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Abstract

This paper is concerned with the probabilistic multiscale analysis of polymeric materials reinforced
by nanoscopic fillers. More precisely, this work is devoted to the stochastic modeling and inverse
identification of the random field associated with the elastic properties in the so-called interphase
region. For illustration purposes, a prototypical polymer system reinforced by a Silica nanoscopic
inclusion is considered. Molecular Dynamics (MD) simulations are first performed and used to
characterize the conformational properties of the polymer chains in the neighborhood of the in-
clusion. It is shown that these chains are characterized by a specific tangential orientation which,
together with the density profile and variations in chain mobility, allows for the geometric definition
of the interphase region. Mechanical virtual testing is next completed on a set of initial config-
urations, hence providing a simulated database for model calibration. The results thus obtained
are subsequently used to construct a random field model for the interphase stiffness. An inverse
calibration procedure is finally proposed and relies on a stated equivalence between the apparent
properties obtained from MD simulations and those computed by numerical homogenization in the
continuum mechanics formulation. The interphase elasticity random field is seen to exhibit non-
negligible fluctuations, and the estimates of parameters related to spatial correlation are shown to
be consistent with characteristic lengths of the atomistic model, such as the interphase thickness.
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1. Introduction

The prediction of the enhanced physical properties exhibited by heterogeneous materials rein-
forced with nanoscopic fillers is a great challenge of nanoscale science. For such systems, small-scale
interactions (between the fillers and the matrix phase, or between adjacent fillers) are no longer
negligible and must be accounted for in a multiscale setting. One difficulty pertaining to modeling
issues is that the final properties strongly depend on the coupling between various parameters,
such as size effects or filler aggregation [1, 2]. Perhaps one the most discussed specificity of nanor-
einforced composites is the existence of an interphase region surrounding the inclusions. Such a
region is commonly identified with the region confined to inclusion neighborhood where the poly-
mer chains exhibit conformational and geometrical properties that are substantially different from
those in the bulk polymer phase. The experimental characterization of such properties, by using
high-resolution nuclear magnetic resonance (NMR) techniques for instance, gave rise to an ex-
tensive literature: see e.g. [3, 4, 5, 6, 7, 8, 9] for systems reinforced with Silica nanoinclusions,
and [10] for similar results with carbon black fillers. All these results show a local disturbance
in the mobility of the polymer chains, as well as density fluctuations vanishing away from the in-
clusions. These observations are well correlated by atomistic simulations, which have additionaly
highlighted a preferred orientation of the polymer chain segments tangentially to the particle sur-
face; see [11, 12, 13, 14, 15, 16, 17, 18, 19] for Molecular Dynamics (MD) simulations, as well as
[20, 21, 22, 23, 24] for the use of a Monte Carlo solver.

From a mechanical point of view, two types of approach were developed so as to estimate the ef-
fective properties of nanocomposites while accounting for size effects. A first class of methods relies
on the integration of so-called interface models, such as spring-layer or membrane-type imperfect
interface ones, in various extensions of classical (e.g. Eshelby-type) micromechanical frameworks.
In this case, surface and interfacial energy concepts are invoked and plugged into asymptotic formu-
lations, hence allowing for an explicit dependance of effective moduli on the nanoscale characteristic
length (the radius of a spherical filler, for instance); see [25, 26, 27, 28] and the references therein
to name a few. A major issue related to such approaches is the definition of the interface stiffness,
which may not be necessarily positive-definite (see [29] for a derivation based on MD simulations,
for instance). In the second class of models, the interphase is considered as an additional phase
with a finite volume and standard (in the thermodynamical sense) mechanical properties. Such
formulations can be subsequently used within (semi-)analytical homogenization schemes, such as
the generalized self consistent scheme [15, 12, 30, 31], or coupled with computational approaches
[32]. It should be noted that these approaches are sequential, in the sense that they rely on an a pri-
ori characterization of interphase properties. Energy-based coupling techniques were alternatively
developed in order to couple, in a concurrent manner, an atomistic description of the interphase
with a finite element formulation (see [33] and the references therein, for instance).

Despite the intrinsic stochastic nature of the physical phenomena occurring while processing
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nanocomposites, most of the multiscale models developed so far are deterministic and presume
that the interphase properties are known. More recently, a few studies involving some uncertainty
quantification aspects were proposed. In a series of papers, Vu Bac and coworkers have inves-
tigated sensitivity analysis of multiscale predictions by using forward propagation of parametric
uncertainties related either to input parameters of MD simulations or to other parameters (such
as the volume fraction of fillers) in a continuum mechanics formulation [34, 35, 36, 37] – see also
[38, 39] for the modeling of MD finite sampling noise and uncertainties in force field parameters, as
well as [40] for a study where uncertainties due to MD finite sampling are exchanged back-and-forth
between an atomistic model and a continuum one. In [41], an inverse identification procedure for
some parameters modeled as random variables (such as particle radius or distribution, or matrix
mechanical properties) is proposed. Finally, uncertainty propagation from nanoscale to structural
analysis has been performed in [42].

This work is devoted to the complementary and fundamental aspect of model construction and
inverse calibration based on atomistic simulations. Here, and contrary to previous works developed
elsewhere, the interphase elastic properties are modeled by a non-Gaussian tensor-valued random
field. MD simulations are used so as to infer some basic properties of the latter, such the material
symmetry locally exhibited or the underlying correlation structure, and to construct a virtual
database devoted to the model calibration. This identification step is subsequently addressed by
solving a statistical inverse problem stating the equivalence of the apparent properties obtained
from atomistic computations and those estimated from stochastic homogenization in a continuum
mechanics formulation.

This paper is organized as follows. Section 2 is devoted to the definition and virtual mechanical
testing of the nanosystem under consideration. In particular, the atomistic models are introduced,
together with the assembly procedure for the nanocomposite. The stochastic model is then intro-
duced in Section 3. The methodology for inverse calibration is finally presented in Section 4.

