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Abstract

In this work, we address the constitutive modeling, in a probabilistic framework, of the hyperelastic response of soft
biological tissues. The aim is on the one hand to mimic the mean behavior and variability that are typically encountered
in the experimental characterization of such materials, and on the other hand to derive mathematical models that are
almost surely consistent with the theory of nonlinear elasticity. Towards this goal, we invoke information theory and dis-
cuss a stochastic model relying on a low-dimensional parametrization. We subsequently propose a two-step methodology
allowing for the calibration of the model using standard data, such as mean and standard deviation values along a given
loading path. The framework is finally applied and benchmarked on three experimental databases proposed elsewhere
in the literature. It is shown that the stochastic model allows experiments to be accurately reproduced, regardless of
the tissue under consideration.

This is the preprint version of the following article: Stochastic hyperelastic constitutive laws and identification
procedure for soft biological tissues with intrinsic variability, which has been accepted for publication in the
Journal of the Mechanical Behavior of Biomedical Materials (DOI 10.1016/j.jmbbm.2016.09.022). This
manuscript version is made available under the CC-BY-NC-ND 4.0 license.

Keywords: biological material, calibration, constitutive law, hyperelasticity, information theory, variability
2010 MSC: 74A40, 74B20, 74Q15, 74S60

1. Preliminaries

1.1. Introduction

The constitutive modeling and data-driven calibration
of the mechanical behavior of soft biological tissues is of
paramount importance in a wide range of applications5

from bioengineering and computational – and potentially,
multiscale – mechanics of hierarchical biomaterials (see
[9, 13, 12] for the modeling of arteries, for instance) to
computed-assisted surgery (CAS). While the definition of
suitable models is still the matter of active research, due10

to the great complexity and multiphysics aspects of the
mechanisms governing the macroscopic behavior, one ad-
ditional difficulty lies in the fact that the experimental
characterization of such materials typically exhibits a large
variability; see, in a non-exhaustive manner, [22, 23, 43,15

14, 29, 32, 17, 30, 31], [35, 6, 33, 34], [39] and [42] for ex-
perimental characterizations of brain tissues, liver tissues,
spinal cord white matter and abdominal organs, respec-
tively. These uncertainties, which may be due to various
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factors (such as microstructural randomness, subject-to-20

subject variability, age, gender or even potential disease),
may critically impact simulation predictiveness or clinical
diagnosis for example.

In practice, these fluctuations are usually ignored and
smoothed out through an averaging procedure along the25

statistical dimension. This mean response is subsequently
fitted by solving a least-squares problem by means of a
deterministic optimization method (see [28]). Whereas
such approximations may be found satisfactory in some
cases, depending on the application under consideration,30

performing high-fidelity computations or making informed
decisions requires the modeling and calibration issues to
be both addressed in a probabilistic framework. From a
stochastic standpoint, the Bayesian paradigm provides a
sound approach to data-driven modeling for deterministic35

and random parameters [4, 10]. This natural path was
very recently pursued in [21] and previously used by the
same authors for model selection in [20].

In this work, we propose an alternative methodology
where the probability density functions defining the set40

of randomized parameters are constructed explicitly. The
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main advantage of such a formulation (in contrast to a
Bayesian approach where the posterior distributions are
generally unknown analytically) is that it allows existence
results for the solution of the associated boundary value45

problem to be invoked (with probability one). In practice,
the proposed class of stochastic stored energy functions
can purposely be used as:

• an admissible model making the identification task
well-posed (from a mechanical standpoint) whenever50

experimental data are limited;

• a prior model in a Bayesian setting, especially when
the number of the parameters defining the model
(which are referred to as hyperparameters) is large;
see [37] for an example in three-dimensional linear55

elasticity.

The aim of this research is twofold. First, it attempts
to lay out a framework, based on information theory, for
the modeling of stochastic stored energy functions. To
this purpose, we provide a self-contained and application-60

oriented presentation of a stochastic model derived for the
Ogden class of stored energy functions [40, 41]. This class
turns out to be relevant to the modeling of some isotropic
biological materials (see [5] for example). Additionally, we
address the definition of a calibration methodology. The65

latter specifically allows for the identification of the model
hyperparameters using mean and variance estimates along
a loading curve. Second, it aims at assessing the capability
of these models to reproduce the experimental variability
that is observed in the mechanical response of biological70

tissues at large strains (and small strain rates). From
a clinical perspective, these statistical fluctuations may
be considered as informative quantities in the early stage
prognosis of diseases affecting the mechanical response of
the tissues under consideration.75

This outline of this paper is as follows. In Section 2,
we first set up notation and provide a brief reminder on
deterministic constitutive modeling in hyperelasticity. The
information-theoretic stochastic model and the calibration
procedure are then presented in Section 3. Finally, some80

applications involving experimental results taken from the
literature are discussed in Section 4.

