosomes are decoded to be the sequences of the
selected acquisitions. A hybrid decoding is presented in this paper. The elite
selecting method from IBEA is used for selecting the preferred solutions to
become the elite set of the population. An elite set, a crossover offspring
set, and a mutant set are combined to become the next population. The
selection of the dominant solution is used to manage the elite set in the
hybrid decoding process.

IBMOLS is implemented by generating the initial population using a
random generation for the first iteration and a perturbation for the other
iterations. The indicator-based fitness assignment with the hypervolume
concept from IBEA is applied for comparing the solutions in the population.
The hypervolume values from IBMOLS and BRKGA are compared. Most
of the results show that IBMOLS obtains better solutions and it spends less
computation time.

As perspectives, we present short term and long term further works. Con-
cerning the short term works, it may be possible to improve the results ob-
tained from IBMOLS. The initial population generation step for the first
iteration by using data of the problem instances may be used instead of the
random generation. For example, the order to assign each acquisition in the
initial sequence can depend on the acquiring duration time of each acqui-
sition. The acquisition with the longest acquiring duration time should be
assigned firstly in the sequence. Moreover, the number of removed elements
in the perturbation for the initial population generation in the other itera-
tions can also be modified. For the long term works, other perturbation rules
and other neighborhood structures can be explored. An example of pertur-
bation rule is to insert some feasible acquisitions for replacing the removed
elements.
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search. In Glover, F., Kochenberger, G. (Eds.), Handbook of Metaheuris-
tics (pp. 321–353). Kluwer Academic Publishers, Norwell, MA.

[23] Mansour, M.A.A., & Dessouky, M.M. (2010). A genetic algorithm ap-
proach for solving the daily photograph selection problem of the SPOT5
satellite. Computers & Industrial Engineering, 58, 509–520.
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Figure 12: Comparison of the improvement of hypervolume values versus the computation
times between BRKGA process and IBMOLS process from some TestSet A, B, and X
instances when using the fixed iterations since the latest archive improvement as the
stopping criterion.
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Figure 13: The best approximate Pareto front of some TestSet A, B, and X instances.
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Instance Best total profit value
ROADEF 03 IBMOLS

T
es

tS
et

A
2 0 2 1.04234× 107 1.04234× 107

4 0 7 1.15711× 108 1.15711× 108

12 2 25 1.91358× 108 1.91358× 108

12 9 28 1.21680× 108 1.21680× 108

68 12 106 5.63597× 108 5.27115× 108

77 40 147 1.85407× 108 1.84904× 108

218 39 295 7.17384× 108 6.93287× 108

150 87 342 4.25983× 108 4.25983× 108

336 55 483 1.00530× 109 9.67989× 108

375 63 534 9.67911× 108 9.34503× 108

T
es

tS
et

B

135 74 283 3.73551× 108 3.68789× 108

135 87 295 4.60197× 108 4.47650× 108

284 54 420 1.03006× 109 9.75143× 108

289 49 410 8.42379× 108 8.02015× 108

291 47 437 1.14332× 109 1.08436× 109

294 64 450 9.15035× 108 8.83632× 108

297 53 436 9.86678× 108 9.57178× 108

306 48 455 1.16178× 109 1.11783× 109

311 53 472 1.15063× 109 1.09868× 109

315 58 477 9.54966× 108 9.24819× 108

T
es

tS
et

X

128 80 292 4.58107× 108 4.41712× 108

128 86 305 4.62070× 108 4.50544× 108

242 52 375 9.45737× 108 9.00455× 108

270 54 408 8.75447× 108 8.36552× 108

275 51 379 8.33287× 108 8.22863× 108

302 60 468 9.63809× 108 9.06681× 108

305 54 428 9.77811× 108 9.65784× 108

317 60 446 8.78848× 108 8.73636× 108

321 71 470 9.52267× 108 9.07546× 108

327 72 522 9.92155× 108 9.37968× 108

Table 1: Comparison of the best total profit value of TestSet A, B, and X, which are
obtained from IBMOLS and from the winners of ROADEF 2003 challenge.
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