2. Modeling and virtual testing of model nanocomposites

This section is devoted to the modeling and mechanical testing of a prototypical nanocomposite
made up of a polymer matrix filled with a silica nanoinclusion. The overall methodology associated
with the MD simulations and related issues is mostly borrowed from [12]. The atomistic descriptions
of the polymer and silica particle are first introduced in Sec. 2.1 and Sec. 2.2, respectively. The
assembly procedure of the nanostructure is then summarized in Sec. 2.3. The framework for virtual
testing and results are finally presented in Sec. 2.4. All MD simulations are carried out in the
LAMMPS package [43], with a time step set to 2 fs. Atomistic images are produced by using the
OVITO program [44].

Let ri denote the position of atom i, 1 6 i 6 N , and let r = (r1, . . . , rN). Let rij = rj − ri
and rij = ‖rij‖. The notation i− j is used hereafter to denote the bond between atoms i and j.
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2.1. Molecular model of polymer matrix

In this study, a prototypical generic model of an amorphous linear polymer is considered. More
specifically, the system under consideration is made up of npc polymer chains, each of which con-
taining 1, 000 united-atom CH2 sites.

2.1.1. Force field description

The functional form of the force field in the polymer system classically reads as

V(r) = VB(r) + VUB(r) , (1)

where
VB(r) =

∑
{i,j}∈Bb

Vb(rij) +
∑

{i,j,k}∈Bθ

Vθ(θijk) +
∑

{i,j,k,`}∈Bφ

Vφ(φijk`) (2)

is a term modeling interactions between m-uplets of bonded atoms (2 6 m 6 4), and

VUB(r) =
N∑
i=1

∑
j>i

VLJ(rij) (3)

models non-bonded interactions. In Eq. (2), θijk denotes the angle ̂(rji, rjk) between bonds i−j and
j−k, and φijk` is the angle between the planes spanned by vector pairs (rij, rkj) and (rjk, r`k). The
sets Bb, Bθ and Bφ are the sets of pairs, triplets and quadruplets of bonded atoms along a polymer
chain, all chains being considered. Therefore, card(Bb) = npc(nP − 1), card(Bθ) = npc(nP − 2) and
card(Bφ) = npc(nP − 3), with nP the degree of polymerization. The harmonic potentials Vb and Vθ
are defined as follows:

Vb(r) =
1

2
Kb (r − r0)2 , (4)

Vθ(θ) =
1

2
Kθ (cos(θ)− cos(θ0))2 , (5)

where r0 and θ0 are the equilibrium bond length and bond angle, and Kb and Kθ are model
parameters. The torsional potential is given by

Vφ(φ) =
5∑
i=1

Am cosm−1(φ) , (6)

with {Am}5
i=1 a set of additional model parameters. Nonbonded pair interactions are governed by

a truncated Lennard-Jones 12-6 potential:

VLJ(r) = 4ε

((σ
r

)12

−
(σ
r

)6
)
, r 6 rc (7)

= 0 , r > rc (8)
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where the well depth ε and collision diameter σ are parameters depending on the polymer system,
and rc denotes the cutoff radius (here, rc = 1.4 nm). The values of the force field parameters for
the polymer matrix are listed in Tab. 1 (see [45, 12]).

Potential Parameter Value Unit

Vb Kb 700 kcal/mol/Å2

b0 0.15 nm
Vθ Kθ 124.2830 kcal/mol

θ0 112.813 deg
Vφ A1 2.1109 kcal/mol

A2 4.3229 kcal/mol
A3 1.1665 kcal/mol
A4 -7.6004 kcal/mol
A5 0 kcal/mol

VLJ σ 0.43 nm
ε 0.1133 kcal/mol

Table 1: Force field parameters used for the atomistic modeling of the polymer phase.

2.1.2. Initial configuration and relaxation steps

A set of 20 initial configurations is generated for three different systems, corresponding to
npc ∈ {10, 80, 320}, by using the Self Avoiding Random Walk (SARW) algorithm [46]. In order to
obtain fairly good initial configurational properties, MD relaxation steps are alternately performed
in the NVT and NPT ensembles, making use of Nosé-Hoover schemes. More precisely, and following
[12], simulations are started at 500 K, hence ensuring an amorphous structure through the induced
high chain mobility. The latter is illustrated in Fig. 1, for npc = 10. The systems are subsequently
cooled down at 100 K, with a cooling rate of 1 K/ps. A NPT treatment is finally applied at 100 K
and at a target isotropic pressure of 0 bar. It should be noticed that the simulations are performed
below the glass transition temperature (which is estimated to 264 K for npc = 10, following the
methodology defined in [12] with a cooling rate of 0.1 K/ps), and that the above procedure yields
samples exhibiting conformational characteristics in accordance with the literature.

2.2. Molecular model of Silica

In order to create amorphous SiO2 nanoinclusions exhibiting an isotropic mechanical behavior,
a set a α-quartz silica crystalline structures is first generated. These configurations are then relaxed
by using MD simulations with Van der Waals and Coulomb (non-bonded) interactions. The first
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Figure 1: Snapshot of the polymer chains (npc = 10) during the MD relaxation step, starting from an initial
configuration obtained by the SARW algorithm (from left to right).

type of interactions is modeled by a Buckingham potential:

VBCK(r) = B1 exp

{
− r

B2

}
− B3

r6
(9)

where the values of parameters {Bi}3
i=1 are outlined below in Tab. 2 for the three types of bonds

encountered in the system (note that the Van der Waals interaction between Si atoms is not taken
into account). The Coulomb interaction is modeled by the following potential:

Bond B1 (eV) B2 (Å) B3 (eV /Å6)
Si−Si 0 0.0657 0
Si−O 18,003.7572 0.205204 133.5381
O−O 1,388.773 0.36219 175

Table 2: Force field parameters used for the atomistic modeling of silica inclusion.