1.2. Notation

Throughout this paper, deterministic scalars, vectors
and second-order tensors are denoted by a, a and rAs.85

Their stochastic counterparts are respectively denoted by
A, A and rAs. The table of main notations is reported
below (here, stresses are defined for a uniaxial compression
test).

w Deterministic stored energy function
W Random stored energy function
µ Deterministic shear modulus
� Random shear modulus
σ Principal first Piola-Kirchoff stress

Σ Random principal first Piola-Kirchoff stress
Et¨u Mathematical expectation
}rAs} Frobenius norm of rAs

Finally, k0 denotes a normalization constant, the value of90

which may change from line to line.

2. Deterministic constitutive model

2.1. Basic notation and kinematics

Let Ω be the region in R3 occupied by the body under
consideration at rest and let BΩ denote its boundary. The95

body is assumed to undergo a deformation ϕ : Ω Q x ÞÑ
xϕ P Ωϕ, where Ωϕ is the current configuration. The
mapping ϕ is classically assumed to be sufficiently smooth,
orientation-preserving and injective.

The associated deformation gradient rF s is defined as

rF pxqs “∇xϕpxq , @x P Ω , (1)

and satisfies the condition detprF sq ą 0 in Ω. For the
sake of notational convenience, spatial indexing is omitted
from now on. The principal stretches of the deformation
gradient are denoted as tυjprF squ

3
j“1 (or simply tυju

3
j“1

when no confusion can occur), and the cofactor matrix
CofprF sq of rF s is defined as

CofprF sq “ detprF sqrF s´T . (2)

2.2. Constitutive equation100

In this work, we consider homogeneous incompressible
hyperelastic materials defined by a stored energy function
w such that

rT s “
BwprF sq

BrF s
´$ rF s´T , (3)

where rT s is the first Piola-Kirchhoff stress tensor (which
is also referred to as the engineering stress), rF s denotes
the deformation gradient (with unitary determinant) and
$ is a Lagrange multiplier raised by the incompressibility
condition. Additionally, we focus on Ogden-type stored
energy functions for isotropic hyperelastic materials. Such
functions are defined, at orders m ě 1 and n ě 1, as [27]

wprF sq “
m
ÿ

i“1

pi ΦηiprF sq `
m`n
ÿ

j“m`1

pj Υηj prF sq , (4)

with
ΦηiprF sq “ υηi1 ` υηi2 ` υηi3 ´ 3 (5)

(with a slight abuse of notation) and

Υηj prF sq “ pυ1υ2q
ηj ` pυ1υ3q

ηj ` pυ2υ3q
ηj ´ 3 , (6)

where it is recalled that tυju
3
j“1 are the principal stretches

associated with the deformation gradient rF s.
Upon expanding the stored energy function near the

reference configuration, it is found that the parameters
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p “ pp1, . . . , pnpq and η “ pη1, . . . , ηnpq must satisfy the
following additional consistency relation [27]:

np
ÿ

k“1

pkη
2
k “ 2µ , (7)

where µ ą 0 is the shear modulus.
The applications considered in this paper consist in

simple compression tests along a principal direction, say
e3 “ p0, 0, 1q. In this case, and by combining Eq. (3)
and the incompressibility condition υ1υ2υ3 “ 1, one can
show (see e.g. [27, 12]) that the resulting principal Piola-
Kirchhoff stress σ writes

σpυq “
m
ÿ

i“1

piηipυ
ηi´1 ´ υ´1´ηi{2q

´

m`n
ÿ

j“m`1

pjηjpυ
´ηj´1 ´ υ´1`ηj{2q ,

(8)

where the substitution υ “ υ3 has been introduced for
notational convenience.105

2.3. Fundamental assumptions

From a theoretical standpoint, the available existence
theorems for boundary value problems in hyperelasticity
(see the references hereinafter) rely on the existence of
minimizers for the total potential energy function and were110

established by resorting on the calculus of variations. Not
surprisingly, the investigation of sufficient conditions on
the stored energy function such that the aforementioned
existence results can effectively be proven has attracted
much attention from researchers in applied mathematics115

and theoretical mechanics. To date, minimal requirements
are essentially concerned with some generalized convexity
conditions, as well as with a coerciveness inequality that
models an asymptotic behavior at large strains; see the
seminal work reported in [24], as well as the textbook [7].120

Certainly one of the most invoked assumption is that of
polyconvexity, introduced by Ball in [1]. This fundamental
property, when complemented by a set of suitable growth
conditions, insures the existence of at least one minimizer
for the total potential energy; hence ensuring the well-125

posedness of the nonlinear boundary value problem (see
also [3] for a specific discussion on biological materials).

In what follows, and following the result by Müller et
al. [25], we assume that (see [2])

pk ą 0 , 1 ď k ď np , (9a)

η1 ě ¨ ¨ ¨ ě ηm ě 1 , η1 ě 2 , (9b)

ηm`1 ě ¨ ¨ ¨ ě ηnp ě 1 , ηm`1 ě
3

2
, (9c)

with np “ m ` n, ensuring the existence of at least one
minimizer for the total potential energy.

