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1 Introduction

Although Karl Weierstrass (1815–1897), a giant of nineteenth-century analysis, made significant
steps toward a theory of multidimensional complex analysis, the modern theory of functions of
several complex variables can reasonably be dated to the researches of Friedrich (Fritz) Hartogs
(1874–1943) in the first decade of the twentieth century.1 The so-called Hartogs Phenomenon,
a fundamental feature that had eluded Weierstrass, reveals a dramatic difference between one-
dimensional complex analysis and multidimensional complex analysis.

Karl Weierstrass

public domain photo

Alfred Pringsheim

source: Brockhaus Enzyklopädie

Friedrich (Fritz) Hartogs

Oberwolfach Photo Collection
Photo ID: 1567

Some aspects of the theory of holomorphic (complex analytic) functions, such as the maximum
principle, are essentially the same in all dimensions. The most interesting parts of the theory of
several complex variables are the features that differ from the one-dimensional theory. Several
complementary points of view illuminate the one-dimensional theory: power series expansions,
integral representations, partial differential equations, and geometry. The multidimensional the-
ory reveals striking new phenomena from each of these points of view. This chapter sketches
some of the issues to be treated in detail later on.

A glance at the titles of articles listed in MathSciNet under classification number 32 (more than
twenty-five thousand articles as of year 2013) or at postings in math.CV at the arXiv indicates
1A student of Alfred Pringsheim (1850–1941), Hartogs belonged to theMunich school of mathematicians. Because
of their Jewish heritage, both Pringsheim and Hartogs suffered greatly under the Nazi regime in the 1930s.
Pringsheim, a wealthy man, managed to buy his way out of Germany into Switzerland, where he died at an
advanced age in 1941. The situation for Hartogs, however, grew ever more desperate, and in 1943 he chose
suicide rather than transportation to a death camp.
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1 Introduction

the scope of the interaction between complex analysis and other parts of mathematics, including
geometry, partial differential equations, probability, functional analysis, algebra, and mathemat-
ical physics. One of the goals of this course is to glimpse some of these connections between
different areas of mathematics.

1.1 Power series

A power series in one complex variable converges absolutely inside a certain disc and diverges
outside the closure of the disc. But the convergence region for a power series in two (or more)
variables can have infinitely many different shapes. For instance, the largest open set in which
the double series ∑∞

n=0
∑∞

m=0 z
n
1z
m
2 converges absolutely is the unit bidisc { (z1, z2) ∶ |z1| < 1

and |z2| < 1 }, while the series ∑∞
n=0 z

n
1z
n
2 converges in the unbounded hyperbolic region where

|z1z2| < 1.The theory of one-dimensional power series bifurcates into the theory of entire functions (when
the series has infinite radius of convergence) and the theory of holomorphic functions on the
unit disc (when the series has a finite radius of convergence—which can be normalized to the
value 1). In higher dimensions, the study of power series leads to function theory on infinitely
many different types of domains. A natural problem, to be solved later, is to characterize the
domains that are convergence domains for multivariable power series.
Exercise 1. Find a concrete power series whose convergence domain is the two-dimensional unit
ball { (z1, z2) ∶ |z1|2 + |z2|2 < 1 }.
While studying series, Hartogs discovered that every function holomorphic in a neighborhood

of the boundary of the unit bidisc automatically extends to be holomorphic on the interior of the
bidisc; a proof can be carried out by considering one-variable Laurent series on slices. Thus,
in dramatic contrast to the situation in one variable, there are domains in ℂ2 on which all the
holomorphic functions extend to a larger domain. A natural question, to be answered later, is to
characterize the domains of holomorphy, that is, the natural domains of existence of holomorphic
functions.

The discovery of Hartogs shows too that holomorphic functions of several variables never
have isolated singularities and never have isolated zeroes, in contrast to the one-variable case.
Moreover, zeroes (and singularities) must propagate either to infinity or to the boundary of the
domain where the function is defined.
Exercise 2. Let p(z1, z2) be a nonconstant polynomial in two complex variables. Show that the
zero set of p cannot be a compact subset of ℂ2.

2



1 Introduction

1.2 Integral representations

The one-variable Cauchy integral formula for a holomorphic function f on a domain bounded by
a simple closed curve C says that

f (z) = 1
2�i ∫C

f (w)
w − z

dw for z inside C.

A remarkable feature of this formula is that the kernel (w − z)−1 is both universal (independent
of the curve C) and holomorphic in the free variable z. There is no such formula in higher
dimensions! There are integral representations with a holomorphic kernel that depends on the
domain, and there is a universal integral representation with a kernel that is not holomorphic. A
huge literature addresses the problem of constructing and analyzing integral representations for
various special types of domains.

There is an iterated Cauchy integral formula: namely,

f (z1, z2) =
( 1
2�i

)2

∫C1 ∫C2

f (w1, w2)
(w1 − z1)(w2 − z2)

dw1 dw2

for z1 in the regionD1 bounded by the simple closed curve C1 and z2 in the regionD2 bounded bythe simple closed curve C2. But this formula is special to a product domain D1 ×D2. Moreover,
the integration here is over only a small portion of the boundary of the region, for the set C1 ×C2has real dimension 2, while the boundary of D1 ×D2 has real dimension 3. The iterated Cauchy
integral is important and useful within its limited realm of applicability.

1.3 Partial differential equations

The one-dimensional Cauchy–Riemann equations are two real partial differential equations for
two functions (the real part and the imaginary part of a holomorphic function). In ℂn, there
are still two functions, but there are 2n equations. When n > 1, the inhomogeneous Cauchy–
Riemann equations form an overdetermined system; there is a necessary compatibility condition
for solvability of the Cauchy–Riemann equations. This feature is a significant difference from the
one-variable theory.

When the inhomogeneous Cauchy–Riemann equations are solvable in ℂ2 (or in higher dimen-
sions), there is (as will be shown later) a solution with compact support in the case of compactly
supported data. When n = 1, however, it is not always possible to solve the inhomogeneous
Cauchy–Riemann equations while maintaining compact support. The Hartogs phenomenon can
be interpreted as one manifestation of this dimensional difference.
Exercise 3. Show that if u is the real part of a holomorphic function of two complex variables
z1 (= x1 + iy1) and z2 (= x2 + iy2), then the function u must satisfy the following system of real
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1 Introduction

second-order partial differential equations:
)2u
)x21

+ )2u
)y21

= 0, )2u
)x1)x2

+ )2u
)y1)y2

= 0,

)2u
)x22

+ )2u
)y22

= 0, )2u
)x1)y2

− )2u
)y1)x2

= 0.

Thus the real part of a holomorphic function of two variables not only is harmonic in each coor-
dinate but also satisfies additional conditions.

1.4 Geometry

In view of the one-variable Riemann mapping theorem, every bounded simply connected planar
domain is biholomorphically equivalent to the unit disc. In higher dimension, there is no such
simple topological classification of biholomorphically equivalent domains. Indeed, the unit ball
inℂ2 and the unit bidisc inℂ2 are holomorphically inequivalent domains (as will be proved later).

An intuitive way to understand why the situation changes in dimension 2 is to realize that
in ℂ2, there is room for one-dimensional complex analysis to happen in the tangent space to the
boundary of a domain. Indeed, the boundary of the bidisc contains pieces of one-dimensional
affine complex subspaces, while the boundary of the two-dimensional ball does not contain any
nontrivial analytic disc (the image of the unit disc under a holomorphic mapping).

Similarly, there is room for complex analysis to happen inside the zero set of a holomorphic
function from ℂ2 to ℂ1. The zero set of a function such as z1z2 is a one-dimensional complex
variety inside ℂ2, while the zero set of a nontrivial holomorphic function from ℂ1 to ℂ1 is a
zero-dimensional variety (that is, a discrete set of points).

Notice that there is a mismatch between the dimension of the domain and the dimension of the
range of a multivariable holomorphic function. Accordingly, one might expect the right analogue
of a holomorphic function from ℂ1 to ℂ1 to be an equidimensional holomorphic mapping from
ℂn to ℂn. But here too there are surprises.

First of all, notice that a biholomorphic mapping in dimension 2 (or higher) need not be a
conformal (angle-preserving) map.2 Indeed, even a linear transformation of ℂ2, such as the map
sending (z1, z2) to (z1 + z2, z2), can change the angles at which lines meet. Although conformal
maps are plentiful in the setting of one complex variable, conformality is a quite rigid property
in higher dimensions. Indeed, a theorem of Joseph Liouville (1809–1882) states3 that the only
2Biholomorphic mappings used to be called “pseudoconformal” mappings, but this word has gone out of fashion.
3In 1850, Liouville published a fifth edition of Application de l’analyse à la géométrie by Gaspard Monge (1746–
1818). An appendix includes seven long notes by Liouville. The sixth of these notes, bearing the title “Extension
au cas des trois dimensions de la question du tracé géographique” and extending over pages 609–616, contains
the proof of the theorem in dimension 3.
Two sources for modern treatments of this theorem are Chapters 5–6 of David E. Blair’s Inversion Theory

and Conformal Mapping [American Mathematical Society, 2000]; and Theorem 5.2 of Chapter 8 of Manfredo
Perdigão do Carmo’s Riemannian Geometry [Birkhäuser, 1992].
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1 Introduction

conformal mappings from a domain in ℝn into ℝn (where n ≥ 3) are the (restrictions of) Möbius
transformations: compositions of translations, dilations, orthogonal linear transformations, and
inversions.

Remarkably, there exists a biholomorphic mapping from all of ℂ2 onto a proper subset of ℂ2

whose complement has interior points. Such a mapping is called a Fatou–Bieberbach map.4

4The name honors the French mathematician Pierre Fatou (1878–1929), known also for the Fatou lemma in the
theory of the Lebesgue integral; and theGermanmathematician Ludwig Bieberbach (1886–1982), known also for
the Bieberbach Conjecture about schlicht functions (solved by Louis de Branges around 1984), for contributions
to the theory of crystallographic groups, and—infamously—for being an enthusiastic Nazi.
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2 Power series

Examples in the introduction show that the domain of convergence of a multivariable power series
can have a variety of shapes; in particular, the domain of convergence need not be a convex set.
Nonetheless, there is a special kind of convexity property that characterizes convergence domains.

Developing the theory requires some notation. The Cartesian product of n copies of the com-
plex numbers ℂ is denoted by ℂn. In contrast to the one-dimensional case, the space ℂn is not
an algebra when n > 1 (there is no multiplication operation). But the space ℂn is a normed
vector space, the usual norm being the Euclidean one: ‖(z1,… , zn)‖2 =

√

|z1|2 +⋯ + |zn|2. Apoint (z1,… , zn) in ℂn is commonly denoted by a single letter z, a vector variable. If � is an n-
dimensional vector all of whose coordinates are nonnegative integers, then z� means the product
z�11 ⋯ z�nn (as usual, the quantity z�11 is interpreted as 1 when z1 and �1 are simultaneously equal
to 0); the notation �! abbreviates the product �1!⋯ �n! (where 0! = 1); and |�|means �1+⋯+�n.In this “multi-index” notation, a multivariable power series can be written in the form ∑

� c�z�,an abbreviation for∑∞
�1=0

⋯
∑∞

�n=0
c�1,…,�nz

�1
1 ⋯ z�nn .

There is some awkwardness in talking about convergence of a multivariable power series
∑

� c�z�, because the value of a series depends (in general) on the order of summation, and there
is no canonical ordering of n-tuples of nonnegative integers when n > 1.
Exercise 4. Find complex numbers b� such that the “triangular” sum limk→∞

∑k
j=0

∑

|�|=j b� and
the “square” sum limk→∞

∑k
�1=0

⋯
∑k

�n=0
b� have different finite values.

Accordingly, it is convenient to restrict attention to absolute convergence, since the terms of an
absolutely convergent series can be reordered arbitrarily without changing the value of the sum
(or the convergence of the sum).

2.1 Domain of convergence

The domain of convergence of a power series means the interior of the set of points at which the
series converges absolutely. For example, the power series ∑∞

n=1 z
n
1z
n!
2 converges absolutely on

the union of three sets in ℂ2: the points (z1, z2) for which |z2| < 1 and z1 is arbitrary; the points
(0, z2) for arbitrary z2; and the points (z1, z2) for which |z2| = 1 and |z1| < 1. The domain of
convergence is the first of these three sets, for the other two sets contribute no additional interior
points.

Being defined by absolute convergence, every convergence domain is multicircular: if a point
(z1,… , zn) lies in the domain, then so does the point (�1z1,… , �nzn) when 1 = |�1| = ⋯ =
|�n|. Moreover, the comparison test for absolute convergence of series shows that the point
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2 Power series

(�1z1,… , �nzn) remains in the convergence domain when |�j| ≤ 1 for each j. Thus every con-
vergence domain is a union of polydiscs centered at the origin. (A polydisc means a Cartesian
product of discs, possibly with different radii.)

A multicircular domain is often called a Reinhardt domain.1 Such a domain is called complete
if whenever a point z lies in the domain, the whole polydisc {w ∶ |w1| ≤ |z1|,… , |wn| ≤ |zn| }is contained in the domain. The preceding discussion can be rephrased as saying that every
convergence domain is a complete Reinhardt domain.

But more is true. If both ∑� |c�z�| and
∑

� |c�w�
| converge, then Hölder’s inequality implies

that ∑� |c�||z�|t|w�
|

1−t converges when 0 ≤ t ≤ 1. Indeed, the numbers 1∕t and 1∕(1 − t)
are conjugate indices for Hölder’s inequality: the sum of their reciprocals evidently equals 1. In
other words, if two points z andw lie in a convergence domain, then so does the point obtained by
forming in each coordinate the geometric average (with weights t and 1 − t) of the moduli. This
property of a Reinhardt domain is called logarithmic convexity. Since a convergence domain is
complete and multicircular, the domain is determined by the points with positive real coordinates;
replacing the coordinates of each such point by their logarithms produces a convex domain inℝn.

2.2 Characterization of domains of convergence

The preceding discussion shows that a convergence domain is necessarily a complete, logarith-
mically convex Reinhardt domain. The following theorem of Hartogs2 says that this geometric
property characterizes domains of convergence of power series.
Theorem 1. A complete Reinhardt domain in ℂn is the domain of convergence of some power
series if and only if the domain is logarithmically convex.

Exercise 5. IfD1 andD2 are convergence domains, are the intersectionD1∩D2, the unionD1∪D2,and the Cartesian product D1 ×D2 necessarily convergence domains too?
Proof of Theorem 1. The part that has not yet been proved is the sufficiency: for every logarith-
mically convex, complete Reinhardt domain D, there exists some power series ∑� c�z� whose

1The name honors the German mathematician Karl Reinhardt (1895–1941), who studied such regions. Reinhardt
has a place in mathematical history for solving Hilbert’s 18th problem in 1928: he found a polyhedron that tiles
three-dimensional Euclidean space but is not the fundamental domain of any group of isometries of ℝ3. In other
words, there is no group such that the orbit of the polyhedron under the group covers ℝ3, yet non-overlapping
isometric images of the tile do coverℝ3. Later, Heinrich Heesch (1906–1995) found a two-dimensional example;
Heesch is remembered too for developing computer methods to attack the four-color problem.
The date of Reinhardt’s death does not mean that he was a war casualty: his obituary says to the contrary that

he died after a long illness of unspecified nature. Reinhardt was a professor in Greifswald, a city in northeastern
Germany on the Baltic Sea. The University of Greifswald, founded in 1456, is one of the oldest in Europe.
Incidentally, Greifswald is a sister city of Bryan–College Station.

2Fritz Hartogs, Zur Theorie der analytischen Funktionenmehrerer unabhängiger Veränderlichen, insbesondere über
die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Mathematis-
che Annalen 62 (1906), number 1, 1–88. (Hartogs considered domains in ℂ2.)
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2 Power series

domain of convergence is precisely D. The idea is to construct a series that can be compared
with a suitable geometric series.

Suppose initially that the domain D is bounded (and nonvoid), for the construction is easier
to implement in this case. Let N�(D) denote sup{ |z�| ∶ z ∈ D }, the supremum norm on D
of the monomial with exponent �. The hypothesis of boundedness of the domain D guarantees
that N�(D) is finite. The claim is that ∑� z�∕N�(D) is the required power series whose domain
of convergence is equal to D. What needs to be checked is that for each point w inside D, the
series converges absolutely at w, and for each point w outside D, there is no neighborhood of w
throughout which the series converges absolutely.

If w is a particular point in the interior of D, then there is a positive " (depending on w)
such that the scaled point (1 + ")w still lies in D. Therefore (1 + ")|�||w�

| ≤ N�(D), so the
series∑� w�∕N�(D) converges absolutely by comparison with the convergent dominating series
∑

�(1 + ")−|�| (which is a product of n copies of ∑∞
k=0(1 + ")

−k, a convergent geometric series).
Thus the first requirement is met.