V(rij) =
qiqj

4πε0rij
, (10)

where qi and qj are the electric charges of atoms i and j (qSi = 2.4e and qO = −1.2e, with e the
charge of a proton), and ε0 is the vacuum permittivity. Amorphous structures are then obtained
through a heat up and cool down treatment, down to the equilibrium temperature of 100 K. In
order to speed up computations, the above non-bonded interactions are subsequently replaced, at
equilibrium, by fictitious bonded ones (see [12] for a discussion). More precisely, bond stretching
and angle bending are modeled by using the harmonic potentiels defined in Eqs (4-5), and the values
of associated parameters are listed in Tab 3. A comparison of the probability density functions of
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Potential Bond Parameter Value Unit

Vb Si−O Kb 575.7301 kcal/mol/Å2

b0 0.1625 nm
Vθ Si−O−Si Kθ 47.8011 kcal/mol

θ0 145 deg
O−Si−O Kθ 71.7017 kcal/mol

θ0 109.5 deg

Table 3: Force field parameters used for the atomistic modeling of the silica particle.
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Figure 2: Probability density functions of Si−O bond length (left) and O−Si−O (black)/Si−O−Si (red) valence
angles (right). Solid line: atomistic model with non-bonded interactions. Dashed line: surrogate atomistic model
with bonded interactions.

the Si−O bond length and O−Si−O/Si−O−Si valence angles (at equilibrium) obtained from the
atomistic simulations with either non-bonded or bonded interactions is shown in Fig. 2. It is seen
that the two probability density functions are reasonably close to each other (note that the same
conclusion can be drawn for the valence angles). The difference in variance is more significant for
the Si−O bond length, for which the mean values for the non-bonded and bonded cases turn out
to be pretty similar (with values equal to 1.6152 Å and 1.6247 Å, respectively). For each value of
npc, spherical nanoparticules of different radii are extracted from MD boxes following the procedure
detailed in [12], so that the volume fraction of silica remains constant and equal to 4.8% regardless
of the polymer system. Let Rp denote the approximate particle radius. For npc = 10 (resp. npc = 80
and npc = 320), it is found that Rp ≈ 1.5 nm (resp. Rp ≈ 3 nm and Rp ≈ 4.8 nm). It is worth
noticing that because of the atomistic model, each inclusion is not perfectly spherical and exhibits
some roughness, especially for low target diameters. This characteristic, which is illustrated in
Fig. 3 (where atomistic models and associated continuum approximations are represented for two
different diameters), is an additional source of randomness within the atomistic description.
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Figure 3: Visualization of nanoparticles: atomistic representations (left) and associated polyhedral representations
(right). The smallest (resp. largest) particle corresponds to a diameter equal to 3 nm (resp. 6 nm).

2.3. Molecular model of nanocomposite

Once the initial, equilibrated configurations of polymer and silica are obtained, nanocomposite
samples are created as follows [13]. First, and for a given configuration of each subsystem, the
MD box containing the polymer is swelled by a volume corresponding the one occupied by the
particle. Second, a soft repulsive potential is gradually introduced, under NVT conditions, at the
center of the box. Finally, the silica particle is inserted once the target hole diameter is reached,
hence creating an initial configuration for the nanocomposite. This generation step is then followed
by a MD relaxation procedure (similar to the one carried out on the polymer system, with a
temperature increase up to 500 K, followed by a final decrease down to 100 K at a cooling rate
of 1 K/ps) where only non-bonded Lennard-Jones interactions between the CH2 sites and oxygen
atoms are considered. The force field parameters for CH2−O interactions are estimated following
the Lorentz-Berthelot mixing rules [47]: σ = 0.31 nm, ε = 0.1288 kcal/mol. A final relaxation
step under NPT conditions is performed during 2 ns at 100 K and 0 bar. A snapshot of one
nanocomposite sample is shown in Fig. 4.

2.4. Morphological and mechanical characterizations

2.4.1. Radial distribution of density

Here, we investigate the radial evolution of polymer density in the nanocomposite system. To
this aim, instantaneous estimations of the local density are obtained on spherical layers of constant
volume Vρ and averaged over a sufficiently large time interval [0,∆]. Each layer is specifically
defined by an interior radius Ri

ρ - the exterior radius Re
ρ being determined from the latter and Vρ.

Let Rm
ρ = (Ri

ρ +Re
ρ)/2 be the mean radius of a given layer. The instantaneous local density in the
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Figure 4: Snapshot of a nanocomposite sample at equilibrium (npc = 10). The CH2 sites appear as small particles;
the Si and O atoms are the blue and red big particles, respectively.

layer defined by mean radius Rm
ρ is defined as

ρ̃n(Rm
ρ , t) =

MpN(Rm
ρ , t)

NAVρ
, (11)

where Mp is the molar mass of the polymer, N(Rm
ρ , t) is the number of CH2 sites in the layer under

consideration at time t and NA is the Avogadro constant. The radial density is then given by

ρn(Rm
ρ ) =

1

∆

∫ ∆

0

ρ̃n(Rm
ρ , t) dt . (12)

Note that in practice, convergence analysis must be performed with respect to both Vρ and ∆. The
graphs of (Rm

ρ − Rp) 7→ ρn(Rm
ρ )/ρp is shown in Fig. 5 for different system sizes, where ρp is the

density of pure polymer estimated from MD simulations. Decreasing density oscillations are clearly
observed in the neighborhood of the particle, no matter the value of npc. These fluctuations occur
for a distance to the particle surface less than 2 nm, and the density of pure polymer is recovered
beyond this limit. It is worth pointing out that the main oscillations are still exhibited at higher
temperatures, and that the noise in density estimation increases far from the silica particle. In
this region, a tangential reorientation of the polymer segments and a decrease in chain mobility are
further observed, hence making the polymer structure much less amorphous. The zone of matrix
disturbance thus defined, with a constant thickness equal to 2 nm, is identified with the interphase
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Figure 5: Radial density distribution of mass for three nanocomposite system, obtained from the nanoparticle surface
and normalized by mass density of pure polymer ρp corresponding.

region hereafter. Note that such a definition for the interphase region is not unique and basically
depends on the monitored quantities of interest (see [48] for numerical investigations – on a more
detailed atomistic model and for another nanocomposite system – and insightful comments on this
issue). Whereas this dependence may impact some quantitative results (such as the estimation of
the correlation lengths) obtained in the remainder of this paper, it does affect neither the proposed
probabilistic model nor the overall methodology related to the identification through a statistical
inverse problem.