Remark 1. The single term stored energy function

wprF sq “ p pυη1 ` υ
η
2 ` υ

η
3 ´ 3q (10)

is covered by the existence results if p ą 0 and η ě 3 (see
[1]). Moreover, the consistency with linearized elasticity
yields pη2 “ 2µ, so that the stored energy function writes:

wprF sq “
2µ

η2
pυη1 ` υ

η
2 ` υ

η
3 ´ 3q . (11)

The particular case η “ 2 leads to the well known Neo-130

Hookean model in three-dimensional elasticity, which is
not covered by the existence results invoked in this paper.

In the next section, we first discuss the randomization of
Ogden-type stored energy functions. A new methodology
allowing for the calibration of the probabilistic model is135

subsequently proposed.

3. Stochastic hyperelastic constitutive models

The generalization of hyperelastic constitutive laws in
a stochastic context has received little attention to date.
The main difficulty raised by such a generalization stems140

from the fact that the stochastic stored energy functions
are simultaneously required (i) to accurately reproduce the
experimental trends, and (ii) to be consistent with the
theory of nonlinear elasticity (see Section 2.3). It should be
noticed that considering one single constraint apart from145

the other one may lead to models that

• fit dispersed data very well (in terms of mean and
variance at a given stretch for example), but are not
consistent with theoretical aspects – hence yielding
non-admissible samples for subsequent analysis;150

• are fully consistent with existence theorems, but may
not satisfactorily reproduce observed experimental
results.

Clearly, any of the above situations reduces the predictive
capabilities of the associated modeling framework. Note155

in addition that experimental data are often very limited,
so that the direct computation of statistical estimators at
a reasonable level of convergence is itself an issue – in
this case, the use of the maximum likelihood method may
alternatively be considered.160

Very recently, new contributions accommodating the
aforementioned modeling constraints in the framework of
information theory [15, 16] were proposed; see [40] for the
case of incompressible materials, as well as [41] for the
compressible case. In these works, stochastic stored energy165

functions are constructed by randomizing, in a proper way,
some parameters involved in the definition of classical, e.g.
Ogden-type stored energy functions. More specifically,
and following the maximum entropy (MaxEnt) principle,
the probability density functions defining these random170

parameters are constructed by maximizing the so-called
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Shannon differential entropy [36] over the set of probability
density functions that satisfy a set of contraint equations
(see Appendix A for more details). The latter, which are
expressed in the form of mathematical expectations, are175

essentially induced by the information that is available on
the set of random model parameters. This information is
typically inferred from the properties ensuring the well-
posedness of the associated variational formulation, such
as positiveness, or from known statistical moments. By180

construction, such an approach reduces the modeling bias,
especially when compared to methodologies relying on the
a priori choice of standard statistical distributions, and
readily ensures that all sufficient mathematical conditions
are fulfilled (in accordance with the results from Section185

2.3). The main result derived in [40] is first presented for
completeness in Section 3.1. A novel methodology allowing
for the calibration of the stochastic stored energy function
using typically available experimental results (namely, the
mean and variance evolutions) is then proposed in Section190

3.2. This calibration strategy will be tested for various
biological tissues in Section 4.

3.1. Construction of stochastic Ogden-type stored energy
functions

Let P and � be the random variables corresponding
to the stochastic modeling of the vector-valued parameter
p and the shear modulus µ, respectively. The stochastic
version W of the Ogden potential w is then written as

W prF sq “
m
ÿ

i“1

Pi ΦηiprF sq `
m`n
ÿ

j“m`1

Pj Υηj prF sq , (12)

where Φηi and Υηj are defined by Eqs. (5)-(6), and the
exponents tηku

np

k“1 are kept deterministic and such that
the restrictions given by Eqs. (9b)-(9c) hold. The random
variables P and � also satisfy the consistency relation (see
Eq. (7))

np
ÿ

k“1

Pkη
2
k “ 2� (13)

almost surely. It should be noticed that the stochastic195

models of P and � completely define the probabilistic
model of the stochastic stored energy function W for a
given value of the deformation gradient rF s.

In a first step, the probability density function p� of
the random shear modulus � is constructed by taking into
account that � ą 0 almost surely, the mean constraint

E t�u “ µ , µ ą 0 , (14)

and the additional constraint:

E tlogp�qu “ ν , |ν| ă `8 . (15)

From a theoretical standpoint, Eq. (15) ensures that �
and �´1 are both second-order random variables (see [11]).
According to the MaxEnt principle (see Appendix A.2 for

technical details), the random variable � then follows a
Gamma distribution:

� „ Gpρ1, ρ2q , (16)

where the parameters ρ1 ą 0 and ρ2 ą 0 are raised by the
MaxEnt principle.200

In a second step, we introduce for technical convenience
an auxiliary random variable U “ pU1, . . . , Unp´1q such
that (see Eq. (13))

Pk “
2�
η2
k

Uk , 1 ď k ď np ´ 1 (17)

and

Pnp “
2�
η2
np

˜

1´

np´1
ÿ

k“1

Uk

¸

. (18)

By construction (see Eq. (9a)), the random variable U
takes its values in the admissible set

S “ tu P ps0, 1rqnp´1 | 1´
řnp´1
k“1 uk ą 0u (19)

that corresponds to the interior of a pnp ´ 1q-dimensional
simplex. The probability density function pU of U is de-
rived by invoking the principle of maximum entropy under
constraints that are induced by Eq. (9a) (or equivalently,
by Eq. (19); see [40]), namely:

E tlog pUkqu “ νk, 1 ď k ď np ´ 1 , (20)

E

#

log

˜

1´

np´1
ÿ

k“1

Uk

¸+

“ νnp
, (21)

where |νk| ă `8 for 1 ď k ď np. It can then be shown
(see Appendix A.3) that the random variable U follows a
Dirichlet distribution:

U „ Dirpλ1, . . . , λnp
q , (22)

where the strictly positive parameters pλ1, . . . , λnpq are the
Lagrange multipliers that are introduced by the MaxEnt
principle.