Checking the second requirement involves showing that the series diverges at sufficiently many
points outsideD. The following argument will demonstrate that∑� w�∕N�(D) diverges at everypointw outside the closure ofDwhose coordinates are positive real numbers. Since the domainD
is multicircular, this conclusion suffices. The strategy is to show that infinitely many terms of the
series are greater than 1.
The hypothesis that D is logarithmically convex means precisely that the set

{ (u1,… , un) ∈ ℝn ∶ (eu1 ,… , eun) ∈ D }, denoted by logD,
is a convex set in ℝn. By assumption, the point (logw1,… , logwn) is a point of ℝn outside the
closure of the convex set logD, so this point can be separated from logD by a hyperplane. In
other words, there is a linear function l∶ ℝn → ℝ whose value at the point (logw1,… , logwn)exceeds the supremum of l over the convex set logD. (In particular, that supremum is finite.)
Say l(u1,… , un) = �1u1 +⋯ + �nun, where each coefficient �j is a real number.
The hypothesis thatD is a complete Reinhardt domain implies thatD contains a neighborhood

of the origin in ℂn, so there is a positive real constant m such that the convex set logD contains
every point u in ℝn for which max1≤j≤n uj ≤ −m. Therefore none of the numbers �j can be neg-
ative, for otherwise the function l would take arbitrarily large positive values on the set logD.
The assumption that D is bounded produces a positive real constant M such that logD is con-
tained in the set of points u in ℝn such that max1≤j≤n uj ≤ M . Consequently, if each number �jis increased by some small positive amount ", then the supremum of l over logD increases by
no more than nM". Thus the coefficients of the function l can be perturbed slightly without
affecting the separating property of l. Accordingly, there is no loss of generality in assuming
that each �j is a positive rational number. Multiplying by a common denominator shows that the
coefficients �j can be taken to be positive integers.Exponentiating reveals that w� > N�(D) for the particular multi-index � just determined.
(Since the coordinates of w are positive real numbers, no absolute-value signs are needed on the
left-hand side of the inequality.) It follows that if k is a positive integer, and k� denotes the multi-
index (k�1,… , k�n), then wk� > Nk�(D). Consequently, the series ∑� w�∕N�(D) of positive

8



2 Power series

numbers diverges, for there are infinitely many terms larger than 1. This conclusion completes
the proof of the theorem in the special case that the domain D is bounded.

WhenD is unbounded, letDr denote the intersection ofD with the ball of radius r centered at
the origin. Then Dr is a bounded, complete, logarithmically convex Reinhardt domain, and the
preceding analysis applies to Dr. The natural idea of splicing together power series of the type
just constructed for an increasing sequence of values of r is too simplistic, for none of these series
converges throughout the unbounded domain D.

One way to finish the argument (and to advertise coming attractions) is to invoke a famous
theorem of Heinrich Behnke (1898–1979) and his student Karl Stein (1913–2000), usually called
the Behnke–Stein theorem, according to which an increasing union of domains of holomorphy
is again a domain of holomorphy.3 Section 2.5 will show that a convergence domain for a power
series supports some (other) power series that cannot be analytically continued across any bound-
ary point whatsoever. Hence eachDr is a domain of holomorphy, and the Behnke–Stein theorem
implies that D is a domain of holomorphy. Thus D supports some holomorphic function that
cannot be analytically continued across any boundary point of D. This holomorphic function is
represented by a power series that converges in all ofD, andD is the convergence domain of this
power series.

The argument in the preceding paragraph is unsatisfying because, besides being anachronistic
and not self-contained, the argument provides no concrete construction of the required power
series. What follows is a nearly concrete construction that is based on the same idea as the proof
for bounded domains.

Consider the countable set of points outside the closure of D whose coordinates are positive
rational numbers. (There are such points unless D is the whole space, in which case there is
nothing to prove.) Make a redundant list {w(j)}∞j=1 of these points, each point appearing in the
list infinitely often. Since the domain Dj is bounded, the first part of the proof provides a multi-
index �(j) of positive integers such that w(j)�(j) > N�(j)(Dj). Multiplying this multi-index by a
positive integer gives another multi-index with the same property, so there is no harm in assuming
that |�(j + 1)| > |�(j)| for every j. The claim is that

∞
∑

j=1

z�(j)

N�(j)(Dj)
(2.1)

is a power series whose domain of convergence is D.
First of all, the indicated series is a power series, since no two of themulti-indices �(j) are equal

(so there are no common terms in the series that need to be combined). An arbitrary point z in
the interior ofD is inside the bounded domainDk for some value of k, andN�(Dj) ≥ N�(Dk) forevery � when j > k. Therefore the sum of absolute values of terms in the tail of the series (2.1) is
dominated by∑� |z�|∕N�(Dk), and the latter series converges for the specified point z insideDk

3H. Behnke and K. Stein, Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität,Mathe-
matische Annalen 116 (1938) 204–216. After the war, Behnke had several other students who became prominent
mathematicians, including Hans Grauert (1930–2011), Friedrich Hirzebruch (1927–2012), and Reinhold Rem-
mert (born 1930).

9
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2 Power series

by the argument in the first part of the proof. Thus the convergence domain of the indicated series
is at least as large as D.
On the other hand, if the series were to converge absolutely in some neighborhood of a point

outsideD, then the series would converge at some point � outside the closure ofD having positive
rational coordinates. Since there are infinitely many values of j for which w(j) = � , the series

∞
∑

j=1

� �(j)

N�(j)(Dj)

has (by construction) infinitely many terms larger than 1, and so diverges. Thus the convergence
domain of the constructed series is no larger than D.

In conclusion, every logarithmically convex, complete Reinhardt domain, whether bounded or
unbounded, is the domain of convergence of some power series.
Exercise 6. Every bounded, complete Reinhardt domain inℂ2 can be described as the set of points
(z1, z2) for which

|z1| < r and |z2| < e
−'(|z1|),

where r is some positive real number, and ' is some nondecreasing, real-valued function. Show
that such a domain is logarithmically convex if and only if the function sending z1 to '(|z1|) is asubharmonic function on the disk where |z1| < r.

Aside on infinite dimensions

The story changes when ℂn is replaced by an infinite-dimensional space. Consider, for example,
the power series∑∞

j=1 z
j
j in infinitely many variables z1, z2, . . . . Where does this series converge?

Finitely many of the variables can be arbitrary, and the series will certainly converge if the
remaining variables have modulus less than a fixed number smaller than 1. On the other hand,
the series will diverge if the variables do not eventually have modulus less than 1. In particular,
in the product of countably infinitely many copies of ℂ, there is no open set (with respect to the
product topology) on which the series converges. (A basis for open sets in the product topology
consists of sets for which each of finitely many variables is restricted to an open subset of ℂ
while the remaining variables are left arbitrary.) Holomorphic functions ought to live on open
sets, so apparently this power series in infinitely many variables does not represent a holomorphic
function, even though the series converges at many points.

Perhaps an infinite-product space is not the right setting for this power series. The series could
be considered instead on the Hilbert space of sequences (z1, z2,…) for which∑∞

j=1 |zj|
2 is finite.

In this setting, the power series converges everywhere. Indeed, the square-summability implies
that zj → 0 when j →∞, so |zjj| eventually is dominated by 1∕2j . Similar reasoning shows that
the power series converges uniformly on every ball of radius less than 1 (with an arbitrary center).
Consequently, the series converges uniformly on every compact set. Yet the power series fails to
converge uniformly on the closed unit ball centered at the origin (as follows by considering the
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standard unit basis vectors). In finite dimensions, a series that is everywhere absolutely conver-
gent must converge uniformly on every ball of every radius, but this convenient property breaks
down when the dimension is infinite.

Thus one needs to rethink the theory of holomorphic functions when the dimension is infinite.4
Two of the noteworthy changes in infinite dimension are the existence of inequivalent norms (all
norms on a finite-dimensional vector space are equivalent) and the nonexistence of interior points
of compact sets (closed balls are never compact in infinite-dimensional Banach spaces).

Incidentally, the convergence of infinite series in Banach spaces is a subtle notion. When the
dimension is finite, absolute convergence and unconditional convergence are equivalent concepts;
when the dimension is infinite, absolute convergence implies unconditional convergence but not
conversely. For example, let en denote the nth unit basis element in the space of square-summable
sequences (all entries of en are equal to 0 except the nth one, which equals 1), and consider the
infinite series ∑∞

n=1
1
n
en. This series converges unconditionally (in other words, without regard

to the order of summation) to the square-summable sequence (1, 1
2
, 1
3
,…), yet the series does not

converge absolutely (since the sum of the norms of the terms is the divergent harmonic series).
A famous theorem5 due to Aryeh Dvoretzky (1916–2008) and C. Ambrose Rogers (1920–2005)
says that this example generalizes: in every infinite-dimensional Banach space, there exists an
unconditionally convergent series ∑∞

n=1 xn such that ‖xn‖ = 1∕n (whence the series fails to be
absolutely convergent).

2.3 Elementary properties of holomorphic functions

Convergent power series are local models for holomorphic functions. Power series converge
uniformly on compact sets, so they represent continuous functions that are holomorphic in each
variable separately (when the other variables are held fixed). Thus a reasonable working definition
of a holomorphic function of several complex variables is a function (on an open set) that is
holomorphic in each variable separately and continuous in all variables jointly.6
IfD is a polydisc inℂn, say of polyradius (r1,… , rn), whose closure is contained in the domain

of definition of a function f that is holomorphic in this sense, then iterating the one-dimensional
Cauchy integral formula shows that

f (z) =
( 1
2�i

)n

∫
|w1|=r1

…∫
|wn|=rn

f (w1,… , wn)
(w1 − z1)⋯ (wn − zn)

dw1⋯ dwn

when the point z with coordinates (z1,… , zn) is in the interior of the polydisc. (The assumed
continuity of f guarantees that this iterated integral makes sense and can be evaluated in any
order by Fubini’s theorem.)
4One book on the subject is Jorge Mujica’s Complex Analysis in Banach Spaces, originally published by North-
Holland in 1986 and reprinted by Dover in 2010.

5A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proceedings
of the National Academy of Sciences of the United States of America 36 (1950) 192–197.

6A surprising result of Hartogs states that the continuity hypothesis is superfluous. See Section 2.7.
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By expanding the Cauchy kernel in a power series, one finds from the iterated Cauchy integral
formula (just as in the one-variable case) that a holomorphic function in a polydisc admits a power
series expansion that converges in the (open) polydisc. If the polydisc is centered at the origin, and
the series representation is∑� c�z�, then the coefficient c� is uniquely determined as f (�)(0)∕�!,
where the symbol f (�) abbreviates the derivative )|�|f∕)z�11 ⋯ )z�nn . Every complete Reinhardt
domain is a union of concentric polydiscs, so the uniqueness of the coefficients c� implies that
every holomorphic function in a complete Reinhardt domain admits a power series expansion
that converges in the whole domain. Thus holomorphic functions and convergent power series
are identical notions in complete Reinhardt domains.

By the same arguments as in the single-variable case, the iterated Cauchy integral formula
suffices to establish basic local properties of holomorphic functions. For example, holomorphic
functions are infinitely differentiable, satisfy the Cauchy–Riemann equations in each variable,
obey a local maximum principle, and admit local power series expansions.

An identity principle for holomorphic functions of several variables is valid, but the statement
is different from the usual one-variable statement. Zeroes of holomorphic functions of more than
one variable are never isolated, so requiring an accumulation point of zeroes puts no restriction
on the function. A correct statement is that if a holomorphic function on a connected open set
is identically equal to 0 on some ball, then the function is identically equal to 0. To prove this
statement via a connectedness argument, observe that considering one-dimensional slices shows
that if a holomorphic function is identically equal to 0 in a neighborhood of a point, then the
function is identically equal to 0 in the largest polydisc centered at the point and contained in the
domain of the function.

The iterated Cauchy integral also suffices to show that if a sequence of holomorphic functions
converges normally (uniformly on compact sets), then the limit function is holomorphic. Indeed,
the conclusion is a local property that can be checked on small polydiscs, and the locally uniform
convergence implies that the limit of the iterated Cauchy integrals equals the iterated Cauchy
integral of the limit function. On the other hand, the one-variable integral that counts zeroes inside
a curve lacks an obvious multivariable analogue (since zeroes are not isolated), so a different
technique is needed to verify that Hurwitz’s theorem generalizes from one variable to several
variables.
Exercise 7. Prove a multidimensional version of Hurwitz’s theorem: On a connected open set, the
normal limit of nowhere-zero holomorphic functions is either nowhere zero or identically equal
to zero.

2.4 The Hartogs phenomenon

So far the infinite series under consideration have been Maclaurin series. Studying Laurent series
reveals an interesting new instance of automatic analytic continuation (due to Hartogs).
Theorem 2. Suppose � is a positive number less than 1, and f is a holomorphic function on
{ (z1, z2) ∈ ℂ2 ∶ |z1| < � and |z2| < 1 } ∪ { (z1, z2) ∶ |z1| < 1 and 1 − � < |z2| < 1 }. Then
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f extends to be holomorphic on the unit bidisc, { (z1, z2) ∶ |z1| < 1 and |z2| < 1 }.

The initial domain of definition of f is a multicircular (Reinhardt) domain, but not a complete
Reinhardt domain. There is no loss of generality in considering a “Hartogs figure” having two
pieces of the same width, for an asymmetric figure can be shrunk to obtain a symmetric one. The
theorem generalizes to dimensions greater than 2, as should be evident from the following proof.
Proof. On each one-dimensional slice where z1 is fixed, the function that sends z2 to f (z1, z2) isholomorphic at least in an annulus of inner radius 1 − � and outer radius 1, so f (z1, z2) can be
expanded in a Laurent series∑∞

k=−∞ ck(z1)z
k
2. Moreover, if r is an arbitrary radius between 1 − �

and 1, then
ck(z1) =

1
2�i ∫

|z2|=r

f (z1, z2)
zk+12

dz2. (2.2)

When |z1| < 1 and |z2| = r, the function f (z1, z2) is jointly continuous in both variables and
holomorphic in z1, so this integral representation shows (by Morera’s theorem, say) that each
coefficient ck(z1) is a holomorphic function of z1 in the unit disc.When |z1| < �, the Laurent series for f (z1, z2) is actually a Maclaurin series. Accordingly,
if k < 0, then the coefficient ck(z1) is identically equal to zero when |z1| < �. By the one-
dimensional identity theorem, the holomorphic function ck(z1) is identically equal to zero in the
whole unit disc when k < 0. Thus the series expansion for f (z1, z2) reduces to ∑∞

k=0 ck(z1)z
k
2,a Maclaurin series for every value of z1 in the unit disk. This series defines the required holo-

morphic extension of f , assuming that the series converges uniformly on compact subsets of
{ (z1, z2) ∶ |z1| < 1 and |z2| < r }.To verify this normal convergence, fix an arbitrary positive number s less than 1, and observe
that the continuous function |f (z1, z2)| has some finite upper boundM on the compact set where
|z1| ≤ s and |z2| = r. Estimating the integral representation (2.2) for the series coefficient shows
that |ck(z1)| ≤M∕rk when |z1| ≤ s. Consequently, if t is an arbitrary positive number less than r,
then the series∑∞

k=0 ck(z1)z
k
2 converges absolutely when |z1| ≤ s and |z2| ≤ t by comparison with

the convergent geometric series ∑∞
k=0M(t∕r)k. Since the required locally uniform convergence

holds, the series∑∞
k=0 ck(z1)z

k
2 does define the required holomorphic extension of f to the whole

bidisc.
A similar method yields a result about “internal” analytic continuation rather than “external”

analytic continuation.
Theorem 3. If r is a positive radius less than 1, and f is a holomorphic function in the spherical
shell { (z1, z2) ∈ ℂ2 ∶ r2 < |z1|2 + |z2|2 < 1 }, then f extends to be a holomorphic function on
the whole unit ball.

The theorem is stated in dimension 2 for convenience of exposition, but a corresponding result
holds both in higher dimension and in other geometric settings. A more general theorem (to be
proved later) states that ifK is a compact subset of an open set Ω in ℂn (where n ≥ 2), and Ω⧵K
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is connected, then every holomorphic function on Ω ⧵ K extends to be a holomorphic function
on Ω. Theorems of this type are known collectively as “the Hartogs phenomenon.”

In particular, Theorem 3 demonstrates that a holomorphic function of two complex variables
cannot have an isolated singularity, for the function continues analytically across a compact hole in
its domain. The same reasoning applied to the reciprocal of the function shows that a holomorphic
function of two (or more) complex variables cannot have an isolated zero.
Proof of Theorem 3. As in the preceding proof, expand the function f (z1, z2) as a Laurent series
∑∞

k=−∞ ck(z1)z
k
2 for an arbitrary fixed value of z1. Showing that each coefficient ck(z1) dependsholomorphically on z1 in the unit disc is not as easy as before, because there is no evident globalintegral representation for ck(z1). But holomorphicity is a local property, and for each fixed z1 inthe unit disc there is a neighborhood U of z1 and a corresponding radius s such that the Cartesianproduct U × { z2 ∈ ℂ ∶ |z2| = s } is contained in a compact subset of the spherical shell.

Consequently, each coefficient ck(z1) admits a local integral representation analogous to (2.2)
and therefore defines a holomorphic function on the unit disc.

When |z1| is close to 1, the Laurent series for f (z1, z2) is aMaclaurin series, so when k < 0, the
function ck(z1) is identically equal to 0 on an open subset of the unit disc and consequently on thewhole disc. Therefore the series representation for f (z1, z2) is aMaclaurin series for every z1. Thelocally uniform convergence of the series follows as before from the local integral representation
for ck(z1). Therefore the series defines the required holomorphic extension of f (z1, z2) to the
whole unit ball.