2.4.2. Virtual mechanical testing in MD simulations

In order to obtain independent realizations of the apparent stiffness properties of the nanocom-
posite with npc = 10 (see [49, 30]), each configuration is submitted to a mechanical loading under
NPT conditions, with a target pressure tensor of the following form:

Pαβ(t)ij =
pαβ(t)

2
(δiαδjβ + δiβδjα) , (13)

where α and β are fixed integers in {1, 2, 3}, and t 7→ pαβ(t) is a stepwise function corresponding
to a quasi-static discretization of a linear loading function (with a loading rate equal to 1 bar per 2
ps) between the initial and final pressures – hence limiting viscosity effects in the polymer system.
For a given initial configuration, average deformations of the MD box are then extracted all along
the loading and used to compute, by means of an ergodic estimator, the associated realization of
the compliance tensor. Because of the roughness of small-diameter inclusions, six different loading
conditions are sequentially applied in order to recover the whole slightly anisotropic tensor. These
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conditions correspond to the choices 1 6 α 6 3 and α 6 β in Eq. (13). The deformations of
the MD box for α = β = 1 and {α = 1, β = 2} are shown in Figs. 6 and 7, respectively. The
stress-strain curves for both the pure polymer and the nanocomposite system are shown in Fig. 8
(here, ergodic estimators for the components of the stress and strain tensors are computed at each
load increment, hence resulting in smoothed stress-strain curves), for the above loading cases. As

Figure 6: Deformation of the MD box for the loading t 7→ [P 11(t)] (tensile test): initial configuration (left) and
configuration deformed at 10% (right).

Figure 7: Deformation of the MD box for the loading t 7→ [P 12(t)] (shear loading): initial configuration (left) and
configuration deformed at 5% (right).

expected, it is seen that the nanocomposite system exhibits a stiffer mechanical behavior than the
polymer matrix.
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Figure 8: Stress-strain curves simulated for the pure polymer and the nanocomposite: tensile test (left) and shear
loading (right).

3. Stochastic modeling of the elasticity random field in the interphase region

In this section, we address the probabilistic modeling of the elasticity random field in the
interphase region, which is denoted by DI . Let (O, er, eθ, eϕ) be the system of spherical coordinates,
and denote by xs = (r, θ, ϕ) any generic point of R3 expressed in this coordinate system. Let
x = (x1, x2, x3) denote any point of R3 given in the cartesian coordinate system, with x1 =
r sin(ϕ) cos(θ), x2 = r sin(ϕ) sin(θ) and x3 = r cos(ϕ). From the results of the MD simulations, it
is postulated that:

• the interphase region can be represented as a spherical shell of constant thickness eI = 2 nm:

DI := {xs = (r, θ, ϕ)|r ∈ [Rp, Rp + eI ], θ ∈ [0, 2π], ϕ ∈ [0, π]} , (14)

with Rp the radius of the particle under consideration (recall that Rp is fixed for a given value
of npc)

• the material in the interphase exhibits a transversely isotropic local behavior defined by the
unit normal vector n(xs) = er(xs) at point xs;

• the stiffness tensor random field exhibits a mean value that is independent of xs and a
correlation structure with a spherical symmetry (in the spherical coordinate system);

• the probabilistic properties of the elasticity random field are similar in the directions defined
by eθ and eϕ.

It is further assumed that the mean model is independent of xs in spherical coordinates. Whereas
such a modeling assumption could be readily relaxed by adding, for instance, a dependence along
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the radial direction, it is worth noticing that the model thus obtained would require additional data
that are not considered here for model calibration.

3.1. Overview of the methodology

Let {[Cs(xs)],xs ∈ DI} be the random field modeling the stiffness properties in the stochastic
interphase. Let ElaT I(n) be the set of transversely isotropic tensors defined by the unit vector n.
The following algebraic decomposition is first considered:

∀xs ∈ DI , [Cs(xs)] = η[I6] + [Ms(xs)] , (15)

where η � 1 is an arbitrary small parameter, [I6] is the 6−by−6 identity matrix and {[Ms(xs)],xs ∈
DI} is a random field with values in ElaT I(n), with n = (1, 0, 0) in spherical coordinates. The first
term in the right-hand side of Eq. (47) is introduced in order to preserve the uniform ellipticity of
the stochastic boundary value problem. Next, for all xs fixed in DI , the random matrix [Ms(xs)]
is normalized according to

[Ms(xs)] = [Ms]1/2 [N s(xs)] [Ms]1/2 , ∀xs ∈ DI , (16)

where Ms = E{[Cs(xs)]} − η[I6] (note that the mean function depends on x in the cartesian
system), and {[N s(xs)],xs ∈ DI} is a random field such that E{[N s(xs)]} = [I6], ∀xs ∈ DI . It
can then be shown (see [50]) that there exists a unique random field {[Gs(xs)],xs ∈ DI} such that

∀xs ∈ DI , [N s(xs)] = exp{[Gs(xs)]} (17)

with

[Gs(xs)] =
5∑
i=1

Gs
i (x

s)[Ei] , (18)

where {Gs
i (x

s),xs ∈ DI}, i ∈ {1, . . . , 5}, are non-Gaussian dependent R-valued random fields and
{[Ei]}5

i=1 denotes the matrix form of the so-called Walpole basis [51] of ElaT I(n), with n = (1, 0, 0).
Let {Gs(xs),xs ∈ DI} be the R5-valued random field such that Gs(xs) = (Gs

1(xs), . . . , Gs
5(xs)).

Following [52, 50], the probabilistic model for random field {G(xs),xs ∈ DI} is constructed by
following a two-step strategy:

• first, the first-order marginal probability density function of the random field is constructed
in the context of Information Theory [53] and more specifically, by invoking the principle of
maximum entropy [53, 54] (with information implied by mathematical properties or inferred
from atomistic simulations);

• second, the non-Gaussian vector-valued random field {Gs(xs),xs ∈ DI} is defined through a
nonlinear mapping acting on an underlying centered second-order R5-valued Gaussian random
field, the parametrized correlation structure of which is transported to {Gs(xs),xs ∈ DI}.
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3.2. Construction of the family of first-order marginal probability distributions

The maximum entropy principle is formulated by considering a constraint on the mean value
(raising from Eq. (16)),

E

{
exp

(
5∑
i=1

Gs
i (x

s)[Ei]

)}
= [I6] , (19)

as well as a constraint related to the finiteness of second-order moments for random matrix [N s(xs)]
[50] (see [55]):

5∑
i=1

E {Gs
i (x

s)} tr([Ei]) = ν , |ν| < +∞ , (20)

where ν is independent of xs following the assumptions stated at the beginning of section 3. It can
be shown that an approximate solution writes

pGs(xs)(g) = c exp (−Φ(g)) , (21)

where c is the normalization constant and the potential function Φ is defined as [56]

Φ(g) = α× δ−2
[N ] × tr

(
exp

(
5∑
i=1

gi[Ei]

)
−

5∑
i=1

gi[Ei]

)
, ∀g ∈ R5 . (22)

In Eq. (22), α is a parameter which depends on the symmetry under consideration (α ≈ 0.82 for
the set ElaT I(n) of transversely isotropic tensors, regardless of the unit normal vector n), and δ[N ]

is a scalar parameter independent of xs controlling the level of statistical fluctuations exhibited by
[N s(xs)].