Note that the marginal probability distributions of U
thus obtained are unimodal when λk ą 1, 1 ď k ď np.205

Whenever required, the case of multimodal distributions
can be handled, either by defining a mixture of the pro-
posed unimodal distributions (provided that a one-to-one
correspondence between the modes of the random varia-
bles can be identified), or by using other probabilistic re-210

presentations, such as mixtures of polynomial chaos expan-
sions (PCEs) [26] or PCEs defined with respect to multi-
modal probability distributions [38].

The main result derived in [40] then states that the
stochastic stored energy function defined by Eq. (12), where215

• P is defined by Eqs. (17)-(18),

• � „ Gpρ1, ρ2q, with ρ1 ą 0 and ρ2 ą 0,
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• U „ Dirpλ1, . . . , λnpq with λi ą 0 for 1 ď i ď np,

is covered by the existence results (outlined in Section 2.3)
and consistent with linearized elasticity almost surely. It is220

therefore admissible almost surely, which in turn implies
that the associated stochastic nonlinear boundary value
problem admits at least one solution.

The stochastic constitutive law is finally defined as

rT s “
BW prF sq

BrF s
´$rF s´T , (23)

where rT s denotes the random first Piola-Kirchhoff stress
tensor. Using Eq. (8), it can be deduced that the random
Piola-Kirchhoff stress Σ for a simple tensile (or compres-
sion) test writes

Σpυq “
m
ÿ

i“1

Piηipυ
ηi´1 ´ υ´1´ηi{2q

´

m`n
ÿ

j“m`1

Pjηjpυ
´ηj´1 ´ υ´1`ηj{2q .

(24)

Remark 2. It is observed that the variance of the Piola-
Kirchhoff stress Σpυq is monotonically increasing with υ.225

It follows that the proposed stochastic approach is indeed
relevant to situations where the variance increases along
the loading path (this feature being frequently encountered
in practice). Nevertheless, some cases where the variance
of the experimental stress does not increase together with230

the principal stretch may be addressed by randomizing
the model exponents tηku

np

k“1. While such a model could
certainly be constructed by pursuing a similar information-
theoretic methodology, such a strategy would introduce
a set of hyperparameters belonging to high-dimensional235

spaces – hence making the calibration step more intricate.

Remark 3. A robust generator for the random variable
U can be obtained by introducing a set of Gamma random
variables tYiu

np

i“1, with

Yi „ Gpλi, 1q , (25)

and by sampling U through the component-wise mapping
(see [8])

Ui :“ Yi ˆ

˜

np
ÿ

k“1

Yk

¸´1

, 1 ď i ď np ´ 1 . (26)

In the case np “ 2, U becomes a scalar random variable U
which follows a Beta distribution. The Matlab functions
gamrnd and betarnd might be useful in order to generate
samples of Gamma and Beta random variables.240

3.2. Identification of the stochastic stored energy functions
based on experimental data: methodological aspects

In this section, we propose a methodology aiming at the
calibration of the model parameters, which are gathered in

the vector-valued Lagrange multipliers λ “ pλ1, . . . , λnpq245

and ρ “ pρ1, ρ2q, using standard experimental data.
More specifically, let tξexp

k
uNk“1 and tςexp

k uNk“1 denote
the sets of values for the mean and standard deviation of
the random stress at prescribed stretches tυexp

k uNk“1. These
sets define the experimental information based on which250

the stochastic representation has to be identified. For ease
of explanation, we consider below the case of first-order
stored energy functions (m “ n “ 1; hence np “ 2). The
approach can easily be generalized to arbitrary orders at
the expense of notational complexity. Closed-form expres-255

sions that are relevant to this case are first derived in Sec-
tion 3.2.1. The two sequential steps involved in the cali-
bration methodology are then described in Sections 3.2.2
and 3.2.3.