2.5 Natural boundaries

The one-dimensional power series∑∞
k=0 z

k has the unit disc as its domain of convergence, yet the
function represented by the series, which is 1∕(1 − z), extends holomorphically across most of
the boundary of the disc. On the other hand, there exist power series that converge in the unit disc
and have the unit circle as “natural boundary,” meaning that the function represented by the series
does not continue analytically across any boundary point of the disc whatsoever. One concrete
example of this phenomenon is the gap series ∑∞

k=1 z
2k , which has an infinite radial limit at the

boundary for a dense set of angles. The following theorem7 says that in higher dimensions too,
every convergence domain (that is, every logarithmically convex, complete Reinhardt domain) is
the natural domain of existence of some holomorphic function.
Theorem 4 (Cartan–Thullen). The domain of convergence of a multivariable power series is a
domain of holomorphy. More precisely, for every domain of convergence there exists some power
series that converges in the domain and that is singular at every boundary point.
7Henri Cartan and Peter Thullen, Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränder-
lichen: Regularitäts- und Konvergenzbereiche, Mathematische Annalen 106 (1932) number 1, 617–647. See
Corollary 1 on page 637 of the cited article.
Henri Cartan (1904–2008) was a son of the mathematician Élie Cartan (1869–1951). Peter Thullen (1907–

1996) emigrated to Ecuador because he objected to the Nazi regime in Germany. Thullen subsequently had a
career in political economics and worked for the United Nations International Labour Organization.
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The word “singular” does not necessarily mean that the function blows up. To say that a power
series is singular at a boundary point of the domain of convergence means that the series does not
admit a direct analytic continuation to a neighborhood of the point. A function whose modulus
tends to infinity at a boundary point is singular at that point, but so is a function whose modulus
tends to zero exponentially fast.

To illustrate some useful techniques, I shall give two proofs of the theorem (different from the
original proof). Both proofs are nonconstructive. The arguments show the existence of many
noncontinuable series without actually exhibiting a concrete one.
Proof of Theorem 4 using the Baire category theorem. Suppose a power series ∑� c�z� has do-main of convergence D. Since the two series ∑� c�z� and ∑

� |c�|z� have the same region of
absolute convergence, there is no loss of generality in assuming from the outset that every coef-
ficient c� is a nonnegative real number.

The topology of uniform convergence on compact sets is metrizable, and the space of holomor-
phic functions on D becomes a complete metric space when provided with this topology. Hence
the Baire category theorem is applicable. The goal is to prove that the holomorphic functions
on D that extend holomorphically across some boundary point form a set of first category in this
metric space. A consequence is the existence of a power series that is singular at every boundary
point of D; indeed, most power series that converge in D are singular at every boundary point.

A first step toward the goal is a multidimensional version of an observation that dates back to
the end of the nineteenth century.
Lemma 1 (Multidimensional Pringsheim lemma). If a power series has real, nonnegative coeffi-
cients, then the series is singular at every boundary point of the domain of convergence at which
all the coordinates are nonnegative real numbers.
Proof. Seeking a contradiction, suppose that the holomorphic function f (z) represented by the
power series∑� c�z� (where z ∈ ℂn) extends holomorphically to a neighborhood of some bound-
ary point p of the domain of convergence, where the coordinates of p are nonnegative real num-
bers. Bumping p reduces to the situation that the coordinates of p are strictly positive. Making a
dilation of coordinates modifies the coefficients of the series by positive factors, so there is no loss
of generality in supposing additionally that ‖p‖2 = 1 (where ‖ ⋅ ‖2 denotes the usual Euclideannorm on the vector spaceℂn). Let " be a positive number less than 1 such that the closed ball with
center p and radius 3" lies inside the neighborhood of p to which f extends holomorphically.
The closed ball of radius 2" centered at the point (1−")p lies inside the indicated neighborhood

of p, for if
‖z − (1 − ")p‖2 ≤ 2",

then the triangle inequality implies that
‖z − p‖2 = ‖z − (1 − ")p − "p‖2 ≤ ‖z − (1 − ")p‖2 + "‖p‖2 ≤ 2" + " = 3".

Consequently, the Taylor series of f about the center (1 − ")p converges absolutely throughout
the closed ball of radius 2" centered at this point, and in particular at the point (1+")p. The value
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of this Taylor series at the point (1 + ")p equals
∑

�

1
�!
f (�) ((1 − ")p) (2"p)� .

The point (1 − ")p lies inside the domain of convergence of the original power series∑� c�z�,so derivatives of f at (1 − ")p can be computed by differentiating that series: namely,
f (�) ((1 − ")p) =

∑

�≥�

�!
(� − �)!

c� ((1 − ")p)
�−� .

Combining the preceding two expressions shows that the series
∑

�

(

∑

�≥�

(

�
�

)

c� ((1 − ")p)
�−�

)

(2"p)�

converges. Since all the quantities involved in the sum are nonnegative real numbers, the parenthe-
ses can be removed and the order of summation can be reversedwithout affecting the convergence.
The sum then simplifies (via the binomial expansion) to the series

∑

�
c� ((1 + ")p)

� .

This convergent series is the original series for f evaluated at the point (1+ ")p. The comparison
test implies that the series for f is absolutely convergent in the polydisc determined by the point
(1 + ")p, and in particular in a neighborhood of p. (This step uses the reduction to the case that
no coordinate of p is equal to 0.) Thus p is not a boundary point of the domain of convergence,
contrary to the hypothesis. This contradiction shows that f must be singular at p after all.

In view of the lemma, the power series∑� c�z� (now assumed to have nonnegative coefficients)
is singular at all the boundary points of D, the domain of convergence, having nonnegative real
coordinates. (If there are no boundary points, then eitherD = ℂn orD = ∅, and there is nothing
to prove.) An arbitrary boundary point can be written in the form (r1ei�1 ,… , rnei�n), where each rjis nonnegative, and the lemma implies that the power series∑� c�e−i(�1�1+⋯+�n�n)z� is singular atthis boundary point. In other words, for every boundary point there exists some power series that
converges in D but is singular at the boundary point.

Now choose a countable dense subset {pj}∞j=1 of the boundary of D. For arbitrary natural
numbers j and k, the space of holomorphic functions on D ∪ B(pj , 1∕k) embeds continuously
into the space of holomorphic functions onD via the restrictionmap. The image of the embedding
is not the whole space, for the preceding discussion produces a power series that does not extend
to the ball B(pj , 1∕k). By a corollary of the Baire category theorem (dating back to Banach’s
famous book8), the image of the embedding must be of first category (the cited theorem says that
8Stefan Banach, Théorie des opérations linéaires, 1932, second edition 1978, currently available through AMS
Chelsea Publishing; an English translation, Theory of Linear Operations, is currently available through Dover
Publications. The relevant statement is the first theorem in Chapter 3. For a modern treatment, see section 2.11 of
Walter Rudin’s Functional Analysis; a specialization of the theorem proved there is that a continuous linear map
between Fréchet spaces (locally convex topological vector spaces equipped with complete translation-invariant
metrics) either is an open surjection or has image of first category.
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if the image were of second category, then it would be the whole space, which it is not). Thus the
set of power series on D that extend some distance across some boundary point is a countable
union of sets of first category, hence itself a set of first category. Accordingly, most power series
that converge in D have the boundary of D as natural boundary.
Proof of Theorem 4 using probability. The idea of the second proof is to show that with proba-
bility 1, a randomly chosen power series that converges in D is noncontinuable.9 As a warm-up,
consider the case of the unit disc in ℂ. Suppose that the series ∑∞

n=0 cnz
n has radius of conver-

gence equal to 1. The claim is that∑∞
n=0 ±cnz

n has the unit circle as natural boundary for almost
all choices of the plus-or-minus signs.

The statement can be made precise by introducing the Rademacher functions. When n is a
nonnegative integer, the Rademacher function "n(t) can be defined on the interval [0, 1] as follows:

"n(t) = sgn sin(2n�t) =

⎧

⎪

⎨

⎪

⎩

1, if sin(2n�t) > 0,
−1, if sin(2n�t) < 0,
0, if sin(2n�t) = 0.

Alternatively, the Rademacher functions can be described in terms of binary expansions. If a
number t between 0 and 1 is written in binary form as ∑∞

n=1 an(t)∕2
n, then "n(t) = 1 − 2an(t),except for the finitely many rational values of t that can be written with denominator 2n (which

in any case are values of t for which an(t) is not well defined).
Exercise 8. Show that the Rademacher functions form an orthonormal system in the spaceL2[0, 1]
of square-integrable, real-valued functions. Do the Rademacher functions a complete orthonor-
mal system?

The Rademacher functions provide a mathematical model for the notion of “random plus and
minus signs.” In the language of probability theory, the Rademacher functions are independent
and identically distributed symmetric random variables. Each function takes the value +1 with
probability 1∕2, the value −1 with probability 1∕2, and the value 0 on a set of measure zero (in
fact, on a finite set). The intuitive meaning of “independence” is that knowing the value of one
particular Rademacher function gives no information about the value of any other Rademacher
function.

Here is a precise version of the statement about random series being noncontinuable.10
Theorem 5 (Paley–Zygmund). If the power series

∑∞
n=0 cnz

n has radius of convergence equal
to 1, then for almost every value of t in [0, 1], the power series

∑∞
n=0 "n(t)cnz

n has the unit circle
as natural boundary.

9A reference for this section is Jean-Pierre Kahane, Some Random Series of Functions, Cambridge University Press;
see especially Chapter 4.

10R. E. A. C. Paley and A. Zygmund, On some series of functions, (1), Proceedings of the Cambridge Philosoph-
ical Society 26 (1930), number 3, 337–357 (announcement of the theorem without proof); On some series of
functions, (3), Proceedings of the Cambridge Philosophical Society 28 (1932), number 2, 190–205 (proof of the
theorem).
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The words “almost every” mean, as usual, that the exceptional set is a subset of [0, 1] having
measure zero. In probabilists’ language, one says that the power series “almost surely” has the
unit circle as natural boundary. Implicit in the conclusion is that the radius of convergence of the
power series ∑∞

n=0 "n(t)cnz
n is almost surely equal to 1; this property is evident since the radius

of convergence depends only on the moduli of the coefficients in the series, and almost surely
|"n(t)cn| = |cn| for every n.
Proof. It suffices to show for an arbitrary point p on the unit circle that the set of points t in the
unit interval for which the power series ∑∞

n=0 "n(t)cnz
n continues analytically across p is a set

of measure zero. Indeed, take a countable set of points {pj}∞j=1 that is dense in the unit circle:
the union over j of the corresponding exceptional sets of measure zero is still a set of measure
zero, and when t is in the complement of this set, the power series ∑∞

n=0 "n(t)cnz
n is nowhere

continuable.
So fix a point p on the unit circle. A technicality needs to be checked: is the set of values of t

for which the power series∑∞
n=0 "n(t)cnz

n continues analytically to a neighborhood of the point p
a measurable subset of the interval [0, 1]? In probabilists’ language, the question is whether
continuability across p is an event. The answer is affirmative for the following reason.

A holomorphic function f on the unit disc extends analytically across the boundary point p
if and only if there is some rational number r greater than 1∕2 such that the Taylor series of f
centered at the point p∕2 has radius of convergence greater than r. An equivalent statement is
that

lim sup
k→∞

(|f (k)(p∕2)|∕k!)1∕k < 1∕r,

or that there exists a positive rational number s less than 2 and a natural numberN such that
|f (k)(p∕2)| < k! sk whenever k > N .

If ft(z) denotes the series∑∞
n=0 "n(t)cnz

n, then

|f (k)t (p∕2)| =
|

|

|

|

∞
∑

n=k
"n(t)cn

n!
(n − k)!

(p∕2)n−k
|

|

|

|

.

The absolutely convergent series on the right-hand side is a measurable function of t since each
"n(t) is a measurable function, so the set of t in the interval [0, 1] for which |f (k)t (p∕2)| < k! sk isa measurable set, say Ek. The set of points t for which the power series ∑∞

n=0 "n(t)cnz
n extends

across the point p is then
⋃

0<s<2
s∈ℚ

⋃

N≥1

⋂

k>N
Ek,

which again is a measurable set, being obtained from measurable sets by countably many opera-
tions of taking intersections and unions.

Notice too that extendability of∑∞
n=0 "n(t)cnz

n across the boundary point p is a “tail event”: the
property is insensitive to changing any finite number of terms of the series. A standard result from
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probability known as Kolmogorov’s zero–one law implies that this event either has probability 0
or has probability 1.

Moreover, each Rademacher function has the same distribution as its negative (both "n and−"ntake the value 1 with probability 1∕2 and the value −1 with probability 1∕2), so a property that is
almost sure for the series∑∞

n=0 "n(t)cnz
n is almost sure for the series∑∞

n=0(−1)
n"n(t)cnzn or for anysimilar series obtained by changing the signs according to a fixed pattern that is independent of t.

The intuition is that if S is a measurable subset of [0, 1], and each element t of S is represented as
a binary expansion∑∞

n=1 an(t)∕2
n, then the set S ′ obtained by systematically flipping the bit a5(t)from 0 to 1 or from 1 to 0 has the same measure as the original set S; and similarly if multiple

bits are flipped simultaneously.
Now suppose, seeking a contradiction, that there is a neighborhood U of p to which the power

series∑∞
n=0 "n(t)cnz

n continues analytically with positive probability, hence with probability 1 by
the zero–one law. This neighborhood contains, for some natural number k, an arc of the unit circle
of length greater than 2�∕k. For each nonnegative integer n, set bn equal to −1 if n is a multiple
of k and+1 otherwise. By the preceding observation, the power series∑∞

n=0 bn"n(t)cnz
n continues

analytically to U with probability 1. The difference of two continuable series is continuable, so
the power series ∑∞

j=0 "jk(t)cjkz
jk (containing only those powers of z that are divisible by k)

continues to the neighborhood U with probability 1. This new series is invariant under rotation
by every integral multiple of angle 2�∕k, so this series almost surely continues analytically to a
neighborhood of the whole unit circle. In other words, the power series∑∞

j=0 "jk(t)cjkz
jk almost

surely has radius of convergence greater than 1. Fix a natural number l between 1 and k − 1
and repeat the argument, changing bn to be equal to −1 if n is congruent to l modulo k and
1 otherwise. It follows that the power series ∑∞

j=0 "jk+l(t)cjk+lz
jk+l, which equals zl times the

rotationally invariant series∑∞
j=0 "jk+l(t)cjk+lz

jk, almost surely has radius of convergence greater
than 1. Adding these series for the different residue classes modulo k recovers the original random
series∑∞

n=0 "n(t)cnz
n, which therefore has radius of convergence greater than 1 almost surely. But

as observed just before the proof, the radius of convergence of ∑∞
n=0 "n(t)cnz

n is almost surely
equal to 1. The contradiction shows that the power series ∑∞

n=0 "n(t)cnz
n does, after all, have the

unit circle as natural boundary almost surely.
Now consider the multidimensional situation: suppose that D is the domain of convergence

in ℂn of the power series ∑� c�z�. Let "� denote one of the Rademacher functions, a different
one for each multi-index �. The goal is to show that almost surely, the power series∑� "�(t)c�z�continues analytically across no boundary point of D. It suffices to show for one fixed boundary
point p with nonzero coordinates that the series almost surely is singular at p; one gets the full
conclusion as before by considering a countable dense sequence in the boundary.

Having fixed such a boundary point p, observe that if � is an arbitrary positive number, then the
power series∑� c�z� fails to converge absolutely at the dilated point (1 + �)p; for in the contrarycase, the series would converge absolutely in the whole polydisc centered at 0 determined by
the point (1 + �)p, so p would be in the interior of the convergence domain D instead of on the
boundary. (The assumption that all coordinates of p are nonzero is used here.) Consequently, there
are infinitely many values of the multi-index � for which |c�[(1 + 2�)p]�| > 1; for otherwise, the
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series∑� c�[(1 + �)p]� would converge absolutely by comparison with the convergent geometric
series ∑�[(1 + �)∕(1 + 2�)]|�|. In other words, there are infinitely many values of � for which
|c�p�| > 1∕(1 + 2�)|�|.Now consider the single-variable random power series obtained by restricting the multivariable
random power series to the complex line through p. This series, as a function of � in the unit disc
in ℂ, is ∑∞

k=0

(
∑

|�|=k "�(t)c�p�
)

�k. The goal is to show that this single-variable power series
almost surely has radius of convergence equal to 1 and almost surely is singular at the point on
the unit circle where � = 1. It then follows that the multivariable random series ∑� "�(t)c�z�almost surely is singular at p.
The deduction that the one-variable series almost surely is singular at 1 follows from the

same argument used in the proof of the Paley–Zygmund theorem. Although the series coeffi-
cient ∑

|�|=k "�(t)c�p� is no longer a Rademacher funtion, it is still a symmetric random variable
(symmetric means that the variable is equally distributed with its negative), and the coefficients
for different values of k are independent, so the same proof applies.
What remains to show, then, is that the single-variable power series almost surely has radius

of convergence equal to 1. The verification of this property requires deducing information about
the size of the coefficients ∑

|�|=k "�(t)c�p� from the knowledge that |c�p�| > 1∕(1 + 2�)|�| for
infinitely many values of �.
The orthonormality of the Rademacher functions implies that

∫

1

0

|

|

|

|

∑

|�|=k
"�(t)c�p�

|

|

|

|

2

dt =
∑

|�|=k
|c�p

�
|

2.

The sum on the right-hand side is at least as large as any single term, so there are infinitely many
values of k for which

∫

1

0

|

|

|

|

∑

|�|=k
"�(t)c�p�

|

|

|

|

2

dt > 1
(1 + 2�)2k

.

The issue now is to obtain some control on the function ||
|

∑

|�|=k "�(t)c�p�
|

|

|

2 from the lower bound
on its integral.