3.3. Definition and generator of random field {Gs(xs),xs ∈ DI}
3.3.1. Definition of a xs-dependent family of Wiener processes

Let {Ξ(xs) = (ξ1(xs), . . . , ξ5(xs)) ,xs ∈ DI} be the centered Gaussian R5-valued random field
with independent components that are defined as follows. The diagonal entries of the continuous
correlation function (xs,ys) 7→ [RΞ(xs,ys)] with values in the set of diagonal real matrices are
such that

[RΞ(xs,ys)]ii = E{ξi(ys)ξi(xs)} =: ρ (xs,ys) (23)

with
[RΞ(xs,xs)]ii = 1 , 1 6 i 6 5 (24)

for all (xs,ys) in DI × DI . It follows that the correlation structure is completely defined by the
normalized correlation function ρ. A separable structure is further assumed and written, for all
xs = (r, θ, ϕ) and ys = (r′, θ′, ϕ′) in DI , as:

∀(xs,ys) ∈ DI ×DI , ρ (xs,ys) := ρr(τr)× ρθ(r, r′, τθ)× ρϕ(r, r′, τϕ) , (25)
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where τr := r − r′, τθ := θ − θ′ and τϕ := ϕ − ϕ′ are the radial and angular lags. Here, the above
correlation functions are parametrized as:

ρr(τr) :=

(
2Lr
πτr

)2

sin2

(
πτr
2Lr

)
,

ρθ(r, r
′, τθ) := exp

(
−1

2

(
r + r′

Lθ

)2

sin2
(τθ

2

))
,

ρϕ(r, r′, τϕ) := exp

(
−1

2

(
r + r′

Lϕ

)2

sin2
(τϕ

2

))
,

(26)

where Lr is the spatial correlation length along the radial direction and (Lθ, Lϕ) is a set of param-
eters controlling the decorrelation rates along the directions defined by eθ and eϕ. For given values
of r and r′ in [0, Rp], the functions ρθ and ρϕ are 2π-periodic and satisfy:

• ρθ(r, r′,−τθ) = ρθ(r, r
′, τθ) for all τθ in [−2π, 2π];

• ρϕ(r, r′,−τϕ) = ρϕ(r, r′, τϕ) for all τϕ in [−π, π].

Note that the correlation functions ρr, ρθ and ρϕ could be parametrized by using other algebraic
forms satisfying the conditions rising from the spherical description of the correlation structure.
Similarly, the angular correlation functions may be represented by means of expansions in Fourier
series. However, the above forms interestingly depend on a small number of parameters and are
thus well suited for an inverse identification from limited data.

Let W = {W (t,xs), t > 0,xs ∈ DI} be the second-order centered Gaussian R5-valued random
field defined as follows:

• ∀xs ∈ DI , W (0,xs) = 0 almost surely;

• the generalized derivative DtW of W (with respect to t) is the normalized Gaussian cylin-
drical white noise B whose covariance function [CB] writes, for all ∀(xs,ys) ∈ DI ×DI and
for all τ ∈ R:

[CB(xs,ys, t+ τ, t)] := δ0(τ)[RΞ(xs,ys)] , (27)

with δ0 the generalized Delta function at 0.

For any xs fixed in DI , the stochastic process {W (t,x), t > 0} is then a normalized R5-valued
Wiener process (note that variable t does not have to be confused with time variable and in
particular, with the time variable involved in the atomistic simulations).
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3.3.2. Random generator

Let xs be fixed in DI . Let {(U (r,xs),V (r,xs)), t > 0} be the R5 × R5-valued Markov process
satisfying the following Itô stochastic differential equation [50]:{

dU(t,xs) = V (t,xs) dt

dV (t,xs) =
(
−∇uΦ(U (t,xs))− %

2
V (t,xs)

)
dt+

√
η dW (t,xs)

, (28)

for all t ∈ R+, where Φ is the potential function defined by Eq. (22), % ∈]0,+∞[ is a tunable
parameter and {W (t,xs), t > 0} is the Wiener process defined above. Initial conditions are written
as U(0,xs) = U 0(xs) and V (0,xs) = V 0(xs) almost surely, where the probability distribution of
random variable (U 0(xs),V 0(xs)) is assumed to be given. It can then be shown that [57]

lim
t → +∞

U(t,xs)
law
= Gs(xs) , (29)

hence providing a sampling algorithm for the non-Gaussian random field {Gs(xs),xs ∈ DI}. In
this work, the stochastic differential equation defined by Eq. (28) is discretized by means of a
Störmer-Verlet algorithm [58, 59, 60, 61] (see e.g. [62, 63, 64] for thorough reviews on discretization
schemes).