3.2.1. Closed-form relations for first-order stochastic stored260

energy functions

When m “ n “ 1, the random stored energy function
writes

W prF sq “P1 pυ
η1
1 ` υη12 ` υη13 ´ 3q

` P2 ppυ1υ2q
η2 ` pυ1υ3q

η2 ` pυ2υ3q
η2 ´ 3q ,

(27)
where the random variables P1 and P2 are given by

P1 “
2�
η2

1

U , P2 “
2�
η2

2

p1´ Uq , (28)

with η1 ě 2 and η2 ě 3{2. It is recalled that � follows
a Gamma distribution with parameters pρ1, ρ2q, and that
the random variable U follows a Dirichlet distribution with
parameters pλ1, λ2q. According to Eq. (24), the associated
random Piola-Kirchhoff stress Σ is given, for a uniaxial
tensile (or compression) test, by

Σpυq “P1Ψ1pυq ` P2Ψ2pυq , (29)

where the functions Ψ1 and Ψ2 are defined as

Ψ1pυq “ η1

´

υη1´1 ´ υ´1´η1{2
¯

(30)

and
Ψ2pυq “ ´η2

´

υ´η2´1 ´ υ´1`η2{2
¯

. (31)

Moreover, it is readily deduced from Eq. (29) that the
variance of Σpυq is given by

VartΣpυqu “VartP1uΨ
2
1pυq `VartP2uΨ

2
2pυq

` 2CovtP1, P2uΨ1pυqΨ2pυq ,
(32)

where VartPju and CovtP1, P2u denote the variance of Pj
and the covariance between P1 and P2, respectively. Next,
and upon using the probabilistic properties of � and U , it
is found that:

VartP1u “
4ρ1ρ

2
2

η4
1

λ1pλ1 ` λ2 ` λ1λ2 ` λ
2
1 ` ρ1λ2q

pλ1 ` λ2q
2p1` λ1 ` λ2q

, (33)
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VartP2u “
4ρ1ρ

2
2

η4
2

λ2pλ1 ` λ2 ` λ1λ2 ` λ
2
2 ` ρ1λ1q

pλ1 ` λ2q
2p1` λ1 ` λ2q

, (34)

and

CovtP1, P2u “
4ρ1ρ

2
2

η2
1η

2
2

λ1λ2pλ1 ` λ2 ´ ρ1q

pλ1 ` λ2q
2p1` λ1 ` λ2q

. (35)

Substituting Eqs. (33), (34) and (35) into Eq. (32) allows
us to estimate the variance of the stress Σpυq for given
values of the hyperparameters (without resorting to Monte
Carlo simulations).265

3.2.2. Defining Step 1: calibration of the mean model

In the first step of the approach, which is formulated
deterministically, the mean value

p “ pp
1
, p

2
q :“ EtP u

of the random variable P is identified, in a classical manner
[28], by fitting the mean experimental response with an
Ogden-type constitutive model of orders m “ n “ 1:

pp,ηq :“ argmin
pa,bq PAˆB

J pa, bq , (36)

where the cost function J is given by

J pa, bq :“
N
ÿ

k“1

´

σpυexp
k ;a, bq ´ ξexp

k

¯2

, (37)

and σpυexp
k ;a, bq is the predicted mean stress at the stretch

υexp
k , obtained by substituting pa, bq for pp,ηq in Eq. (8)

(with m “ n “ 1). The solution search is performed over
the admissibles sets

A “ pR˚`q
2 (38)

and
B “ tη P R2 , η1 ě 2 , η2 ě 3{2u (39)

induced by Eqs. (9a)-(9c). This optimization problem can
be solved by using a standard algorithm for constrained
nonlinear problems.

3.2.3. Defining Step 2: calibration of pρ1, ρ2q and pλ1, λ2q270

Let us address the calibration of the remaining hyper-
parameters pρ1, ρ2q and pλ1, λ2q. From Eq. (28) and the
statistical independence of � and Pj , we deduce that

p
1
“

2Et�u
η2

1

EtUu (40)

and

p
2
“

2Et�u
η2

2

p1´ EtUuq . (41)

Since � „ Gpρ1, ρ2q and U „ Dirpλ1, λ2q (note that the
Dirichlet distribution corresponds to the Beta distribution
for univariate random variables), one has

µ “ ρ1ρ2 (42)

and

p
1
“

2µ

η2
1

λ1

λ1 ` λ2
, p

2
“

2µ

η2
2

λ2

λ1 ` λ2
. (43)

Solving for ρ2 and λ1 in Eq. (42) and in the first equation
of Eq. (43), it is found that

ρ2 “
µ

ρ1
, (44)

and

λ1 “
η2

1 p1

η2
2 p2

λ2 “
u

1´ u
λ2 , (45)

where u :“ EtUu and use was made of Eqs. (40)–(41). The
idea in this final step is to define the parameters ρ2 and
λ1 through Eqs. (44) and (45) (recall that tηku

2
k“1 and

tp
k
u2k“1 are known from Step 1), and to consider ρ1 and

λ2 as the only hyperparameters to be calibrated. For this
purpose, let us introduce the cost function K defined as

Kpx, yq :“
N
ÿ

k“1

pςΣpυ
exp
k ;x, yq ´ ςexp

k q
2
, (46)

where ςΣpυ
exp
k ;x, yq is the standard deviation of the stress

Σ at stretch υexp
k (which can be estimated by using the

closed-form expressions provided at the end of section 3.2.1),
with

� „ G
´

x,
µ

x

¯

, (47)

and

U „ Dir

˜

η2
1 p1

η2
2 p2

y, y

¸

. (48)

The hyperparameters ρ1 and λ2 are then defined as the
solution of the minimization problem:

pρ1, λ2q :“ argmin
px,yq P s0,`8rˆs1,`8r

Kpx, yq . (49)

In this work, the optimization problems defined by Eq. (36)
and Eq. (49) are solved by using the Matlab function
fmincon (with an sqp algorithm) for a set of 1, 000 initial
guesses determined by Latin Hypercube sampling. Here,
the randomization of the starting points aims at reducing275

in part the impact of the local optimization technique.