A technique for obtaining this control is due to Paley and Zygmund.11 The following lemma,
implicit in the cited paper, is sometimes called the Paley–Zygmund inequality.
Lemma 2. If g∶ [0, 1] → ℝ is a nonnegative, square-integrable function, then the Lebesgue
measure of the set of points at which the value of g is greater than or equal to 1

2
∫ 1
0 g(t) dt is atleast

(

∫ 1
0 g(t) dt

)2

4 ∫ 1
0 g(t)2 dt

. (2.3)

11See Lemma 19 on page 192 of R. E. A. C. Paley and A. Zygmund, On some series of functions, (3), Proceedings
of the Cambridge Philosophical Society 28 (1932), number 2, 190–205.
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Proof. Let S denote the indicated subset of [0, 1] and � its measure. On the set [0, 1] ⧵ S, the
function g is bounded above by the constant 1

2
∫ 1
0 g(t) dt, so

∫

1

0
g(t) dt = ∫S

g(t) dt + ∫[0,1]⧵S
g(t) dt

≤ ∫S
g(t) dt + (1 − �) ⋅ 1

2 ∫

1

0
g(t) dt

≤ ∫S
g(t) dt + 1

2 ∫

1

0
g(t) dt.

Therefore
1
4

(

∫

1

0
g(t) dt

)2

≤
(

∫S
g(t) dt

)2

.

By the Cauchy–Schwarz inequality,
(

∫S
g(t) dt

)2

≤ � ∫S
g(t)2 dt ≤ � ∫

1

0
g(t)2 dt.

Combining the preceding two inequalities yields the desired conclusion (2.3).
Now apply the lemma with g(t) equal to |

|

|

∑

|�|=k "�(t)c�p�
|

|

|

2. The integral in the denominator
of (2.3) equals

∫

1

0

|

|

|

|

∑

|�|=k
"�(t)c�p�

|

|

|

|

4

dt. (2.4)

Exercise 9. The integral of the product of four Rademacher functions equals 0 unless the four
functions are equal in pairs (possibly all four functions are equal).

There are three ways to group four items into two pairs, so the integral (2.4) equals
∑

|�|=k
|c�p

�
|

4 + 3
∑

|�|=k
|�|=k
�≠�

|c�p
�
|

2
|c�p

�
|

2.

This expression is no more than 3(∑
|�|=k |c�p�|2

)2, or 3(∫ 1
0 g(t) dt

)2. Accordingly, the quotient
in (2.3) is bounded below by 1∕12 for the indicated choice of g. (The specific value 1∕12 is not
significant; what matters is the positivity of this constant.)

The upshot is that there are infinitely many values of k for which there exists a subset of the
interval [0, 1] of measure at least 1∕12 such that

|

|

|

|

∑

|�|=k
"�(t)c�p�

|

|

|

|

1∕k

> 1
21∕{2k}(1 + 2�)
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2 Power series

for every t in this subset. The right-hand side exceeds 1∕(1 + 3�) when k is sufficiently large.
For different values of k, the expressions on the left-hand side are independent functions. The
probability that two independent events occur simultaneously is the product of their probabilities,
so if m is a natural number, and m of the indicated values of k are selected, then the probability
that there is none for which

|

|

|

|

∑

|�|=k
"�(t)c�p�

|

|

|

|

1∕k

> 1
(1 + 3�)

(2.5)

is at most (11∕12)m. Since (11∕12)m tends to 0 as m tends to infinity, the probability is 1 that
inequality (2.5) holds for some value of k. For an arbitrary natural numberN , the same conclusion
holds (for the same reason) for some value of k larger thanN . The intersection of countably many
sets of probability 1 is again a set of probability 1, so

lim sup
k→∞

|

|

|

|

∑

|�|=k
"�(t)c�p�

|

|

|

|

1∕k

≥ 1
(1 + 3�)

with probability 1. (The argument in this paragraph is nothing but the proof of the standard
Borel–Cantelli lemma from probability theory.)

Thus the one-variable power series∑∞
k=0

(
∑

|�|=k "�(t)c�p�
)

�k almost surely has radius of con-
vergence bounded above by 1 + 3�. But � is an arbitrary positive number, so the radius of con-
vergence is almost surely bounded above by 1. The radius of convergence is surely no smaller
than 1, for the series converges absolutely when |�| < 1. Therefore the radius of convergence is
almost surely equal to 1. This conclusion completes the proof.
Open Problem. Prove the Cartan–Thullen theorem by using a multivariable gap series (avoiding
both probabilistic methods and the Baire category theorem).

2.6 Summary: domains of convergence

The preceding discussion shows that for complete Reinhardt domains, the following properties
are all equivalent.

• The domain is logarithmically convex.
• The domain is the domain of convergence of some power series.
• The domain is a domain of holomorphy.

In other words, the problem of characterizing domains of holomorphy is solved for the special
case of complete Reinhardt domains.
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2.7 Separate holomorphicity implies joint
holomorphicity

The working definition of a holomorphic function of two (or more) variables is a continuous
function that is holomorphic in each variable separately. Hartogs proved that the hypothesis of
continuity is superfluous.
Theorem 6. If f (z1, z2) is holomorphic in z1 for each fixed z2 and holomorphic in z2 for each
fixed z1, then f (z1, z2) is holomorphic jointly in the two variables; that is, f (z1, z2) can be rep-
resented locally as a convergent power series in two variables.

The analogous theorem holds also for functions of n complex variables with minor adjustments
to the proof. But there is no corresponding theorem for functions of real variables. Indeed, the
function on ℝ2 that equals 0 at the origin and equals xy∕(x2 + y2) when (x, y) ≠ (0, 0) is real-
analytic in each variable separately but is not even continuous as a function of the two variables
jointly. A large literature exists about deducing properties that hold in all variables jointly from
properties that hold in each variable separately.12
The proof of Hartogs depends on some prior work ofWilliam FoggOsgood (1864–1943). Here

is the initial step.13
Theorem 7 (Osgood, 1899). If f (z1, z2) is holomorphic in each variable separately and (locally)
bounded in both variables jointly, then f (z1, z2) is holomorphic in both variables jointly.

Proof. The conclusion is local and is invariant under translations and dilations of the coordinates,
so there is no loss of generality in supposing that the domain of definition of f is the unit bidisc
and that the modulus of f is bounded above by 1 in the bidisc.

There are two natural ways to proceed. Evidently the product of a holomorphic function of z1and a holomorphic function of z2 is jointly holomorphic, so onemethod is to show that f (z1, z2) isthe limit of a normally convergent series of such product functions. An alternative method is to
show directly that f is jointly continuous, whence f can be represented locally by the iterated
Cauchy integral formula.

Method 1 For each fixed value of z1, the function sending z2 to f (z1, z2) is holomorphic,
hence can be expanded in a power series ∑∞

k=0 ck(z1)z
k
2 that converges for z2 in the unit disc.

Moreover, the uniform bound on f implies that |ck(z1)| ≤ 1 for each k by Cauchy’s estimate for
derivatives. Accordingly, the series ∑∞

k=0 ck(z1)z
k
2 converges uniformly in both variables jointly

in an arbitrary compact subset of the open unit bidisc. All that remains to show, then, is that the
coefficient function ck(z1) is a holomorphic function of z1 in the unit disc for each k.
12See a survey article by Marek Jarnicki and Peter Pflug, Directional regularity vs. joint regularity, Notices of the

American Mathematical Society 58 (2011), number 7, 896–904. For more detail, see their book Separately
Analytic Functions, European Mathematical Society, 2011.

13W. F. Osgood, Note über analytische Functionen mehrerer Veränderlichen, Mathematische Annalen 52 (1899),
number 2–3, 462–464.
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Now c0(z1) = f (z1, 0), so c0(z1) is a holomorphic function of z1 in the unit disc by the hypoth-esis of separate holomorphicity. Proceed by induction. Suppose, for some natural number k, that
cj(z1) is a holomorphic function of z1 whenever j < k. Observe that

f (z1, z2) −
∑k−1

j=0 cj(z1)z
j
2

zk2
= ck(z1) +

∞
∑

m=1
ck+m(z1)zm2 when z2 ≠ 0.

When z2 tends to 0, the right-hand side converges uniformly with respect to z1 to ck(z1), hence sodoes the left-hand side. For every fixed nonzero value of z2, the left-hand side is a holomorphic
function of z1 by the induction hypothesis and the hypothesis of separate holomorphicity. Ac-
cordingly, the function ck(z1) is the normal limit of holomorphic functions, hence is holomorphic.
This conclusion completes the induction argument and also the proof of the theorem.

Method 2 In view of the local nature of the problem, checking continuity at the origin will
suffice. By the triangle inequality,

|f (z1, z2) − f (0, 0)| ≤ |f (z1, z2) − f (z1, 0)| + |f (z1, 0) − f (0, 0)|.

When z1 is held fixed, the function that sends z2 to f (z1, z2)−f (z1, 0) is holomorphic in the unit
disc, bounded by 2, and equal to 0 at the origin. Accordingly, the Schwarz lemma implies that
|f (z1, z2) − f (z1, 0)| ≤ 2|z2|. For the same reason, |f (z1, 0) − f (0, 0)| ≤ 2|z1|. Thus

|f (z1, z2) − f (0, 0)| ≤ 2(|z1| + |z2|),

so f is indeed continuous at the origin.
Subsequently, Osgood made further progress but failed to achieve the ultimate result.14

Theorem 8 (Osgood, 1900). If f (z1, z2) is holomorphic in each variable separately, then there
is a dense open subset of the domain of f on which f is holomorphic in both variables jointly.

Proof. The goal is to show that if D1 ×D2 is an arbitrary closed bidisc contained in the domain
of definition of f , then there is an open subset ofD1×D2 on which f is jointly holomorphic. Let
Ek denote the set of values of the variable z1 in D1 such that |f (z1, z2)| ≤ k whenever z2 ∈ D2.The continuity of |f (z1, z2)| in z1 for fixed z2 implies that Ek is a closed subset of D1. (Indeed,for each fixed z2, the set { z1 ∈ D1 ∶ |f (z1, z2)| ≤ k } is closed, and Ek is the intersection of
these closed sets as z2 runs over D2.) Moreover, every point of D1 is contained in some Ek. Bythe Baire category theorem, there is some value of k for which the closed set Ek has nonvoidinterior. Consequently, there is an open subset of D1 ×D2 on which the separately holomorphic
function f is bounded, hence holomorphic by Osgood’s previous theorem.

14W. F. Osgood, Zweite Note über analytische Functionen mehrerer Veränderlichen, Mathematische Annalen 53
(1900), number 3, 461–464.
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Proof of Theorem 6 on separate holomorphicity. In view of Theorem 8 and the local nature of the
conclusion, it suffices to prove that if f (z1, z2) is separately holomorphic on a neighborhood of the
closed unit bidisc, and if there exists a positive � less than 1 such that f is jointly holomorphic in
a neighborhood of the smaller bidisc where |z2| ≤ � and |z1| ≤ 1, then f is jointly holomorphic
on the open unit bidisc.

In this situation, write f (z1, z2) as a series∑∞
k=0 ck(z1)z

k
2. Each coefficient function ck(z1) canbe written as an integral

1
2�i ∫

|z2|=�

f (z1, z2)
zk+12

dz2,

so the joint holomorphicity of f on the small bidisc implies that ck(z1) is a holomorphic function
of z1 in the unit disc. IfM is an upper bound for |f (z1, z2)| when |z2| ≤ � and |z1| ≤ 1, then
|ck(z1)| ≤M∕�k for every k. Accordingly, there is a (large) constant B such that |ck(z1)|1∕k < Bfor every k. Moreover, for each fixed z1, the series∑∞

k=0 ck(z1)z
k
2 converges for z2 in the unit disc,so lim supk→∞ |ck(z1)|1∕k ≤ 1 for every z1 by the formula for the radius of convergence.

The goal now is to show that if " is an arbitrary positive number and r is an arbitrary radius
slightly less than 1, then there exists a natural numberN such that |ck(z1)|1∕k < 1+"when k ≥ N
and |z1| ≤ r. This property implies that the series ∑∞

k=0 ck(z1)z
k
2 converges uniformly on the set

where |z1| ≤ r and |z2| ≤ 1∕(1 + 2"), so f (z1, z2) is holomorphic on the interior of this set.
Since r and " are arbitrary, the function f (z1, z2) is jointly holomorphic on the open unit bidisc.
Letting uk(z1) denote the subharmonic function |ck(z1)|1∕k reduces the problem to the following
technical lemma, after which the proof will be complete.
Lemma 3. Suppose {uk}∞k=1 is a sequence of subharmonic functions on the open unit disc that are
uniformly bounded above by a (large) constant B, and suppose lim supk→∞ uk(z) ≤ 1 for every zin the unit disc. Then for every positive " and every radius r less than 1, there exists a natural
numberN such that uk(z) ≤ 1 + " when |z| ≤ r and k ≥ N .
Proof. A compactness argument reduces the problem to showing that for each point z0 in the
closed disk of radius r, there is a neighborhood U of z0 and a natural numberN such that uk(z) ≤
1 + " when z ∈ U and k ≥ N . The definition of lim sup provides only a natural number N
depending on z such that uk(z) ≤ 1 + " when k ≥ N . The goal is to obtain an analogous
inequality that is locally uniform (in other words,N should be independent of the point z).
Since uk is upper semicontinuous, there is a neighborhood of z0 in which uk remains less than

1 + ", but the size of this neighborhood might depend on k. The key idea for proving a locally
uniform estimate is to apply the subaveraging property of subharmonic functions, observing that
integrals over discs are stable under small perturbations of the center point because of the uniform
bound on the functions. Here are the details.

Fix a positive number � less than (1 − r)∕3. Fatou’s lemma implies that

∫
|z−z0|<�

lim inf
k→∞

(B − uk(z)) dAreaz ≤ lim infk→∞ ∫
|z−z0|<�

(B − uk(z)) dAreaz,
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so canceling B��2, changing the signs, and invoking the hypothesis shows that
��2 ≥ ∫

|z−z0|<�
lim sup
k→∞

uk(z) dAreaz ≥ lim sup
k→∞ ∫

|z−z0|<�
uk(z) dAreaz.

Accordingly, there is a natural numberN such that

∫
|z−z0|<�

uk(z) dAreaz <
(

1 + 1
2
"
)

��2 when k ≥ N .

If 
 is a (small) positive number less than �, and z1 is a point such that |z1 − z0| < 
 , then the
disc of radius � + 
 centered at z1 contains the disc of radius � centered at z0, with an excess of
area equal to �(
2 + 2
�). The subaveraging property of subharmonic functions implies that

�(� + 
)2uk(z1) ≤ ∫
|z−z1|<�+


uk(z) dAreaz <
(

1 + 1
2
"
)

��2 + B�
(


2 + 2
�
)

when k ≥ N , or

uk(z1) <

(

1 + 1
2
"
)

��2 + B�(
2 + 2
�)

�(� + 
)2
.

The limit of the right-hand side when 
 → 0 equals 1 + 1
2
", so there is a small positive value of 


for which uk(z1) < 1 + " when k ≥ N and z1 is an arbitrary point in the disk of radius 
 centeredat z0. This locally uniform estimate completes the proof of the lemma.
Exercise 10. Find a counterexample showing that the conclusion of the lemma can fail if the
hypothesis of a uniform upper bound B is omitted.
Exercise 11. Prove that a separately polynomial function onℂ2 is necessarily a jointly polynomial
function.15
Exercise 12. What adjustments are needed in the proof to obtain the analogue of Theorem 6 in
dimension n?
Exercise 13. Define f ∶ ℂ2 → ℂ ∪ {∞} as follows:

f (z1, z2) =

⎧

⎪

⎨

⎪

⎩

(z1 + z2)2∕(z1 − z2), when z1 ≠ z2;
∞, when z1 = z2 but (z1, z2) ≠ (0, 0);
0, when (z1, z2) = (0, 0).

Show that f is separately meromorphic, and f (0, 0) is finite, yet f is not continuous at (0, 0) (with
respect to the spherical metric on the extended complex numbers).16
15The corresponding statement for functions on ℝ2 was proved by F. W. Carroll, A polynomial in each variable

separately is a polynomial, American Mathematical Monthly 68 (1961) 42.
16This example is due to Theodore J. Barth, Families of holomorphic maps into Riemann surfaces, Transactions

of the American Mathematical Society 207 (1975) 175–187. Barth’s interpretation of the example is that f is a
holomorphic mapping from ℂ2 into the Riemann sphere (a one-dimensional, compact, complex manifold) that
is separately holomorphic but not jointly holomorphic.
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3 Holomorphic mappings

Conformalmapping is a key topic in the theory of holomorphic functions of one complex variable.
As already observed, holomorphic mappings of more variables—indeed, even linear mappings—
rarely preserve angles. This chapter explores some new phenomena that arise in the study of
multidimensional holomorphic mappings.

3.1 Fatou–Bieberbach domains

In one variable, there are few biholomorphisms (bijective holomorphic mappings) of the whole
plane. All such mappings arise by composing rotations, dilations, and translations. In other
words, the group of holomorphic automorphisms of the plane consists of those functions that
transform z into az + b, where b is an arbitrary complex number and a is an arbitrary nonzero
complex number.

When n ≥ 2, there is a huge group of automorphisms of ℂn. Indeed, if f is an arbitrary holo-
morphic function of one complex variable, then the mapping that sends a point (z1, z2) of ℂ2 to
the image point (z1+f (z2), z2) is an automorphism ofℂ2. (The coordinate functions evidently are
holomorphic, and the mapping that sends (z1, z2) to (z1−f (z2), z2) is the inverse transformation.)
An automorphism of this special type is called a shear.1

The vastness of the group of automorphisms ofℂn when n ≥ 2 can be viewed as an explanation
of the following surprising phenomenon. When n ≥ 2, there exist biholomorphic mappings from
the whole of ℂn onto a proper subset of ℂn. Such mappings are known as Fatou–Bieberbach
mappings.