4. Inverse identification of the random field model from atomistic computations

4.1. Overall methodology

Let {[C̃MD(ωi)]}20
i=1 be the set of realizations for the apparent stiffness tensor estimated from

MD simulations, which is denoted by [C̃MD] (see section 2.4.2). From the previous section, one has

∀xs ∈ DI , [Cs(xs)] = η[I6] + [Ms]1/2 exp{[Gs(xs)]} [Ms]1/2 , (30)

so that the probabilistic model for random field {Cs(xs),xs ∈ DI} depends on two vectors of
hyperparameters, namely:

• a vector h1 of hyperparameters gathering the coordinates of mean value [Ms] onto matrix
basis {[Ei]}5

i=1, with h1 = (m1, . . . ,m5) ∈ S1 ⊂ R5;

• a vector h2 = (δ[N ], Lr, La) ∈ S2 of hyperparameters related to the level of fluctuations
and to the correlation functions, where it is assumed (based from the MD results) that
Lθ = Lϕ =: La.
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In this work, the optimal values of the above vectors, denoted by hopt
1 and hopt

2 respectively, are
identified by stating the equivalence between the apparent properties obtained from MD simulations
(with npc = 10) and those determined by using standard computational homogenization in a
continuum mechanics (CM) formulation. It should be noted that realizations of the local stiffness
tensor field cannot be extracted from MD simulations and readily passed into the CM formulation
(hence, a calibration based on a statistical inverse problem), for at least two reasons. First, the
definition and CM-based interpretation of local properties extracted from MD results (see [65, 66])
is still an open question whenever confined matter is involved [30]. Second, the loading conditions
applied in the atomistic virtual testing (where the local properties are triclinic with respect to the
MD reference frame) are very different from those considered in the continuum setting, so that
imposing a match, in some probabilistic sense, between the two local fields may not yield reliable
results.

Let us now introduce the continuum model. Let D be the three-dimensional open bounded
domain in R3 such that D = (] − LD/2, LD/2[)3, with LD = 6.68 (nm), and denote by ∂D its
boundary. Below, BO(r) denotes the ball of radius r (in nm), centered at the originO of the cartesian
reference frame (O, e1, e2, e3). The Silica nanoparticle is then modeled by the ballDSilica := BO(1.5),
whereas the interphase region is represented by domain DI := D ∩ (BO(3.5) \ BO(1.5)). It is seen
that the diameter of the ball BO(3.5) is slightly larger than the characteristic length of D, but
this configuration has a negligible effect in the computational results provided below. The domain
occupied by the pure polymer bulk is thus DP := D \ (DSilica ∪ DI).

The properties of each deterministic isotropic phase were estimated from MD simulations and
are as follows (k and µ denote the bulk and shear moduli, respectively):

• for the Silica inclusion: kSilica = 36.8, µSilica = 30.5 (both in GPa).

• for the polymer bulk: kpbk = 5.19, µpbk = 0.93 (both in GPa).

In the interphase region, the elastic properties are modeled by the random field model (detailed in
section 3) that is described, from now on, by using the cartesian coordinate system – hence, the
omission of superscript “s”.

4.1.1. Homogenization problem for the continuum mechanics modeling

In order to formulate the statistical inverse problem, let us now introduce the upscaling pro-
cedure in the continuum mechanics framework. This procedure is based on averaging procedures
that are widely used in homogenization theories. However, and as opposed to classical assumptions
stated in such theories, it is worthwhile to notice that D is not assumed to be a representative vol-
ume element, so that upscaled properties are coined as apparent ones [67] and exhibit non-negligible
statistical fluctuations.
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For selected values of h1 and h2, let us consider the following stochastic boundary value problem
(SBVP) [68]:

−div [σ(x)] = 0 , ∀x ∈ D , (31)

[σ(x)]n(x) = [Σ]n(x) , ∀x ∈ ∂D , (32)

where x 7→ [σ(x)] is the local stress field, n(x) is the unit vector normal to ∂D at point x, and
[Σ] is the macroscopic stress tensor. The constitutive law writes:

[σ(x)] = JC(x)K : [ε(x)] , ∀x ∈ D , (33)

where JC(x)K is the fourth-order tensor representation of elasticity matrix [C(x)]. Note that
JC(x)K is random whenever x ∈ DI , and deterministic elsewhere (here, and for the sake of nota-
tional convenience, the same notation is used regardless of the deterministic or random nature of
the elasticity tensor at a given point). It can then be shown that there exists a so-called stress
concentration tensor field x 7→ JB(x)K with values in the set of fourth-order tensors (with minor
symmetries) such that

[σ(x)] = JB(x)K : [Σ] , ∀x ∈ D (34)

and
1

|D|

∫
D
JB(x)K dx = JIK , (35)

with JIK the fourth-order symmetric identity tensor. By construction, one has

Bijk`(x) = σk`ij (x) , (36)

where x 7→ [σk`(x)] is the stress field solving the aforementioned stochastic boundary value problem
with the macroscopic stress tensor Σk` given by:

Σk`
ij =

1

2
(δikδj` + δi`δjk) . (37)

It follows that the random field x 7→ JB(x)K can be recovered by solving the above stochastic
boundary value problem for six different values of the macroscopic stress tensor Σk`, with k and
` in {1, 2, 3}. The apparent compliance tensor JS̃K defined with respect to the statically uniform
boundary conditions is then defined as:

JS̃K =
1

|D|

∫
D
JS(x)K : JB(x)K dx , (38)

where x 7→ JS(x)K is the local fourth-order compliance tensor field. Let JC̃K = JS̃K−1 be the asso-

ciated apparent stiffness tensor, and denote by [C̃CM(h1,h2)] its second-order tensor representation
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(where the dependence on h1 and h2 is made explicit for subsequent use). The above apparent
tensors depend on the applied boundary conditions (as discussed in the literature [69]), which are
chosen in accordance with the boundary conditions that are considered in the MD simulations (it
is worth recalling here that the virtual testing is carried out by prescribing a target macroscopic
pressure tensor in the NPT ensemble). Similarly, [C̃CM(h1)] denotes the apparent tensor (under
the same boundary conditions) obtained by considering an interphase with deterministic properties
defined by vector h1 in spherical coordinates.

In this work, the mechanical problem defined by Eqs. (31) and (34) is solved, for any realization
of the random field in the interphase region, by the finite element method. Domain D is discretized
with 4-node tetrahedron elements (with 1 Gauss integration point) – see Fig. 9. The final compu-
tational model is made up of 190, 310 elements (corresponding to 102, 561 degrees of freedom). It

Figure 9: 3D views of the meshed continuum model (the inclusion appears in magenta, the interphase in white and
the polymer matrix in turquoise).

is worth noticing that such a mesh density provides at least four integration points per correlation
length (in mean), regardless of the direction or the configuration tested while solving the statistical
inverse problem, hence ensuring a good sampling of the correlation structure.