3.3. Discussion

A number of remarks regarding the calibration strategy
are relevant at this point. First of all, the generalization
of the calibration method to arbitrary orders shows that280

the dimension of the problem related to the calibration
of ρ1 and λnp

(which corresponds to λ2 in the previous
section) is, indeed, independent of the values of m and n.
As a consequence, the methodology does not suffer from a
curse of dimensionality and turns out to be very robust in285

that sense.
Secondly, and while the set of model parameters can be

shown to be unique when the constraint equations (given
by Eqs. (14), (15), (20) and (21)) can be all estimated from
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experiments, considering the mean and the variability of290

the stress response does not allow the hyperparameters to
be uniquely defined. In fact, it should be observed that
the random stress involves nonlinear functions of � and
U . Therefore, a given variability in the random stress
may equivalently be generated by different combinations295

of fluctuations in � and U (see Eq. (32), (33), (34) and
(35)). Note that issues related to (non)uniqueness are also
encountered in a deterministic context (which is relevant
to the identification of pη1, η2q and pp

1
, p

2
q within Step 1);

see the discussion in [28] for instance.300

Additionally, the choice of the hyperparameters to be
identified within Step 2 turns out to be arbitrary, so that
the associated optimization problem may alternatively be
formulated by selecting any couple pρk, λ`q for 1 ď k ď 2
and 1 ď ` ď 2.305

Finally, it should be noted that Eq. (45) can be used in
order to investigate the sensitivity of the cost function K
(see Eq. (46)) with respect to the second design variable.
Indeed, the coefficient of variation δU of U is given by

δU “

d

λ2

λ1pλ1 ` λ2 ` 1q
, (50)

with
λ1 “

u

1´ u
λ2 . (51)

When the mean value u (which can be estimated within
Step 1 by using Eq. (40) for example) takes small positive
values (it is recalled that 0 ă U ă 1 almost surely), one
has λ1 ! λ2 and U exhibits large statistical fluctuations.
Similarly, it is seen that λ1 " λ2 when u is close to 1, in310

which case the fluctuations of U may become very small.
In both cases, the coefficient of variation δU quickly reaches
a plateau as λ2 becomes larger, and this behavior may
decrease the robustness of the formulation within Step 2.

4. Applications to soft biological tissues315

In this section, the stochastic stored energy functions
(with m “ n “ 1) and the identification methodology
are applied in order to model the variability exhibited by
various soft biological tissues, including brain and liver
tissues, as well as spinal cord white matter.320

4.1. Brain tissue

In this first application, we address the modeling of the
variability exhibited by brain tissues. Toward this aim, we
consider the experimental results provided in [17]. The
database is composed of 72 samples of brain tissues tested325

for strains ranging up to 50% and for strain rates 9ε P
t0.5, 5, 30u s´1. Below, we address the calibration task in
unconfined compression for low and medium strain rates.
Experimental data are given for white and gray matter,
and final data are expressed in terms of mean and standard330

deviation plots at increasing stretches.

The optimal mean parameters and exponents pp,ηq,
computed within Step 1 (see section 3.2), are reported in
Tables 1 and 2 for the compression tests at different strain
rates.

9ε 0.5 s´1 5 s´1

p
1

(kPa) 0.1467 0.1881

p
2

(kPa) 0.0457 0.7823

η1 5.5945 4.5907

η2 1.991 1.5

µ (kPa) 2.3863 2.3863

λ1 253.5375 22.461

λ2 9.9982 9.9732

ρ1 2.3679 6.6398

ρ2 1.0078 0.4311

Table 1: calibrated parameters (gray matter in compression).

9ε 0.5 s´1 5 s´1

p
1

(kPa) 1.1131 1.4720

p
2

(kPa) 1.1120 0.4897

η1 2 2.6185

η2 1.5 1.5

µ (kPa) 3.4772 5.5973

λ1 3.2290 91.5357

λ2 1.8146 9.9919

ρ1 33.2721 6.6819

ρ2 0.1045 0.8377

Table 2: calibrated parameters (white matter in compression).