In 1922, Fatou gave an example2 of a nondegenerate entire mapping of ℂ2 whose range is not
dense in ℂ2. In a footnote, Fatou pointed out that Poincaré had already projected the existence of
such mappings, but without offering an example.3 Bieberbach gave the first injective example.4

1The terminology is due to Jean-Pierre Rosay and Walter Rudin, Holomorphic maps from ℂn to ℂn, Transactions
of the American Mathematical Society 310 (1988), number 1, 47–86.

2P. Fatou, Sur certaines fonctions uniformes de deux variables, Comptes rendus hebdomadaires des séances de
l’Académie des sciences 175 (1922) 1030–1033.

3H. Poincaré, Sur une classe nouvelle de transcendants uniformes, Journal de mathématiques pures et appliquées
(4) 6 (1890) 313–365.

4L. Bieberbach, Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue
Abbildung des R4 auf einen Teil seiner selbst vermitteln, Sitzungsberichte Preussische Akademie der Wis-
senschaften (1933) 476–479.
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3 Holomorphic mappings

3.1.1 Example

The following construction, based on an example in the cited paper of Rosay andRudin, provides a
concrete example of a proper subset ofℂ2 that is biholomorphically equivalent toℂ2. This Fatou–
Bieberbach domain arises as the basin of attraction of an attracting fixed point of an automorphism
of ℂ2.

The starting point is a particular auxiliary polynomial mapping F : namely,

F (z1, z2) =
1
2
(

z2, z1 + z22
)

.

Obtained by composing a shear, a transposition of variables, and a dilation by a factor of 1∕2,
the mapping F evidently is an automorphism of ℂ2. Moreover, the inverse mapping is easy to
compute:

F −1(z1, z2) = 2
(

z2 − 2z21, z1
)

.

Exercise 14. The origin is a fixed point of F . Show that F has exactly one other fixed point.
The complex Jacobian matrix of F equals

1
2

(

0 1
1 2z2

)

,

so the Jacobian determinant is identically equal to the constant value −1∕4. At the origin, the
linear approximation of F corresponds to a transposition of variables composed with a dilation
by a factor of 1∕2, so the origin is an attracting fixed point of F .

The rate of attraction can be quantified as follows. When z = (z1, z2), let ‖z‖∞ denote
max{|z1|, |z2|}, the maximum norm on ℂ2. The unit bidisc is the “unit ball” with respect to
this norm. The second component of F (z) admits the following estimate:

|

|

|

1
2
(z1 + z22)

|

|

|

≤ ‖z‖∞ ⋅
1 + ‖z‖∞

2
.

Since the first component of F (z) admits an even better estimate, the mapping F is a contraction
on the unit bidisc: namely, if 0 < ‖z‖∞ < 1, then ‖F (z)‖∞ < ‖z‖∞. The contraction is strict on
smaller bidiscs. For instance,

‖F (z)‖∞ ≤ 2
3
‖z‖∞ when ‖z‖∞ ≤ 1

3
. (3.1)

In summary, if F [k] denotes F◦⋯◦F
⏟⏞⏞⏟⏞⏞⏟

k times

, the kth iterate of F , then

lim
k→∞

F [k](z) = 0 when ‖z‖∞ < 1.

Thus the open unit bidisc D lies inside the basin of attraction of the fixed point 0.
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Moreover, every point that is attracted to the origin under iteration of the mapping F has the
property that some iterate of F maps the point to an image point insideD. Accordingly, the basin
of attraction of the origin is precisely the union

∞
⋃

k=0
F [−k](D),

where F [−k] denotes the kth iterate of the inverse transformation F −1, and F [0] means the identity
transformation. Since F −1 is an open map, the basin of attraction is an open set.
Exercise 15. Show that the basin of attraction is a connected set.

Let  denote this basin of attraction. The indicated representation of the basin reveals that the
automorphism F of ℂ2 maps  onto itself. In other words, not only is F an automorphism of ℂ2,
but the restriction of F to  is an automorphism of .

The basin  does not contain the second fixed point of F and so is not all of ℂ2. Moreover, the
complement of  is sizeable: the complement contains the set { (z1, z2) ∶ |z2| ≥ 3 + |z1| }, forthe following reason. This set is disjoint from the unit bidisc, so if it can be shown that this set is
mapped into itself by F , then no point of the set is attracted to the origin. What needs to be shown,
then, is that if |z2| ≥ 3 + |z1|, then |12z1 + 1

2
z22| ≥ 3 +

1
2
|z2|, or equivalently, |z1 + z22| ≥ 6 + |z2|.The assumption that |z2| ≥ 3 + |z1| implies, in particular, that |z2| ≥ 3 and 2|z2| ≥ 3 + |z2|, so

|z1 + z22| ≥ |z2|
2 − |z1| ≥ |z2|

2 + 3 − |z2| ≥ 3|z2| + 3 − |z2| ≥ 6 + |z2|,

as claimed. Thus the basin  is an open subset of ℂ2 whose complement contains a nontrivial
open set: namely, the set { (z1, z2) ∶ |z2| > 3 + |z1| }.Although the indicated set in the complement of  is multicircular, the basin  itself is not
a Reinhardt domain. For example, the point (4, 2i) belongs to  [since F (4, 2i) = (i, 0), and
F [2](4, 2i) = (0, i∕2), which is a point in the interior of the unit bidisc, hence belongs to ], but
the point (4, 2) does not belong to  [since F (4, 2) = (1, 4), and this point belongs to the set
considered in the preceding paragraph that lies in the complement of ].
Notice too that is identical to the basin of attraction of the origin for themappingF [2]. Indeed,

the iterates of F eventually map a specified point into the unit bidisc if and only if the iterates
of F [2] do. Let Φ denote F [2]. A routine computation shows that

4Φ(z) = z + (z22,
1
2
z21 + z1z

2
2 +

1
2
z42),

where z = (z1, z2). In particular,
if ‖z‖∞ ≤ 1 then ‖4Φ(z) − z‖∞ ≤ 2‖z‖2∞. (3.2)

The claim now is that, a proper subdomain ofℂ2, is biholomorphically equivalent toℂ2; that
is, this basin of attraction is a Fatou–Bieberbach domain. More precisely, the claim is that when
j → ∞, the mapping 4jΦ[j] converges uniformly on compact subsets of  to a biholomorphic
mapping from  onto ℂ2.
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3 Holomorphic mappings

The immediate goal is to show that the sequence {4jΦ[j]} is a Cauchy sequence, uniformly on
an arbitrary compact subset of. The strategy is to prove that consecutive terms of this sequence
get exponentially close together.

Fix a compact subset of and a natural numberN such that the iterateΦ[N] maps the specified
compact set into the bidisc of radius 1∕3. If k is a positive integer, and z lies in the specified
compact set, then

‖

‖

‖

4N+k+1Φ[N+k+1](z) − 4N+kΦ[N+k](z)‖‖
‖∞

= 4N+k ‖‖
‖

4Φ
(

Φ[N+k](z)
)

− Φ[N+k](z)‖‖
‖∞

≤ 4N+k ⋅ 2 ⋅ ‖Φ[N+k](z)‖2∞ by (3.2)
≤ 4N+k ⋅ 2 ⋅

(

(

2
3

)2k
⋅ 1
3

)2

by (3.1)

= 22N+1
9

⋅
(8
9

)2k
.

This geometric decay implies that the sequence {4jΦ[j]} is indeed a Cauchy sequence (uniformly
on every compact subset of ). Accordingly, a holomorphic limit mapping G appears that maps
 into ℂ2.

What remains to show is thatG is both injective and surjective. Since the Jacobian determinant
of F is identically equal to −1∕4, the Jacobian determinant of Φ is identically equal to 1∕16, the
Jacobian determinant of 4Φ is identically equal to 1, and the Jacobian determinant of 4jΦj is
identically equal to 1 for every j. Hence the Jacobian determinant of G is identically equal to 1.
Therefore the holomorphic mapping G is at least locally injective.
Exercise 16. Show that if a normal limit of injective holomorphicmappings (from a neighborhood
in ℂn into ℂn) is locally injective, then the limit is globally injective.

The surjectivity ofG follows from the observation that 4G◦Φ = G (which is true because both
sides of this equation represent the limit of the sequence {4jΦ[j]}). Since Φ is a bijection of the
basin , the range of G is equal to the range of 4G. But the range of G contains a neighborhood
of the origin in ℂ2, and the only neighborhood of the origin that is invariant under dilation by a
factor of 4 is the whole space.

Thus G is a holomorphic bijection from the basin  onto ℂ2. Accordingly, the basin  is a
Fatou–Bieberbach domain, as claimed.

3.1.2 Theorem

The general result of which the preceding example is a special case states that if F is an arbitrary
automorphism of ℂn with an attracting fixed point at the origin (meaning that every eigenvalue
of the Jacobian matrix at the origin has modulus less than 1), then the basin of attraction of the
fixed point is biholomorphically equivalent to ℂn. Of course, the basin might be all of ℂn, but if
the basin is a proper subset of ℂn, then the basin is a Fatou–Bieberbach domain. The appendix
of the cited paper of Rosay and Rudin (pages 80–85) provides a proof of the theorem.
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3 Holomorphic mappings

Research on Fatou–Bieberbach domains continues. One result from the twenty-first century
is the existence of Fatou–Bieberbach domains that do not arise as the basin of attraction of an
automorphism.5

3.2 Inequivalence of the ball and the bidisc

The Riemann mapping theorem implies that every bounded, simply connected domain in ℂ1 can
be mapped biholomorphically to the unit disc. In higher dimension, there is no such topological
characterization of biholomorphic equivalence. Indeed, the open unit ball in ℂ2 is not biholo-
morphically equivalent to the bidisc even though these two sets, viewed as subdomains ofℝ4, are
topologically (even diffeomorphically) equivalent.

The usual shorthand for this observation is that “there is no Riemann mapping theorem in
higher dimension.” But the story has another chapter. If a bounded, simply connected domain
in ℂn has connected, smooth boundary that is spherical (locally biholomorphically equivalent to
a piece of the boundary of a ball), then indeed the domain is biholomorphically equivalent to a
ball.6
The proof of the positive result is beyond the scope of this document. But the proof of the

inequivalence of the ball and the bidisc is relatively easy. Here is one argument, based on the
intuitive idea that the boundary of the bidisc contains one-dimensional complex discs, but the
boundary of the ball does not. (Since holomorphic maps live on open sets and do not a priori
extend to the boundary, a bit of trickery is needed to turn this intuition into a proof.)

Seeking a contradiction, suppose that there does exist a biholomorphic mapping from the unit
bidisc to the unit ball. Let {aj} be an arbitrary sequence of points in the unit disc tending to the
boundary, and consider the restriction of the alleged biholomorphic map to the sequence of one-
dimensional discs { (aj , z2) ∶ |z2| < 1 }. The sequence of restrictions is a normal family (since
the image is bounded), so there is a subsequence converging normally to a limit mapping from
the unit disc into the boundary of the ball. Projecting onto a one-dimensional complex subspace
through a point in the image produces a holomorphic function that realizes its maximummodulus
at an interior point of the unit disc, so the maximum principle implies that the limit mapping is
constant.

Consequently, the z2-derivative of each component of the original biholomorphic mapping
tends to zero along the sequence of discs. For every point b in the unit disc, then, the z2-derivativeof each component of the mapping tends to zero along the sequence {(aj , b)}. The sequence {aj}is arbitrary, and a holomorphic function in the unit disc that tends to zero along every sequence
approaching the boundary reduces to the identically zero function. Thus the z2-derivative of eachcomponent of the mapping is identically equal to zero in the whole bidisc. The same conclusion
holds by symmetry for the z1-derivative, so both components of the mapping reduce to constants.
5Erlend Fornæss Wold, Fatou–Bieberbach domains, International Journal of Mathematics 16 (2005), number 10,
1119–1130.

6Shanyu Ji and Shiing-Shen Chern, On the Riemann mapping theorem, Annals of Mathematics (2) 144 (1996),
number 2, 421–439.
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3 Holomorphic mappings

This conclusion contradicts the assumption that the mapping is biholomorphic. The contradiction
shows that no biholomorphism from the bidisc to the ball can exist.

Many authors attribute to Henri Poincaré (1854–1912) the proposition that the ball and the
bidisc are holomorphically inequivalent. Although Poincaré wrote an influential paper7 about the
holomorphic equivalence problem, there is no explicit statement of the proposition in the paper.
Poincaré did compute the group of holomorphic automorphisms of the ball in ℂ2. The automor-
phism group of the bidisc is easy to determine (the group is generated by Möbius transformations
in each variable separately together with transposition of the variables) and is clearly not isomor-
phic to the automorphism group of the ball, so a straightforward deduction from Poincaré’s paper
does yield the proposition.

3.3 Injectivity and the Jacobian

A fundamental proposition from real calculus states that if a (continuously differentiable) map-
ping from a domain in ℝN into ℝN has Jacobian determinant different from zero at a point, then
the mapping is injective in a neighborhood of the point. (Indeed, the mapping is a local dif-
feomorphism.) If a holomorphic mapping from a domain in ℂn into ℂn has complex Jacobian
determinant different from zero at a point, is the mapping necessarily injective in a neighborhood
of the point? An affirmative answer follows immediately from the following exercise.
Exercise 17. A holomorphic mapping from ℂn to ℂn induces a real transformation from ℝ2n

to ℝ2n (through suppression of the complex structure). Show that the determinant of the 2n × 2n
real Jacobian matrix equals the square of the modulus of the determinant of the n × n complex
Jacobian matrix.
Hint: When n = 1, writing a holomorphic function f (z) as u(x, y) + iv(x, y) and applying the
Cauchy–Riemann equations shows that

|f ′|2 = u2x + v
2
x = det

⎛

⎜

⎜

⎜

⎝

)u
)x

)u
)y

)v
)x

)v
)y

⎞

⎟

⎟

⎟

⎠

.

Can you generalize to higher dimension?
(Moreover, when the complex Jacobian determinant is nonzero, the mapping is a local biholo-

morphism. Indeed, the chain rule implies that the first-order real partial derivatives of the inverse
mapping satisfy the Cauchy–Riemann equations.)

In real calculus, the Jacobian determinant of an injective mapping can have zeroes. Indeed, the
function of one real variable that sends x to x3 is injective but has derivative equal to zero at the
origin. The story changes for holomorphic mappings.

7Henri Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rendiconti del Circolo
Matematico di Palermo 23 (1907) 185–220.
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3 Holomorphic mappings

A standard property from the theory of functions of one complex variable states that a holo-
morphic function is locally injective in a neighborhood of a point if and only if the derivative is
nonzero at the point. A corresponding statement holds in higher dimension but is not obvious.
The goal of this section is to provide a proof that a locally injective holomorphic mapping from
a domain in ℂn into ℂn has nonzero Jacobian determinant.

This theorem appeared in the 1913 PhD dissertation of Guy Roger Clements (1885–1956) at
Harvard University. An announcement8 appeared in 1912 with the details published9 the follow-
ing year. When I was a graduate student, an elegant short proof appeared in the now standard
textbook on algebraic geometry by Griffiths and Harris.10 The idea was rediscovered by Rosay11
and embellished by Range.12 The proof below is my implementation of the method.
Exercise 18. The story changes when the dimension of the domain does not match the dimen-
sion of the range. Find an example of an injective holomorphic mapping from ℂ1 to ℂ2 whose
derivative vanishes at the origin. What about mappings from ℂ2 to ℂ1?

The proof of the proposition is straightforward for readers who know the concept of a variety.
The goal of the following lemma is to provide an “elementary” and self-contained proof that
avoids explicit mention of varieties.
Lemma 4. Suppose f is a holomorphic function defined on a neighborhood of a point p in ℂn,
where n ≥ 2, and f (p) = 0.

1. If the gradient of f at p is not the zero vector, then there is a local biholomorphic change
of coordinates near p after which p becomes the origin and the zero set of f becomes the
subspace ℂn−1 × {0} in a neighborhood of the origin.

2. If the gradient of f at p is the zero vector, but the function f is not identically equal to 0
in a neighborhood of p, then there is a nearby point q and a local biholomorphic change
of coordinates near q after which q becomes the origin and the zero set of f becomes the
subspace ℂn−1 × {0} in a neighborhood of the origin.

Proof. Readers who already know the basic notions of analytic varieties can view the zero set
of f as an (n − 1)-dimensional variety. The first statement says that the point p is nonsingular,
so the variety can be straightened locally by a holomorphic change of coordinates. The second
statement follows by taking q to be a regular point of the variety close to p. Readers unfamiliar
with the technology of varieties can proceed as follows.
8G. R. Clements, Implicit functions defined by equations with vanishing Jacobian, Bulletin of the American Math-
ematical Society 18 (1912) 451–456.

9Guy Roger Clements, Implicit functions defined by equations with vanishing Jacobian, Transactions of the Amer-
ican Mathematical Society, 14 (1913) 325–342.

10Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, Wiley, 1978, pages 19–20. The book was
reprinted in 1994.

11Jean-Pierre Rosay, Injective holomorphic mappings, American Mathematical Monthly 89 (1982), number 8, 587–
588.

12R. Michael Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer,
1986, Chapter I, Section 2.8.
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3 Holomorphic mappings

To prove the first statement, start by translating p to 0, and then permute the coordinates to
arrange that )f∕)zn(0) ≠ 0. Now consider the map sending a general point (z1,… , zn) to the
image point (z1,… , zn−1, f (z1,… , zn)). The Jacobian determinant of this mapping equals the
nonzero value )f∕)zn(0), so the transformation has a local holomorphic inverseG near the origin.
Since f◦G vanishes precisely when the nth coordinate is equal to 0, the mapping G provides the
required change of coordinates. (This argument essentially says that f itself can be chosen as one
of the n local complex coordinates.)