Remark on random field sampling by the ergodic method. Assume that each ISDE is
solved by using a discretization depending on step ∆t for parameter t, and denote by t∗ := (k∗−1)∆t
the first instance of t within the stationary regime. For 1 6 i 6 j 6 5, a decorrelation index τ εij(x

s)
associated with stochastic processes {Ui(t,xs), t > t∗} and {Uj(t,xs), t > t∗} (where xs is any point
in DI) is then introduced and such that

E{Uj((k + τ εij)∆t,x
s)Ui(k∆t,xs)} 6 ε (39)

for some arbitrary decorrelation threshold 0 < ε� 1 and k > k∗. A global decorrelation index τ ε
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can be defined as

τ ε = sup
xs ∈DI

(
max

16i6j65
τ εij(x

s)

)
. (40)

In practice, and for a sufficiently small value of ε� 1, this result means that {U((k+τ ε)∆t,xs),xs ∈
DI} and {U(k∆t,xs),xs ∈ DI}, k > k∗, are weakly correlated samples of {Gs(xs),xs ∈ DI}. This
sampling strategy is especially relevant whenever the rate of convergence toward the stationary so-
lution at all points in DI is low and requires a number of iterations much larger than τ ε, so that
sampling by the Monte Carlo method would require a larger CPU time. The value of parameter ε
must be carefully selected in order to balance sampling quality with computational cost.

4.1.2. Strategy for model calibration

The stochastic model is calibrated by solving a statistical inverse problem that is formulated
in a two-step manner. First, the vector hopt

1 of optimal hyperparameters for the mean model is
defined as

hopt
1 = arg min

h1 ∈S1
L1 (h1) , (41)

where L1 is the cost function defined as

L1 (h1) :=
‖P iso(E{[C̃MD]})− P iso([C̃CM(h1)])‖F

‖P iso(E{[C̃MD]})‖F

, (42)

with ‖ · ‖F is the Frobenius norm and S1 the admissible set such that the mean model is ensured to
be positive-definite. In Eq. (42), P iso is the projection operator, defined in the sense of Euclidean
norm, on the set of isotropic second-order tensors (see [70] and the references therein). Note that
this operator can be shown to commute with the operator of mathematical expectation.

Second, the vector hopt
2 of optimal hyperparameters related to both the level of statistical

fluctuations and the correlation structure is defined by the maximum likelihood method:

hopt
2 = arg max

h2 ∈S2
L2 (h2) , (43)

where L2 the likelihood function given by

L2 (h2) =
20∏
i=1

p[C̃CM(hopt
1 ,h2)]

(
[C̃MD(ωi)]

)
(44)

and p[C̃CM(hopt
1 ,h2)] is the probability density function of [C̃CM(hopt

1 ,h2)] estimated by the nonpara-

metric statistics based on the use of the kernel estimation method.
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4.2. Numerical results

4.2.1. Calibration of the mean model

The optimization defined by Eqs. (41–42) is solved by using the Matlab function fmincon (with
default settings) under inequality constraints arising from the definition of S1. The convergence of
the algorithm is shown in Fig. 10, where it is seen a good convergence is obtained after 40 iterations.
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Figure 10: Convergence of the solver for the optimization problem defined by Eqs. (41–42).

The solution [Ms] =
∑5

i=1 m
opt
i [Ei] (recall that hopt

1 = (mopt
1 , . . . ,mopt

5 )) in matrix form is found to
be

[Ms] =


5.51 4.02 4.02 0 0 0

5.19 1.16 0 0 0
5.19 0 0 0

4.03 0 0
Sym. 4.25 0

4.25

 (45)

in spherical coordinates (in GPa). A strengthening effect for the shear modulus is thus observed
for the mean model in the interphase region (as compared to the bulk properties), which is in
accordance with the loss of polymer-chains mobility in the neighborhood of the inclusion, as well
as with numerical results obtained elsewhere (see e.g. [71]).

4.3. Calibration of the level of fluctuations and correlation structure

Here, the ISDEs are defined with % = 9 and solved by using a step ∆t equal to 0.01 (note that
these values were obtained from specific convergence analysis). For these parameters, the conver-
gence toward the stationary solution is reached after 20, 000 steps. Furthermore, the parameter ε
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involved in the ergodic sampling is set to 0.1, which corresponds to a decorrelation index τ ε equal
to 200. Below, all estimators are computed on a set of 300 realizations obtained from the ergodic
sampling introduced at the end of section 4.1.1. The optimization problem defined by Eqs. (43–44)
is solved by a regular sampling of the hyperparameters over their admissible sets. The correlation
length in the radial direction is normalized by the interphase thickness eI , whereas the parameters
related to angular decorrelation are normalized by the term 2πRext, with Rext := Rp + eI . The
plot of the cost function L2 is shown in Fig. 11. The optimal values are found to be δopt

[N ] = 0.3,
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Figure 11: 4D plot of the likelihood function h2 7→ L2 (h2) for different combinations of δ[N ], Lr and La. The values
of the cost function are proportional to marker size, as well as to color intensity (infinite values of L2 are arbitrarily
replaced by the value −100 for visualization purposes).

Lopt
r ≈ 0.9eI (= 1.8 nm) and Lopt

a ≈ 3.85 rad×nm, hence showing that the fluctuations in the
interphase region are neither negligible nor prone to being smoothed out by an upscaling procedure
(given that the condition Lopt

r � eI is not satisfied for instance). The optimal value of parameter
La further shows that for a given radial position, the elasticity field is substantially correlated over
a hemisphere (depending on the distance to particle surface). This result turns out to be consistent
with MD results, as qualitatively illustrated in Fig. 12. As an illustration, a realization of the
calibrated random field {C11(x),x ∈ ∂DextI } (where ∂DextI denotes the exterior boundary surface
of DI) is shown in Fig. 13. Finally, and from the perspective of validation, it is worth investigating
whether the continuum can faithfully reproduce, in some sense, the data generated by the MD
simulations. In order to get a physical insight on this issue, the realizations obtained from the
MD simulations are plotted together with the estimates of (joint) probability density functions for
some arbitrarily chosen components of the apparent tensor (defined by the calibrated random field
model and through the SBVP stated in section 4.1.1) in Figs. 14 and 15. It is seen that for
the selected components, all the realizations obtained by the MD simulations are associated with
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Figure 12: Visualization of an instantaneous configuration of polymer chains trapped into spherical shells of thickness
5 Å within the interphase region. The shell on left (resp. right) panel is the closest (resp. furthest) one to the surface
of the nanoparticle.