335

It is seen that the inequality constraints raised by the
polyconvexity and coerciveness properties (see Eqs. (9a)-
(9c)) are fulfilled, so that the mean model is admissible.
Regarding the computation of the Lagrange multipliers ρ1

and λ2, performed within the second step of the methodol-340

ogy, the algorithm is found to converge in a few iterations,
regardless of the initial guess. The mean and variability
of the random stress predicted by the calibrated stochas-
tic model are quantitatively compared with experimental
data in Figs. 1, 2, 3 and 4, where the confidence interval345

at 95% is also reported.
It can be observed that the first-order stochastic stored

energy function can reproduce the experimental results
very well for both gray and white matters at strain rates
9ε P t0.5, 5, 30u s´1.350
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Figure 1: Graph of υ ÞÑ Σpυq (kPa) and υ ÞÑ ςΣpυq (kPa) for gray
matter tissues in unconfined compression at 9ε “ 0.5 s´1. Black
lines: experimental data extracted from [17]. Red lines: calibrated
stochastic model. Yellow area: 95% confidence region.
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Figure 2: Graph of υ ÞÑ Σpυq (kPa) and υ ÞÑ ςΣpυq (kPa) for gray
matter tissues in unconfined compression at 9ε “ 5 s´1. Black lines:
experimental data extracted from [17]. Red lines: calibrated stochas-
tic model. Yellow area: 95% confidence region.

4.2. Liver tissue

As a second example, we now turn to the modeling of
bovine liver tissue. Specifically, the statistical results are
extracted from [33], in which uniaxial compression tests
were performed at a 0.01 s´1 strain rate. It should be355

noted that the (deterministic) fitting in the above refe-
rence was obtained by using an exponential-type stored
energy function. The calibrated parameters are listed in
Table 3. A qualitative comparison between the statistical
properties estimated by means of Monte Carlo simulations360

with the calibrated stochastic model and those computed
from the experiments can be visualized in Fig. 5. Similarly
to the case of brain tissues, it is seen that the probabilistic
model and the identification strategy allows the data to be

υ
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-5

0

Experimental data
Stochastic model
Confidence region

Figure 3: Graph of υ ÞÑ Σpυq (kPa) and υ ÞÑ ςΣpυq (kPa) for white
matter tissues in unconfined compression at 9ε “ 0.5 s´1. Black
lines: experimental data extracted from [17]. Red lines: calibrated
stochastic model. Yellow area: 95% confidence region.
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Figure 4: Graph of υ ÞÑ Σpυq (kPa) and υ ÞÑ ςΣpυq (kPa) for white
matter tissues in unconfined compression at 9ε “ 5 s´1. Black lines:
experimental data extracted from [17]. Red lines: calibrated stochas-
tic model. Yellow area: 95% confidence region.

reproduced with a reasonably high level of accuracy, hence365

showing the relevance of the overall methodology.

4.3. Spinal cord white matter

In this final application, we address the modeling of the
variability exhibited by porcine spinal cord white matter
under unconfined compression. Experimental data can be370

found in [39], where the mechanics of spinal cord injury
and its finite element implementation are investigated. The
database is composed of 104 independent samples extracted
from Yorkshire pigs. Unconfined compression tests were
performed for strains ranging up to 40% and for a strain375

rate 9ε P t0.005, 0.05, 0.5u s´1. The calibrated parameters
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9ε 0.01 s´1

p
1

(kPa) 0.1886

p
2

(kPa) 0.005

η1 2.1783

η2 12.0502

µ (kPa) 0.8088

λ1 314.6755

λ2 254.251

ρ1 591.7831

ρ2 0.0014

Table 3: calibrated parameters (liver tissues in compression).
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Figure 5: Graph of υ ÞÑ Σpυq (kPa) and υ ÞÑ ςΣpυq (kPa) for liver
tissues in uniaxial compression at 9ε “ 0.01 s´1. Black lines: expe-
rimental data extracted from [34]. Red lines: calibrated stochastic
model. Yellow area: 95% confidence region.

are listed in Table 4 and the predicted results are com-
pared with the experimental ones in Figs. 6, 7 and 8.

A very good agreement is again observed between the
predictions of the stochastic model and the experimental380

results.

5. Conclusion

In this paper, we have addressed the construction and
inverse identification of stochastic constitutive models for
hyperelastic biological tissues. The approach builds upon385

information theory, which essentially allows the constraints
related to existence theorems in nonlinear elasticity to be
taken into account. This ingredient is key to deriving a
stochastic constitutive law that is both physically sound
and mathematically consistent. The model can, indeed,390

be seen as a stochastic extension of the Ogden class of
polyconvex stored energy functions, and relies on a low-

9ε 0.005 s´1 0.05 s´1 0.5 s´1

p
1

(kPa) 1.0003ˆ 10´10 0.0102 0.0019

p
2

(kPa) 0.0518 0.0060 0.0111

η1 2.1306 10.3693 11.4817

η2 4.5327 4.2260 5.3651

µ (kPa) 0.5317 0.6048 0.2862

λ1 4.2683ˆ 10´9 10.2379 7.9405

λ2 9.9991 1 10

ρ1 25.3357 16.6017 23.7158

ρ2 0.0210 0.0364 0.0121

Table 4: calibrated parameters (spinal white matter in compression).
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Figure 6: Graph of υ ÞÑ Σpυq (kPa) and υ ÞÑ ςΣpυq (kPa) for spinal
cord white matter in unconfined compression at 9ε “ 0.005 s´1. Black
lines: experimental data extracted from [39]. Red lines: calibrated
stochastic model. Yellow area: 95% confidence region.

dimensional parametrization that makes the calibration
procedure well-posed. The latter was specifically discussed
through a sequential strategy. The probabilistic frame-395

work was finally applied on different living tissues. It was
shown that the model allows the experimental mean be-
havior and variability to be accurately reproduced at a
given strain rate, hence paving the way for a potential gen-
eralization accommodating viscous effects. Such a gene-400

ralization will be the subject of future works.