The second statement of the lemma follows from the first statement whenever there is a nearby
point q such that q lies in the zero set of f and the gradient of f at q is not the zero vector. In
general, however, such a point q need not exist, for f might be the square of another holomorphic
function, in which case the gradient of f vanishes wherever f does. To handle this situation,
fix a neighborhood of p (as small as desired) and observe that (since f is not identically equal to
zero) there is a minimal natural number k such that all derivatives of f of order k or less vanish
identically on the zero set of f in the specified neigborhood, but some derivative of f of order
k + 1 is nonzero at some point q in the zero set of f in the neighborhood. Apply the first case of
the lemma to the appropriate kth-order derivative of f whose gradient is not zero.
After a suitable holomorphic change of coordinates, the point q becomes the origin, and the

zero set of the specified kth-order derivative of f becomes the subspace ℂn−1 × {0} in a neigh-
borhood of the origin in ℂn, say in a polydisc of radius " centered at 0. By construction, the zero
set of f in the polydisc is a nonvoid subset of the subspace ℂn−1 × {0}. It remains to show that
the zero set of f is identical to this subspace in some neighborhood of the origin.
In the contrary case, the closedness of the zero set of f implies the existence of an open poly-

disc D in ℂn−1 centered at some point w of ℂn−1 × {0} such that max1≤j≤n−1 |wj| < "∕2 and the
zero set of f is disjoint from D. Shrink D, if necessary, to ensure that D is entirely contained in
the polydisc of radius "∕2 centered at 0. On the Hartogs figure

D × { zn ∈ ℂ ∶ |zn| < " }
⋃

{ z ∈ ℂn ∶ "∕2 < |zn| < " and max
1≤j≤n−1

|zj −wj| < "∕2 },

the function f is holomorphic and nowhere equal to 0, so the function 1∕f is holomorphic. By
the Hartogs phenomenon, the function 1∕f extends to be holomorphic on the polydisc

{ (z1,… , zn−1) ∶ max
1≤j≤n−1

|zj −wj| < "∕2 } × { zn ∶ |zn| < " }.

Since this polydisc contains the origin, which lies in the zero set of f , a contradiction arises. The
contradiction means that the zero set of f must be identical to the subspace ℂn−1 × {0} in some
neighborhood of the origin.

The proof of the proposition about nonvanishing of the Jacobian determinant of an injective
holomorphic mapping uses induction on the dimension, the one-dimensional case being known.
Suppose, then, that the proposition has been established for dimension n−1, and consider a local
injective holomorphic mapping (f1,… , fn) that (without loss of generality) fixes the origin.If the gradient of the coordinate function fn at the origin is nonzero, then the first case of the
lemma reduces the problem (via a local biholomorphic change of coordinates) to the situation
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that fn vanishes precisely on the subspace where zn = 0. Consequently, )fn∕)zj(0) = 0 when
j ≠ n, and )fn∕)zn(0) ≠ 0. Moreover, the n-dimensional mapping now takes ℂn−1 × {0} into
itself. The mapping of ℂn−1 obtained by restricting to the subspace where zn = 0 has nonzero
Jacobian determinant at the origin by the induction hypothesis. The Jacobian determinant of the
n-dimensional mapping at the origin equals this nonzero Jacobian determinant of the (n − 1)-
dimensional mapping multiplied by the nonzero factor )fn∕)zn(0). Thus the required conclusionholds when the gradient of fn at the origin is nonzero.Making a permutation of the variables in the range shows, by the same argument, that the Jaco-
bian determinant of the mapping at the origin is nonzero if any one of the coordinate functions has
nonzero gradient at the origin. Accordingly, the problem reduces to showing that a contradiction
arises if the Jacobian matrix at the origin has all entries equal to zero.

The Jacobian determinant is then a holomorphic function that equals zero at the origin. Making
a suitable holomorphic change of coordinates at a nearby point via the second part of the lemma
reduces to the situation that the zero set of the Jacobian determinant near the origin is precisely
ℂn−1×{0}. By the first part of the argument, each coordinate function of the mapping has vanish-
ing gradient on this complex subspace. Consequently, the coordinate functions are constant along
ℂn−1×{0}, contradicting the injectivity of the mapping. This contradiction implies that the Jaco-
bian determinant of the injective holomorphic mapping cannot vanish after all, thus completing
the proof by induction.

3.4 The Jacobian conjecture

The Fatou–Bieberbach example discussed in Section 3.1 is a holomorphic map G∶ ℂ2 → ℂ2

whose Jacobian determinant is identically equal to 1 (whenceG is everywhere locally invertible),
yet G is not surjective (whence G is not globally invertible as a map from ℂ2 to ℂ2). The map G
appears as a normal limit of polynomial maps, butG itself is not a polynomial map. An unresolved
problem of long standing is the nonexistence of weird polynomial maps.
Open Problem (Jacobian conjecture). For every positive integer n, if F ∶ ℂn → ℂn is a poly-
nomial mapping whose Jacobian determinant is identically equal to 1, then F is a polynomial
automorphism of ℂn.

The conclusion entails that F is both injective and surjective, and the inverse of F is a polyno-
mial mapping. It is known that if F is globally injective, then the other two conclusions follow.
The conjecture is known to be true for mappings involving only polynomials of degree at most 2.
Moreover, the conjecture holds in general if it holds for mappings involving only polynomials of
degree at most 3. Many alleged proofs of the conjecture have been published, none correct (so
far). It is unclear whether the conjecture is essentially a problem of algebra, analysis, combina-
torics, or geometry.13
13The indicated facts and much more can be found in the following article: Hyman Bass, Edwin H. Connell, and

David Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bulletin of the
American Mathematical Society 7 (1982), number 2, 287–330.
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A natural real analogue of the Jacobian conjecture is known to be false. Pinchuk14 produced
a remarkable example of a polynomial map F ∶ ℝ2 → ℝ2 whose Jacobian determinant is every-
where positive, yet F is not a global diffeomorphism from ℝ2 onto ℝ2.

14Sergey Pinchuk, A counterexample to the strong real Jacobian conjecture,Mathematische Zeitschrift 217 (1994),
number 1, 1–4.
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From one point of view, convexity is an unnatural property in complex analysis. The Riemann
mapping theorem shows that already in dimension 1, convexity is not preserved by biholomorphic
mappings: indeed, every nonconvex but simply connected domain in the plane is conformally
equivalent to the unit disc.

On the other hand, section 2.2 reveals that a special kind of convexity—namely, logarithmic
convexity—appears naturally in studying convergence domains of power series. Various ana-
logues of convexity turn out to be central to some fundamental problems in multidimensional
complex analysis.

4.1 Real convexity

Ordinary geometric convexity can be described either through an internal property (the line seg-
ment joining two points of the set stays within the set) or through an external property (every point
outside the set can be separated from the set by a hyperplane). The latter geometric property can
be rephrased in analytic terms by saying that every point outside the set can be separated from
the set by a linear function; that is, there is a linear function that is larger at the specified exterior
point than anywhere on the set.

For an arbitrary set, not necessarily convex, its convex hull is the smallest convex set containing
it, that is, the intersection of all convex sets containing it. The convex hull of an open set is open,
and inℝn (or in any finite-dimensional vector space), the convex hull of a compact set is compact.1
Observe that an open set G in ℝn is convex if and only if the convex hull of every compact

subset K is again a compact subset of G. Indeed, if K is a subset of G, then the convex hull of K
is a subset of the convex hull of G, so if G is already convex, then the convex hull of K is both
compact and a subset of G. Conversely, if G is not convex, then there are two points of G such
that the line segment joining them intersects the complement of G; take K to be the union of the
two points.

1In an infinite-dimensional Hilbert space, the convex hull of a compact set is not necessarily closed, let alone
compact. But the closure of the convex hull of a compact set is compact in every Hilbert space and in every
Banach space. See, for example, Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis:
A Hitchhiker’s Guide, third edition, Springer, 2006, section 5.6.
A standard reference for the finite-dimensional theory of real convexity is R. Tyrrell Rockafellar, Convex

Analysis, Princeton University Press, 1970 (reprinted 1997).
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4.2 Convexity with respect to a class of functions

The analytic description of convexity has a natural generalization. Suppose that  is a class of
upper semicontinuous real-valued functions on an open set G in ℂn (which might be ℂn itself).
[Recall that a real-valued function f is upper semicontinuous if f−1(−∞, a) is an open set for
every real number a. Upper semicontinuity guarantees that f attains a maximum on each compact
set.] A compact subset K of G is called convex with respect to the class  if for every point p
in G ⧵ K there exists an element f of  for which f (p) > maxz∈K f (z); in other words, every
point outside K can be separated from K by a function in  . If  is a class of functions that are
complex-valued but not real-valued (holomorphic functions, say), then it is natural to consider
convexity with respect to the class of absolute values of the functions in  (so that inequalities
are meaningful); one typically says “ -convex” for short when the meaning is really “-convex,
where  = { |f | ∶ f ∈  }.”

The  -convex hull of a compact set K , denoted by K̂ (or simply by K̂ if the class  is under-
stood), is the set of all points of G that cannot be separated from K by a function in the class  .
The open setG itself is called -convex if for every compact subsetK ofG, the -convex hull K̂(by definition a subset of G) is a compact subset of G.
Example 1. Let G be ℝn, and let  be the set of all continuous functions on ℝn. Every compact
set K is  -convex because, by Urysohn’s lemma, every point not in K can be separated from K
by a continuous function. (There is a continuous function that is equal to 0 on K and equal to 1
at a specified point not in K .)
Example 2. LetG beℂn, and let  be the set of coordinate functions, {z1,… , zn}. The  -convex
hull of a single point w is the set of all points z for which |zj| ≤ |wj| for all j, that is, thepolydisc determined by the point w. (If some coordinate of w is equal to 0, then the polydisc is
degenerate.) More generally, the  -convex hull of a compact setK is the set of points z for which
|zj| ≤ max{ |�j| ∶ � ∈ K } for every j. The  -convex open sets are precisely the open polydiscs
centered at the origin.
Exercise 19. Show that a domain in ℂn is convex with respect to the class  consisting of all the
monomials z� if and only if the domain is a logarithmically convex, complete Reinhardt domain.

A useful observation is that increasing the class of functions  makes separation of points
easier, so the collection of  -convex sets becomes larger. In other words, if 1 ⊂ 2, then every
1-convex set is also 2-convex.
Exercise 20. As indicated above, ordinary geometric convexity in ℝn is the same as convexity
with respect to the class of linear functions a1x1 +⋯ + anxn; convexity with respect to the classof affine linear functions a0 + a1x1 +⋯ + anxn is the same notion. The aim of this exercise is to
determine what happens if the functions are replaced with their absolute values.

1. Suppose  is the set { |a1x1 +⋯ + anxn| } of absolute values of linear functions on ℝn.
Describe the  -convex hull of a general compact set.

2. Suppose  is the set { |a0+a1x1+⋯+anxn| } of absolute values of affine linear functions.
Describe the  -convex hull of a general compact set.
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Exercise 21. Repeat the preceding exercise in the setting of ℂn and functions with complex co-
efficients:

1. Suppose  is the set { |a1z1 +⋯ + anzn| } of absolute values of complex linear functions.
Describe the  -convex hull of a general compact set.

2. Suppose  is the set { |a0 + a1z1 +⋯+ anzn| } of absolute values of affine complex linear
functions. Describe the  -convex hull of a general compact set.

Observe that a point and a compact set can be separated by |f | if and only they can be sepa-
rated by |f |2 or more generally by |f |k for some positive exponent k. Hence there is no loss of
generality in assuming that a class  of holomorphic functions is closed under forming positive
integral powers. In many interesting cases, the class of functions has some additional structure.
For instance, the algebra generated by the coordinate functions is the class of polynomials, which
is the next topic.

4.2.1 Polynomial convexity

Again let G be all of ℂn, and let  be the set of polynomials (in the complex variables). Then
 -convexity is called polynomial convexity. (When the setting is ℂn, the word “polynomial”
is usually understood to mean “holomorphic polynomial,” that is, a polynomial in the complex
coordinates z1, . . . , zn rather than a polynomial in the underlying real coordinates of ℝ2n.)
A first observation is that the polynomial hull of a compact set is a subset of the ordinary

convex hull. Indeed, if a point is separated from a compact set by a real-linear function Rel(z),
then the point is separated equally well by eRel(z) and hence by |el(z)|; the entire function el(z) can
be approximated uniformly on compact sets by polynomials. (Alternatively, apply the solution of
Exercise 21.)

When n = 1, polynomial convexity is a topological property. The simplest version of Runge’s
approximation theorem says that ifK is a compact subset of ℂ (not necessarily connected), and if
K has no holes (that is, ℂ ⧵K is connected), then every function holomorphic in a neighborhood
of K can be approximated uniformly on K by (holomorphic) polynomials.2 So if K has no
holes, and p is a point outside K , then Runge’s theorem implies that the function equal to 0 in a
neighborhood ofK and equal to 1 in a neighborhood of p can be arbitrarily well approximated on
K ∪ {p} by polynomials; hence p is not in the polynomial hull of K . On the other hand, if K has
a hole, then the maximum principle implies that points inside the hole belong to the polynomial
hull of K . In other words, a compact set K in ℂ is polynomially convex if and only if K has no
holes. A domain in ℂ (a connected open subset) is polynomially convex if and only if it is simply
connected, that is, its complement with respect to the extended complex numbers is connected.

The story is muchmore complicated when the dimension n exceeds 1, for polynomial convexity
is no longer determined by a topological condition. For instance, whether or not a circle (of real
2There is a deeper approximation theorem due to S. N. Mergelyan: namely, the conclusion follows from the weaker
hypothesis that the function to be approximated is continuous on K and holomorphic on the interior of K .
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dimension 1) is polynomially convex depends on how that curve is situated with respect to the
complex structure of ℂn.
Example 3. (a) In ℂ2, the circle { (cos � + i sin �, 0) ∶ 0 ≤ � ≤ 2� } is not polynomially convex.

This circle lies in the complex subspace where the second complex coordinate is equal to 0.
The one-dimensional maximum principle implies that the polynomial hull of this curve is the
disc { (z1, 0) ∶ |z1| ≤ 1 }.

(b) In ℂ2, the circle { (cos �, sin �) ∶ 0 ≤ � ≤ 2� } is polynomially convex. This circle lies
in the real subspace where both complex coordinates happen to be real numbers. Since the
polynomial hull is a subset of the ordinary convex hull, all that needs to be shown is that points
inside the disc bounded by the circle can be separated from the circle by polynomials in the
complex coordinates. The polynomial 1 − z21 − z22 is identically equal to 0 on the circle and
takes positive real values at points inside the circle, so this polynomial exhibits the required
separation.

The preceding idea can easily be generalized to produce a wider class of examples of polyno-
mially convex sets.
Example 4. IfK is a compact subset of the real subspace of ℂn (that is, K ⊂ ℝn ⊂ ℂn), thenK is
polynomially convex.

This proposition can be proved by invoking the Weierstrass approximation theorem in ℝn, but
there is an interesting constructive argument. First notice that convexity with respect to (holo-
morphic) polynomials is the same property as convexity with respect to entire functions, since an
entire function can be approximated uniformly on a compact set by polynomials (for instance, by
the partial sums of the Maclaurin series). Therefore it suffices to exhibit an entire function whose
modulus separates K from a specified point q outside of K .
A function that does the trick is the Gaussian function exp∑n

j=1 −(zj − Re qj)
2. To see why,

letM(z) denote the modulus of this function: namely, exp∑n
j=1

[

(Im zj)2 − (Re zj − Re qj)2
]. If

q ∉ ℝn, thenM(q) = exp
∑n

j=1(Im qj)
2 > 1, while

max
z∈K

M(z) = max
z∈K

exp
n
∑

j=1
−(Re zj − Re qj)2 ≤ 1.

On the other hand, if q ∈ ℝn but q ∉ K , then the expression∑n
j=1(Re zj − Re qj)

2 has a positive
lower bound on the compact set K , so maxz∈KM(z) < 1, whileM(q) = 1. The required sepa-
ration holds in both cases. (Actually, checking the second case suffices, for the polynomial hull
of K is a subset of the convex hull of K and hence a subset of ℝn.)
The preceding idea can be generalized further. A real subspace of ℂn is called totally real

if it contains no nontrivial complex subspace, that is, if every nonzero point z in the subspace
has the property that the point iz no longer lies in the subspace. For instance, if z1 = x1 + iy1and z2 = x2 + iy2, then the x1x2 real subspace of ℂ2 is totally real (it is the standard ℝ2 sitting
inside ℂ2); the x1y2 subspace too is totally real. The real subspace { (�, �) ∶ � ∈ ℂ } is another
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example of a totally real subspace of ℂ2. For dimensional reasons, every one-dimensional real
subspace of ℂn is automatically totally real, but no real subspace of ℂn of real dimension greater
than n can be totally real. A “typical” real subspace of ℂn of real dimension n or less is totally
real, in the sense that a generic small perturbation of a complex line is totally real.3

The following exercise generalizes the preceding example.
Exercise 22. Show that every compact subset of a totally real subspace of ℂn is polynomially
convex.