Figure 13: Plot of a realization for elasticity random field {C11(x),x ∈ ∂Dext
I } (in GPa) on the exterior surface of

the interphase region (with calibrated hyperparameters).

non-zero probability levels (note that this result holds for all remaining visualizable combinations
of components), hence showing in part the consistency of both the probabilistic model and the
identification strategy.
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Figure 14: Plot of the estimated probability density function for the continuum model (solid line) and associated
MD-based realizations (red circles). Left: component C11. Right: component C12.
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Figure 15: Plot of the estimated joint probability density function for the continuum model (contour plot) and
associated MD-based realizations (black circles). Left: components (C11, C44). Right: components (C12, C44).

4.4. Calibration with MD finite sampling noise

In this section, the effect of MD finite sampling noise on calibration results is investigated.
From a physical standpoint, it can be reasonably assumed that such a noise does not impact the
correlation structure of the underlying elasticity random field in the interphase region, but may
yield an overestimation of δ[N ]. Therefore, the sampling noise is taken into account below by
modeling the spatially-constant but random properties of the bulk polymer and Silica inclusion by
random matrices, and by considering a triclinic noise independent of xs in the interphase elasticity
random field written in spherical coordinates. Let {[Cs

WN(xs)],xs ∈ DI} be the aforementioned
random field in the interphase region. The same probabilistic model is used for all the random
matrices and corresponds to the MaxEnt-based model proposed in [55]. For a given phase, the
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model depends on a prescribed mean value, as well as on a parameter controlling the level of
statistical fluctuations. It is deduced from the atomistic simulations that the mean values for the
polymer and Silica bulks are isotropic and defined by the properties listed at the end of section
4.1, whereas the mean for the random matrix modeling the noise in the interphase region is set to
[I6] (so that triclinic fluctuations are introduced). It is further assumed that the random matrices
depend on the same dispersion parameter, denoted by δnoise. Optimal value for parameters δ[N ]

and δnoise are then defined as those maximizing the likelihood function

L3

(
δ[N ], δnoise

)
=

20∏
i=1

p[C̃CM(δ[N ],δnoise)]

(
[C̃MD(ωi)]

)
(46)

over [0,
√

7/11[×[0,
√

7/11[. In Eq. (46), [C̃CM(δ[N ], δnoise)] is the random variable modeling the
apparent stiffness tensor obtained by homogenizing the random microstructure defined as follows:

• the random field {[Cs
WN(xs)],xs ∈ DI} in the interphase region is written as

∀xs ∈ DI , [Cs
WN(xs)] = η[I6] + [Ms(xs)]1/2 [Z] [Ms(xs)]1/2 , (47)

where {[Ms(xs)] ,xs ∈ DI} is defined by the vector hopt
1 and parameters (Lopt

r , Lopt
a ) cali-

brated in section 4.4, as well as by δ[N ] (to be updated); [Z] is the M+
6 (R)-valued random

matrix depending on δnoise (to be calibrated) and such that E([Z]) = [I6];

• the random properties in the bulk polymer and Silica particle defined by the mean values
computed in section 4.1 and dispersion parameter δnoise.

The plot of the likelihood function
(
δ[N ], δnoise

)
7→ L3

(
δ[N ], δnoise

)
is shown in Fig. 16. Optimal

values are found to be δopt
[N ] = 0.2 and δopt

noise = 0.1, which shows that neglecting finite sampling noise
for the MD system under consideration yields an overestimation of δ[N ].

5. Conclusion

This study was devoted to the construction and identification, based on results arising from MD
simulations, of a random field model for the elastic properties of the interphase region surrounding
nanoscopic fillers. Atomistic simulations were performed on a prototypical nanocomposite and
allowed some fundamental features of the random field to be inferred. A stochastic representation
was then proposed, making use of a generalized formulation derived elsewhere. The stochastic
field thus defined exhibits transverse isotropy in spherical coordinates (in accordance with the
MD-predicted geometrical configuration of the polymer chain segments in the neighborhood of
the nanoinclusion), and interestingly depends on a low-dimensional hyperparameter. An optimal
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. Former results (with no sampling noise)
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(
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value of this hyperparameter was then sought by solving a statistical inverse problem based on an
upscaling procedure. It is shown that the elasticity random field exhibits nonnegligible fluctuations,
and that the estimates of the spatial correlation lengths are actually consistent with characteristic
lengths of the atomistic model. These results were finally refined by integrating fluctuations due
to MD finite sampling noise, which allows for a better estimation of the parameter related to the
level of fluctuations.
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[7] Z. S. Petrović, Y. J. Cho, I. Javni, S. Magonov, N. Yerina, D. W. Schaefer, J. Ilavsky, A. Wad-
don, Effect of silica nanoparticles on morphology of segmented polyurethanes, Polymer 45 (12)
(2004) 4285–4295.

[8] J. Berriot, F. Lequeux, L. Monnerie, H. Montes, D. Long, P. Sotta, Filler-elastomer interaction
in model filled rubbers, a 1H NMR study, Journal of Non-Crystalline Solids 307 (2002) 719–724.

[9] J. Berriot, F. Martin, H. Montes, L. Monnerie, P. Sotta, Reinforcement of model filled elas-
tomers: characterization of the crosslinking density at the filler-elastomer interface by 1H NMR
measurements, Polymer 44 (5) (2003) 1437–1447.

[10] G. Leu, Y. Liu, D. Werstler, D. Cory, NMR Characterization of Elastomer-Carbon Black
Interactions, Macromolecules 37 (2004) 6883–6891.

[11] D. Barbier, D. Brown, A. Grillet, S. Neyertz, Interface between End-Functionalized PEO
Oligomers and a Silica Nanoparticle Studied by Molecular Dynamics Simulations, Macro-
molecules 37 (2004) 4695–4710.
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