Appendix A. Maximum Entropy principle

Appendix A.1. General derivations

Let A be a vector-valued random variable defined by
a probability density function pA. We assume that the
probability density function pA, defined from Rn into R`,
has a support which is denoted by SA (hence, pApaq “ 0
for a R SA), with SA Ď Rn. It is assumed that some
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Figure 7: Graph of υ ÞÑ Σpυq (kPa) and υ ÞÑ ςΣpυq (kPa) for spinal
cord white matter in unconfined compression at 9ε “ 0.05 s´1. Black
lines: experimental data extracted from [39]. Red lines: calibrated
stochastic model. Yellow area: 95% confidence region.
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Figure 8: Graph of υ ÞÑ Σpυq (kPa) and υ ÞÑ ςΣpυq (kPa) for spinal
cord white matter in unconfined compression at 9ε “ 0.5 s´1. Black
lines: experimental data extracted from [39]. Red lines: calibrated
stochastic model. Yellow area: 95% confidence region.

objective information is available and can be formalized in
the form of a mathematical expectation:

E th pAqu “ f , (A.1)

where h is a given measurable mapping from Rn into RN ,
with N ě 1, and f is a given vector in RN . The MaxEnt
principle then states that the most objective model, given
the above constraints, is given by [16, 15, 36]

pA “ argmax
p P CA

Stpu , (A.2)

where

Stpu :“ ´

ż

Rn

ppAq log pppAqq da (A.3)

is the so-called Shannon’s entropy of p and CA is the set of
all probability density functions, with support SA, satisfy-
ing the constraints defined by Eq. (A.1). In order to solve
the above functional optimization problem, a Lagrange
multiplier τ with values in an admissible set T Ă RN and
associated with Eq. (A.1) is introduced. Proceeding with
the calculus of variation on the associated Lagrangian (see
e.g. [19]), the solution is found to be defined as

pApaq “ 1SA
paq k0 exp

˜

´

N
ÿ

j“1

τjhjpaq

¸

, (A.4)

where 1SA
is the indicator function of SA and k0 is a

normalization constant such that
ş

SA
pApaqda “ 1.405

Appendix A.2. Application 1: probabilistic modeling of the
random shear modulus �

It is assumed that the constraints related to the ran-
dom shear modulus � are given by Eqs. (15) and (16).
Hence, one has

hpµq “

»

–

µ

logpµq

fi

fl , f “

»

–

µ

ν

fi

fl , (A.5)

with n “ 1 and N “ 2 in this particular case. Let p1 ´
τ1q and τ2 be two Lagrange multipliers associated with
the two constraints. Using Eq. (A.4), it is found that the
probability density function p� writes

p�pµq “ 1R˚
`
pµq k0 exp p´τ2µ´ p1´ τ1q logpµqq . (A.6)

Upon using the changes of variables ρ1 “ τ1 and ρ2 “ 1{τ2,
it is seen that p� can be written as

p�pµq “ 1R˚
`
pµq k0 µ

ρ1´1 exp

ˆ

´
µ

ρ2

˙

. (A.7)

As a result, the random shear modulus � is a Gamma
random variable with parameters ρ1 ą 0 and ρ2 ą 0.

Appendix A.3. Application 2: probabilistic modeling of the410

normalized random variable U

The probability density function pU of random variable
U is constructed by considering that the only available
information is given by Eqs. (20) and (21), with n “ np´1,
N “ np and

hpuq “

»

—

—

—

—

—

—

—

—

–

logpu1q

logpu2q

...

logpunp´1q

logp1´
řnp´1
k“1 ukq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, f “

»

—

—

—

—

—

—

—

—

–

ν1

ν2

...

νnp´1

νnp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (A.8)
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Let p1 ´ λkq, for 1 ď k ď np, be np Lagrange multipliers
associated with the above constraints. Applying the Max-
Ent principle (see Eq. (A.4)), it is found that pU takes the
form

pU “ 1Spuq k0 exp

˜

´

np´1
ÿ

k“1

p1´ λkq logpukq

´ p1´ λnpq log

˜

1´

np´1
ÿ

k“1

uk

¸¸

,

(A.9)

where the support S is given by Eq. (19). After little
algebra, it is found that pU reads as

pU puq “ 1Spuq k0

˜

np´1
ź

k“1

uλk´1
k

¸

ˆ

˜

1´

np´1
ÿ

k“1

uk

¸λnp´1

.

(A.10)
As a result, see e.g. [18], random variable U follows a
Dirichlet distribution with parameters pλ1, λ2, . . . , λnp

q.
Note that the Dirichlet distribution corresponds to a clas-
sical Beta distribution for np “ 2.415
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