Additional polynomially convex sets can be obtained from ones already in hand by applying
the following example.
Example 5. If K is a polynomially convex compact subset of ℂn, and p is a polynomial, then the
graph { (z, p(z)) ∈ ℂn+1 ∶ z ∈ K } is a polynomially convex compact subset of ℂn+1.
To see why, suppose that � ∈ ℂn and � ∈ ℂ, and (�, �) is not in the graph of p over K; to

separate the point (�, �) from the graph by a polynomial, consider two cases. If � ∉ K , then there
is a polynomial of n variables that separates � from K in ℂn; the same polynomial, viewed as a
polynomial on ℂn+1 that is independent of zn+1, separates the point (�, �) from the graph of p. On
the other hand, if � ∈ K , but � ≠ p(�), then the polynomial zn+1 − p(z) is identically equal to 0
on the graph and is not equal to 0 at (�, �), so this polynomial separates (�, �) from the graph.
Exercise 23. If f is a function that is continuous on the closed unit disc in ℂ and holomorphic
on the interior of the disc, then the graph of f in ℂ2 is polynomially convex.

The preceding exercise is a special case of the statement that a smooth analytic disc—the image
in ℂn of the closed unit disc under a holomorphic embedding whose derivative is never equal to
zero—is always polynomially convex.4 On the other hand, biholomorphic images of polydiscs
can fail to be polynomially convex.5

Basic examples of polynomially convex sets in ℂn that can have nonvoid interior are the poly-
nomial polyhedra: namely, sets of the form { z ∈ ℂn ∶ |p1(z)| ≤ 1, . . . , |pk(z)| ≤ 1 } or
{ z ∈ ℂn ∶ |p1(z)| < 1, . . . , |pk(z)| < 1 }, where each function pj is a polynomial. The model
case is the polydisc { z ∈ ℂn ∶ |z1| ≤ 1, . . . , |zn| ≤ 1 }; another concrete example is the
logarithmically convex, complete Reinhardt domain { (z1, z2) ∈ ℂ2 ∶ |z1| < 1, |z2| < 1, and
|2z1z2| < 1 }.A polynomial polyhedron evidently is polynomially convex, since a point in the complement
is separated from the polyhedron by at least one of the defining polynomials. Notice that k, the
number of polynomials, can be larger than the dimension n. (If the polyhedron is compact and
3In the language of algebraic geometry, the Grassmannian of real two-dimensional subspaces of ℂ2 (= ℝ4) is a
manifold of real dimension 4. The real two-planes that happen to be one-dimensional complex subspaces are
the same as the complex lines in ℂ2. The set of complex lines in ℂ2 is one-dimensional complex projective
space, a manifold of real dimension 2. Thus the real two-planes that fail to be totally real form a codimension 2
submanifold of the Grassmannian of all real two-planes in ℂ2.

4John Wermer, An example concerning polynomial convexity, Mathematische Annalen 139 (1959) 147–150.
5For an example in ℂ3, see John Wermer, Addendum to “An example concerning polynomial convexity”, Mathe-
matische Annalen 140 (1960) 322–323. For an example in ℂ2, see John Wermer, On a domain equivalent to the
bidisc, Mathematische Annalen 248 (1980), number 3, 193–194.
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4 Convexity

nonvoid, then the number k cannot be less than n, but proving this property requires some tools not
yet introduced.6) A standard way to force a polynomial polyhedron to be bounded is to intersect
it with a polydisc (that is, include in the set of defining polynomials the function zj∕R for some
large R and for each j from 1 to n).

A proposition from one-dimensional complex analysis known asHilbert’s lemniscate theorem7
says that the boundary of a bounded, simply connected domain inℂ can be approximated to within
an arbitrary positive " by a polynomial lemniscate: namely, by the set where some polynomial has
constant modulus. An equivalent statement is that ifK is a compact, polynomially convex subset
ofℂ, andU is an open neighborhood ofK , then there is a polynomial p such that |p(z)| < 1when
z ∈ K and |p(z)| > 1 when z ∈ ℂ ⧵ U .
Exercise 24. When n is large, the real polynomial xn + yn in ℝ2 is equal to 1 on a curve that
approximates a square. Hilbert’s lemniscate theorem guarantees the existence of a complex poly-
nomial p(z) such that the set where |p(z)| = 1 approximates a square. Can you find an explicit
example of such a polynomial?

Hilbert’s lemniscate theorem generalizes to higher dimension as follows.
Theorem 9. Every polynomially convex set inℂn can be approximated by polynomial polyhedra:

(a) If K is a compact polynomially convex set, and U is an open neighborhood of K , then there
is an open polynomial polyhedron P such that K ⊂ P ⊂ U .

(b) If G is a polynomially convex open set, thenG can be expressed as the union of an increasing
sequence of open polynomial polyhedra.

Proof. (a) Being bounded, the set K is contained in the interior of some closed polydisc D. If
D is a subset of U , then the interior of D is already the required polyhedron. On the other
hand, if D ⧵ U is nonvoid, then for each point w in D ⧵ U , there is a polynomial p that
separates w from K . This polynomial can be multiplied by a suitable constant to guarantee
that max{ |p(z)| ∶ z ∈ K } < 1 < |p(w)|. Hence the set { z ∶ |p(z)| < 1 } contains K
and is disjoint from a neighborhood of w. Since the set D ⧵ U is compact, there are finitely
many polynomials p1, . . . , pk such that the polyhedron ⋂k

j=1{ z ∶ |pj(z)| < 1 } contains K
and does not intersect D ⧵ U . Cutting down this polyhedron by intersecting with D gives a
new polyhedron that contains K and is contained in U .

(b) Exhaust G by an increasing sequence of compact sets. The polynomial hulls of these sets
form another increasing sequence of compact subsets of G (since G is polynomially convex).

6If w is a point of the polyhedron, then the k sets { z ∈ ℂn ∶ pj(z) − pj(w) = 0 } are analytic varieties of
codimension 1 that intersect in an analytic variety of dimension at least n−k that is contained in the polyhedron.
If k < n, then this analytic variety has positive dimension, but there are no compact analytic varieties of positive
dimension.

7D. Hilbert, Ueber die Entwickelung einer beliebigen analytischen Function einer Variabeln in eine unendliche
nach ganzen rationalen Functionen fortschreitende Reihe, Nachrichten von der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1897) 63–70.
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4 Convexity

Discarding some of the sets and renumbering produces an exhaustion of G by a sequence
{Kj}∞j=1 of polynomially convex compact sets such that each Kj is contained in the interior
of Kj+1. The first part of the theorem then provides a sequence {Pj}∞j=1 of open polynomial
polyhedra such that Kj ⊂ Pj ⊂ Kj+1 for every j.

In Hilbert’s lemniscate theorem in ℂ1, a single polynomial suffices. An interesting question is
whether n polynomials suffice to define an approximating polyhedron inℂn. A partial result in this
direction has been known for half a century. A polyhedron can be a disconnected set, and Errett
Bishop (1928–1983) showed8 that the approximation can be accomplished by a set that is the
union of a finite number of the connected components of a polyhedron defined by n polynomials.
The general problem remains open, but a recent result9 shows that n polynomials suffice when
the compact polynomially convex set is multicircular.

Although the theory of polynomial convexity is sufficiently mature that there exists a good
reference book,10 determining the polynomial hull of even quite simple sets in ℂ2 remains a
fiendishly difficult problem. The following example shows that the union of two disjoint, com-
pact, polynomially convex sets inℂ2 need not be polynomially convex (in contrast to the situation
in ℂ1).
Example 6 (Kallin,11 1965). Let K1 be { (ei�, e−i�) ∈ ℂ2 ∶ 0 ≤ � < 2� }, and let K2 be
{ (2ei�, 1

2
e−i�) ∈ ℂ2 ∶ 0 ≤ � < 2� }. Both sets K1 and K2 are polynomially convex in view

of Exercise 22, sinceK1 lies in the totally real subspace of ℂ2 in which z1 = z2, andK2 lies in thetotally real subspace in which z1∕4 = z2. The union K1 ∪K2 is not polynomially convex, for the
polynomial hull contains the set { (�, 1∕�) ∈ ℂ2 ∶ 1 < |�| < 2 }. Indeed, if p(z1, z2) is a poly-nomial on ℂ2 whose modulus is less than 1 on K1 ∪K2, then p(�, 1∕�) is a holomorphic function
on ℂ ⧵ {0} whose modulus is less than 1 on the boundary of the annulus { � ∈ ℂ ∶ 1 < |�| < 2 }
and hence (by the one-dimensional maximum principle) on the interior of the annulus.

Actually, the polynomial hull of K1 ∪ K2 is precisely the set { (�, 1∕�) ∶ 1 ≤ |�| ≤ 2 }. To
see why, consider the polynomial 1 − z1z2. Since this polynomial is identically equal to 0 on
K1 ∪ K2, the only points that have a chance to lie in the polynomial hull of K1 ∪ K2 are pointswhere 1 − z1z2 = 0. If such a point additionally has first coordinate of modulus greater than 2,
then the polynomial z1 separates that point from K1 ∪ K2. On the other hand, if a point in the
zero set of 1 − z1z2 has first coordinate of modulus less than 1, then the second coordinate has
modulus greater than 1, so the polynomial z2 separates the point from K1 ∪K2.

The preceding example shows that in general, polynomial convexity is not preserved by taking
unions. But here is one accessible positive result: If K1 and K2 are disjoint, compact, convex
sets in ℂn, then the union K1 ∪K2 is polynomially convex.
8Errett Bishop, Mappings of partially analytic spaces, American Journal of Mathematics 83 (1961), number 2,
209–242.

9Alexander Rashkovskii and Vyacheslav Zakharyuta, Special polyhedra for Reinhardt domains, Comptes Rendus
Mathématique, Académie des Sciences, Paris 349, issues 17–18, (2011) 965–968.

10Edgar Lee Stout, Polynomial Convexity, Birkhäuser Boston, 2007.
11Eva Kallin, Polynomial convexity: The three spheres problem, Proceedings of the Conference in Complex Analysis

(Minneapolis, 1964), pp. 301–304, Springer, Berlin, 1965.
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4 Convexity

Proof. The disjoint convex setsK1 andK2 can be separated by a real hyperplane, or equivalentlyby the real part of a complex linear function l. The geometric picture is that l projects ℂn onto
a complex line (a one-dimensional complex subspace). The sets l(K1) and l(K2) are disjoint,compact, convex sets in ℂ.
Suppose now that w is a point outside of K1 ∪K2. The goal is to separate w from K1 ∪K2 bya polynomial. There are two cases, depending on the location of l(w).
If l(w) ∉ l(K1) ∪ l(K2), then Runge’s theorem provides a polynomial p of one complex

variable such that |p(l(w))| > 1, and |p(z)| < 1 when z ∈ l(K1) ∪ l(K2). In other words, the
composite polynomial function p◦l separates w from K1 ∪K2 in ℂn.

If l(w) ∈ l(K1) ∪ l(K2), then suppose without loss of generality that l(w) ∈ l(K1). Since
w ∉ K1, and K1 is polynomially convex, there is a polynomial p on ℂn such that |p(w)| > 1 and
|p(z)| < 1∕3 when z ∈ K1. LetM be an upper bound for |p| on the compact set K2. ApplyingRunge’s theorem in ℂ produces a polynomial q of one variable such that |q| < 1∕(3M) on l(K2)and 2∕3 ≤ |q| ≤ 1 on l(K1). The claim now is that the product polynomial p ⋅ (q◦l) separatesw
from K1 ∪ K2. Indeed, on K1, the first factor has modulus less than 1∕3, and the second factor
has modulus no greater than 1; on K2, the first factor has modulus at most M , and the second
factor has modulus less than 1∕(3M); and at w, the first factor has modulus exceeding 1, and the
second factor has modulus at least 2∕3.

The preceding proposition is a special case of a separation lemma of Eva Kallin, who showed in
the cited paper that the union of three pairwise disjoint closed balls in ℂn is always polynomially
convex. The question of the polynomial convexity of the union of four pairwise disjoint closed
balls has been open for half a century. The problem is subtle, for Kallin constructed an example
of three pairwise disjoint closed polydiscs in ℂ3 whose union is not polynomially convex.
Runge’s theorem in dimension 1 indicates that polynomial convexity is intimately connected

with the approximation of holomorphic functions by polynomials. There is an analogue of Runge’s
theorem in higher dimension, known as the Oka–Weil theorem [named after the Japanese math-
ematician Kiyoshi Oka (1901–1978) and the French mathematician André Weil (1906–1998)].
Here is the statement.
Theorem 10 (Oka–Weil). If K is a compact, polynomially convex set in ℂn, then every function
holomorphic in a neighborhood of K can be approximated uniformly on K by (holomorphic)
polynomials.

Exercise 25. Give an example of a compact set K in ℂ2 such that every function holomorphic in
a neighborhood of K can be approximated uniformly on K by polynomials, yet K is not polyno-
mially convex.

4.2.2 Linear and rational convexity

The preceding examples involve functions that are globally defined on the whole of ℂn. In many
interesting cases, the class of functions depends on the region under consideration.
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Suppose that G is an open set in ℂn, and let  be the class of those linear fractional functions
a0 + a1z1 +⋯ + anzn
b0 + b1z1 +⋯ + bnzn

that happen to be holomorphic on G (in other words, the denominator has no zero inside G).
Strictly speaking, one should write G, but usually the open set G will be clear from context. By
the solution of Exercise 21, every convex set is  -convex. A simple example of a nonconvex but
 -convex open set is ℂ2 ⧵ { (z1, z2) ∈ ℂ2 ∶ z2 = 0 }. Indeed, if K is a compact subset of this
open set, then the function 1∕z2 is bounded on K , so K̂ stays away from the boundary of the
open set.

The claim now is that an open setG is -convex if and only if through each boundary point ofG
there passes a complex hyperplane that does not intersect G (a so-called supporting hyperplane).
For the proof, suppose first that G is  -convex, and let w be a point in the boundary of G. If
K is a compact subset of G, then K̂ is again a compact subset of G, so to every point w′ in G
sufficiently close to w there corresponds a linear fractional function f in  such that f (w′) =
1 > max{ |f (z)| ∶ z ∈ K }. If l denotes the difference between the numerator of f and the
denominator of f , then l(z) = 0 at a point z in G if and only if f (z) = 1. Hence the zero set
of l, which is a complex hyperplane, passes through w′ and does not intersect K . Multiply l by
a suitable constant to ensure that the vector consisting of the coefficients of l has length 1.

Now exhaust G by an increasing sequence {Kj} of compact sets. The preceding construction
produces a sequence {wj} of points in G converging to w and a sequence {lj} of normalized
first-degree polynomials such that lj(wj) = 0, and the zero set of lj does not intersect Kj . Theset of vectors of length 1 is compact, so taking the limit of a suitable subsequence produces a
complex hyperplane that passes through the boundary point w and does not intersect the open
set G.

Conversely, a supporting complex hyperplane at a boundary pointw is the zero set of a certain
first-degree polynomial l, and 1∕l is then a linear fractional function that is holomorphic on G
and blows up at w. Therefore the  -convex hull of a compact set K in G stays away from w.
Since w is arbitrary, the hull K̂ is a compact subset of G. Since K is arbitrary, the domain G is
 -convex.

The preceding notion is sometimes called weak linear convexity: a domain is weakly linearly
convex if it is convex with respect to the linear fractional functions that are holomorphic on it.
(A domain is called linearly convex if the complement can be written as a union of complex
hyperplanes. The terminology is not completely standardized, however, so one has to check each
author’s definitions. There are weakly linearly convex domains that are not linearly convex. The
idea can be seen already in ℝ2. Take an equilateral triangle of side length 1 and erase the middle
portion, leaving in the corners three equilateral triangles of side length slightly less than 1∕2.
There is a supporting line through each boundary point of this disconnected set, but there is no
line through the centroid that is disjoint from the three triangles. This idea can be implemented
in ℂ2 to construct a connected, weakly linearly convex domain that is not linearly convex.12)
12A reference is Mats Andersson, Mikael Passare, and Ragnar Sigurdsson, Complex Convexity and Analytic Func-

tionals, Birkhäuser, 2004, Example 2.1.7.
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Next consider general rational functions (quotients of polynomials). A compact set K in ℂn is
called rationally convex if every pointw outsideK can be separated fromK by a rational function
that is holomorphic on K ∪ {w}, that is, if there is a rational function f such that |f (w)| >
max{ |f (z)| ∶ z ∈ K }. In this definition, the holomorphicity of f at the pointw is unimportant,
for if f (w) is undefined, then one can slightly perturb the coefficients of f to make |f (w)| a large
finite number without changing the values of f on K very much.
Example 7. Every compact set K in ℂ is rationally convex. Indeed, if w is a point outside K ,
then the rational function 1∕(z−w) blows up atw, sow is not in the rationally convex hull ofK .
[For a suitably small positive ", the rational function 1∕(z−w− ") has larger modulus at w than
anywhere on K .]

There is some awkwardness in talking about multivariable rational functions, because the sin-
gularities can be either poles (where the modulus blows up) or points of indeterminacy (like the
origin for the function z1∕z2). Therefore it is convenient to rephrase the notion of rational con-
vexity using only polynomials.

The notion of polynomial convexity involves separation by the modulus of a polynomial; in-
troducing the modulus is natural in order to write inequalities. One can, however, consider the
weaker separation property that a point w is separated from a compact set K if there is a polyno-
mial p such that the image of w under p is not contained in the image of K under p. The claim is
that this weaker separation property is identical to the notion of rational convexity.

Indeed, if the point p(w) does not belong to the set p(K), then for every sufficiently small
positive ", the function 1∕(p(z) − p(w) − ") is a rational function of z that is holomorphic in
a neighborhood of K and has larger modulus at w than anywhere on K . Conversely, if f is a
rational function, holomorphic onK∪{w}, whosemodulus separatesw fromK , then the function
1∕(f (z) − f (w)) is a rational function of z that is holomorphic on K and singular at w. This
function can be rewritten as a quotient of polynomials, and the denominator will be a polynomial
that is zero at w and nonzero on K .

In other words, a pointw is in the rationally convex hull of a compact setK if and only if every
polynomial that is equal to zero at w also has a zero on K .
Exercise 26. The rationally convex hull of a compact subset ofℂn is again a compact subset ofℂn.
Example 8 (the Hartogs triangle). The open set { (z1, z2) ∈ ℂ2 ∶ |z1| < |z2| < 1 } is convex withrespect to the linear fractional functions, because through each boundary point passes a complex
line that does not intersect the domain. Indeed, the line on which z2 = 0 serves at the origin
(0, 0); at any other boundary point where the two coordinates have equal modulus, there is some
value of � for which a suitable line is the one that sends the complex parameter � to (�, ei��); and
at a boundary point where the second coordinate has modulus equal to 1, there is some value of �
such that a suitable line is the one on which z2 = ei�.In particular, the open Hartogs triangle is a rationally convex domain, since there are more
rational functions than there are linear fractions. On the other hand, the open Hartogs triangle is
not polynomially convex. Indeed, consider the circle { (0, 1

2
ei�) ∶ 0 ≤ � < 2� }. No point of the

disc bounded by this circle can be separated from the circle by a polynomial, so the polynomial
hull of the circle with respect to the open Hartogs triangle is not a compact subset of the triangle.
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Next consider the closed Hartogs triangle, the set where |z1| ≤ |z2| ≤ 1. The rationally convexhull of this compact set is the whole closed bidisc. Indeed, suppose p is a polynomial that has no
zero on the closed Hartogs triangle; by continuity, p has no zero in an open neighborhood of the
closed triangle. Consequently, the reciprocal 1∕p is holomorphic in some Hartogs figure, so by
Theorem 2, the function 1∕p extends to be holomorphic on the whole (closed) bidisc. Therefore
the polynomial p cannot have any zeroes in the bidisc. The characterization of rational convexity
in terms of zeroes of polynomials implies that the rational hull of the closed Hartogs triangle
contains the whole bidisc. The rational hull cannot contain any other points, since the rational
hull is a subset of the convex hull.

4.2.3 Holomorphic convexity

Suppose that G is a domain in ℂn, and  (technically, G) is the class of holomorphic functions
on G. Then  -convexity is called holomorphic convexity (with respect to G).
Example 9. When G = ℂn, holomorphic convexity is simply polynomial convexity, since every
entire function can be approximated uniformly on compact sets by polynomials (namely, by the
partial sums of the Maclaurin series).

If G1 ⊂ G2, and K is a compact subset of G1, then the holomorphically convex hull of K with
respect to G1 evidently is a subset of the holomorphically convex hull of K with respect to G2(because there are more holomorphic functions on G1 than there are on the larger domain G2). Inparticular, a polynomially convex compact set is holomorphically convex with respect to every
domain G that contains it; so is a convex set.
Example 10. Let K be the unit circle { z ∈ ℂ ∶ |z| = 1 } in the complex plane.
(a) Suppose that G is the whole plane, and  is the class of entire functions. Then the  -hull

of K is the closed unit disc (by the maximum principle).
(b) Suppose that G is the punctured plane { z ∈ ℂ ∶ z ≠ 0 }, and  is the class of holomorphic

functions on G. Then K is already an  -convex set (because the function 1∕z, which is
holomorphic on G, separates points inside the circle from points on the circle).

This example demonstrates that the notion of holomorphic convexity of a compact subsetK ofG
depends both on K and on G.
Exercise 27. Show that ifK is a holomorphically convex compact subset ofG, and p is an arbitrary
point of G, then the union K ∪ {p} is a holomorphically convex compact subset of G.
The next theorem solves the fundamental problem of characterizing the holomorphically con-

vex domains inℂn. This problem is interesting only when n > 1, for Example 7 implies that every
domain in the complex plane is holomorphically convex. The theory of holomorphic convexity
is due to Henri Cartan and Peter Thullen.13

13See the article cited on page 14.
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Theorem 11. The following properties of a domain G in ℂn are equivalent.

1. The domain G is holomorphically convex (that is, for every compact set K contained in G,
the holomorphically convex hull K̂ is again a compact subset of G).

2. For every sequence {pj} of points inG having no accumulation point insideG, there exists
a holomorphic function f on G such that limj→∞ |f (pj)| = ∞.

3. For every sequence {pj} of points inG having no accumulation point insideG, there exists
a holomorphic function f on G such that supj |f (pj)| = ∞.

4. For every compact set K contained in G and for every unit vector v in ℂn, the distance
from K to the boundary of G in the direction v is equal to the distance from K̂ to the
boundary of G in the direction v.

5. For every compact setK contained inG, the distance fromK to the boundary of G is equal
to the distance from K̂ to the boundary of G.

6. The domain G is a weak domain of holomorphy.

7. The domain G is a domain of holomorphy.

Precise definitions of the final two items are needed before proving theorem.

Domains of holomorphy

According to Cartan and Thullen, a domain is a domain of holomorphy if it supports a holomor-
phic function that does not extend holomorphically to any larger domain.14 But to Cartan and
Thullen, the word “domain” means a Riemann domain spread over ℂn (the higher-dimensional
analogue of a Riemann surface). To formulate the concept of domain of holomorphy without in-
troducing the machinery of manifolds requires some acrobatics. The next two examples illustrate
why the definition is necessarily convoluted.
Example 11. There is a holomorphic branch of the single-variable function√z on the slit plane
ℂ⧵{ z ∶ Im z = 0 and Re z ≤ 0 }. This function is discontinuous at all points of the negative part
of the real axis, so the function certainly does not extend to be holomorphic in a neighborhood
of any of these points. Nonetheless, the function√z does continue holomorphically across each
nonzero boundary point from one side (indeed, from either side). The natural domain of definition
of√z is not the slit plane but rather a two-sheeted Riemann surface.
In the preceding example in ℂ1, some functions admit one-sided extensions but fail to admit

extensions to a full neighborhood of any boundary point. On the other hand, there are functions
on the slit plane that fail to admit even one-sided extensions. (Apply the Weierstrass theorem to
14“Einen Bereich B nennen wir einen Regularitätsbereich (domaine d’holomorphie), falls es eine in B eindeutige

und reguläre Funktion f (z1,… , zn) gibt derart, daß jeder B enthaltende Bereich B′, in dem f (z1,… , zn) ein-deutig und regulär ist, notwendig mit B identisch ist.” Cartan and Thullen, loc. cit., p. 618.
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construct a holomorphic function on the slit plane whose zeroes accumulate at every point of the
slit from both sides.) In the following example15 in ℂ2, there is a part of the boundary across
which all holomorphic functions admit one-sided extension, yet some holomorphic function fails
to admit extension to a full neighborhood of those boundary points.
Example 12. Consider the union of the following three product domains. LetG1 be the Cartesianproduct of the open unit disk in the z2 plane with the z1 plane slit along the negative part of the
real axis. LetG2 be the Cartesian product of the complement of the closed unit disk in the z2 planewith the z1 plane slit along the positive part of the real axis. Let G3 be the Cartesian product of
the whole z2 plane with the open upper half of the z1 plane. Notice that G1 is disjoint from G2,but G3 intersects both G1 and G2. Thus the union G1 ∪G2 ∪G3 is a connected open subset of ℂ2.
An alternative description of this domain is the complement in ℂ2 of the union of the following
three closed subsets:

{ (z1, z2) ∶ Im z1 = 0 and Re z1 ≤ 0 and |z2| ≤ 1 }
and { (z1, z2) ∶ Im z1 = 0 and Re z1 ≥ 0 and |z2| ≥ 1 }
and { (z1, z2) ∶ Im z1 ≤ 0 and |z2| = 1 }.

The first claim is that every holomorphic function on G1 ∪ G2 ∪ G3 extends holomorphically
from the open subset where Re z1 < 0 and Im z1 > 0 and z2 is arbitrary to the open half-space
where Re z1 < 0 and Im z1 and z2 are arbitrary. In particular, all holomorphic functions admit
extension from one side across the boundary points where Re z1 < 0 and Im z1 = 0 and |z2| ≤ 1.Indeed, if f is a holomorphic function on G1 ∪ G2 ∪ G3, the value of z2 is arbitrary, the radius ris strictly greater than max{1, |z2|}, and Re z1 < 0, then the integral

1
2�i ∫

|� |=r

f (z1, �)
� − z2

d�

makes sense and determines a holomorphic function of z1 and z2. Since the value of the integraldoes not change when r increases, the integral defines a holomorphic function in the half-space
where Re z1 < 0. In the part of the half-space where Im z1 > 0, the integral recovers the value
f (z1, z2) of the original function (by the single-variable Cauchy integral formula). Therefore the
integral defines the required extension of f to the half-space. (This argument is the same as in the
proof of the Hartogs phenomenon; Theorem 2 could be quoted instead of repeating the argument.)

The second claim is the existence of a holomorphic function onG1∪G2∪G3 that does not admit
a two-sided extension across any boundary point where Re z1 < 0 and Im z1 = 0 and |z2| < 1.
To construct such a function, start with the principal branch of√z1 on the z1 plane slit along the
negative part of the real axis. (In other words, choose the value of √z1 to lie in the right-hand
half of the z1 plane.) Extend this function to be independent of z2 on G1. Next consider on the
z1 plane slit along the positive part of the real axis the branch of √z1 for which the argument
15The example ismodified from one in the book of B. V. Shabat, Introduction to Complex Analysis: Part II, Functions

of Several Variables, translated from the Russian by J. S. Joel, American Mathematical Society, 1992. See
Chapter III, §12, subsection 33, pages 177–178.

49



4 Convexity

of z1 is chosen to lie between 0 and 2�. (In other words, choose the value of √z1 to lie in the
upper half of the z1 plane.) Extend this function to be independent of z2 on G2. Observe that
these two branches of √z1 agree on the upper half of the z1 plane. Extend this common branch
to be independent of z2 on G3. Since the indicated holomorphic functions on G1 and G3 match
on the intersection G1 ∩ G3, and the functions on G2 and G3 match on G2 ∩ G3, the constructionprovides a well-defined holomorphic function on G1 ∪G2 ∪G3. When this holomorphic function
is extended across boundary points where Re z1 < 0 from the side where Im z1 > 0, the result isa branch of√z1 taking values in the second quadrant, hence equal to the negative of the originalfunction. Thus the extension is not two-sided.
The boundary of a general domain can be much more complicated than the boundary in the

preceding example. For instance, the boundary need not be locally connected (think of a comb).
The notion of one-sided extension is too simple to cover the general situation. One way to capture
the full complexity without entering into the world of manifolds is the following.

A holomorphic function f on a domain G is called completely singular at a boundary point p
if for every connected open neighborhood U of p, there does not exist a holomorphic function F
on U that agrees with f on some nonvoid open subset of U ∩G (equivalently, on some connected
component of U ∩G). A completely singular function16 is “holomorphically non-extendable” in
the strongest possible way.

A domain G in ℂn is called a domain of holomorphy if there exists a holomorphic function
on G that is completely singular at every boundary point of G. This property appears to be hard
to verify in concrete cases. An easier property to check is the existence for each boundary point p
of a holomorphic function on G that is completely singular at p (possibly a different function for
each boundary point). A domain satisfying this (apparently less restrictive) property is called17 a
weak domain of holomorphy.
Example 13. Convex domains are weak domains of holomorphy. Indeed, at each boundary point
there is an affine complex linear function that is zero at the boundary point but nonzero inside the
domain. The reciprocal of the function is then holomorphic inside and singular at the specified
boundary point. Exhibiting a holomorphic function that is singular at every boundary point of a
convex domain presents a more difficult problem.
Proof of Theorem 11. All of the properties hold for elementary reasons whenG = ℂn, so assume
that the boundary of G is not empty. Much of the proof is merely point-set topology. Complex
analysis enters through power series expansions.

Certain implications are easy. Evidently (2) ⇐⇒ (3), and (7) ⇐⇒ (6).
Some definitions are useful to discuss properties (4) and (5). When z is a point in G, let d(z)

denote infw∈ℂn⧵G ‖z − w‖, the distance from z to the boundary of G. Similarly let d(S) denote

16The terminology “completely singular” is not completely standard. Two standard books that do use this terminol-
ogy are R. Michael Range, Holomorphic Functions and Integral Representations in Several Complex Variables,
Springer, 1986; and Klaus Fritzsche and Hans Grauert, From Holomorphic Functions to Complex Manifolds,
Springer, 2002.

17The notion of “weak domain of holomorphy” appears in the two books just cited.
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the distance from a subset S of G to the boundary of G: namely, inf{ d(z) ∶ z ∈ S }. When v is
a unit vector in ℂn, and z is a point of G, let dv(z) denote

sup{ r ∈ ℝ ∶ z + �v ∈ G when � ∈ ℂ and |�| < r }.
The quantity dv(z) (which could be infinite ifG is unbounded) represents the radius of the “largest”
one-dimensional complex disc with center z and direction v that fits inside G. (The quotation
marks are present because the supremum is not attained.) When S is a subset of G, let dv(S)denote inf{ dv(z) ∶ z ∈ S }. This quantity represents the distance from S to the boundary of G
in the (complex) direction of the unit vector v. Evidently d(z) = inf{ dv(z) ∶ ‖v‖ = 1 }, so
d(S) = inf{ dv(S) ∶ ‖v‖ = 1 } for every set S. Therefore (4) ⇐⇒ (5).

Also elementary is the implication that (5) ⇐⇒ (1). For if property (5) holds, then K̂ is a
relatively closed subset of G that has positive distance from the boundary of G. Consequently,
the set K̂ is closed as a subset of ℂn. Moreover, the holomorphically convex hull K̂ is a subset of
the ordinary convex hull of K , hence is a bounded subset of ℂn. Thus K̂ is compact.
To show that (1) ⇐⇒ (2), suppose G is holomorphically convex, and let {pj} be a sequence ofpoints of G having no accumulation point inside G. The first goal is to construct an increasing

sequence {Kj} of holomorphically convex compact sets that exhausts G and a sequence {qj} ofdistinct points of G such that qj ∈ Kj+1 ⧵ Kj for each j, and the point sets {pj} and {qj} are
identical. (The sequence {qj} is a reordering of the sequence {pj} after any repeated points in
the sequence {pj} are removed.)

Suppose for a moment that this construction has been accomplished. The definition of holo-
morphic convexity guarantees (by a routine induction) the existence for each j of a holomorphic
function fj on G such that |fj(z)| < 2−j when z ∈ Kj , and |fj(qj)| > j +

∑j−1
k=1 |fk(qj)|. Theinfinite series∑∞

j=1 fj converges uniformly on each compact subset of G to a holomorphic func-
tion f such that |f (qj)| > j − 1 for each j. Thus limj→∞ |f (qj)| = ∞, so limj→∞ |f (pj)| = ∞ as
well, since the two sequences are essentially the same except for the order of terms.

The necessary construction can be accomplished as follows. For each positive integer m, the
set

{ z ∈ G ∶ ‖z‖ ≤ m and d(z) ≥ 1∕m }
is a compact subset of G. Denote the holomorphically convex hull of this set by Lm, which is
again a compact subset of G by hypothesis. Let K1 be the empty set. Let m1 be an index for
which the set Lm1 contains some points of the sequence {pj} (necessarily finitely many, since the
sequence has no accumulation point in G). Arrange these points (ignoring repetitions) in a list:
q1, . . . , qk1 . For each j between 1 and k1, letKj+1 be the finite set {q1,… , qj}. Choose an indexm2larger thanm1 for which the setLm2 ⧵Lm1 contains points of the sequence {pj}. Label these points
qk1+1,… , qk2 . For each j between k1+1 and k2, letKj+1 be the set Lm1 ∪{qk1+1,… , qj} (which isholomorphically convex by Exercise 27). Continue recursively to obtain the required sequences
{Kj} and {qj}. Thus (1) ⇐⇒ (2).

To prove that (3) ⇐⇒ (1), suppose K is an arbitrary compact subset of G. Every holomorphic
function on G is bounded on K , hence on K̂ . Consequently, property (3) implies that every
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sequence in K̂ must have an accumulation point inG. But K̂ is relatively closed inG by definition,
so the accumulation point lies in K̂ . Thus K̂ is sequentially compact.
The proof that (2) ⇐⇒ (7) is purely point-set topology. For each positive integer k, the set

{ z ∈ G ∶ 2−(k+1) ≤ d(z) ≤ 2−k and ‖z‖ ≤ 2k }

is compact, so this set can be covered by a finite number of open balls of radius 2−(k+2) with centers
in the set. Collect these centers for every k and arrange them in a sequence {pj}. Every compact
subset of G has positive distance from the boundary of G and so contains only finitely many
points of this sequence. Thus the sequence has no accumulation point inside G. On the other
hand, the sequence evidently has every boundary point of G as an accumulation point. The claim
is that even more is true: ifU is an arbitrary connected open set that intersects the boundary ofG,
and V is a component of U ∩G, then the points of the sequence {pj} that lie in V accumulate at
every boundary point of V that is contained in U . (There are boundary points of V in the interior
of U , for in the contrary case, the open set V would be relatively closed in U , contradicting the
connectedness of U . Boundary points of V in the interior of U are necessarily boundary points
of G as well.)
To verify the claim, let q be a point of U on the boundary of V . Choose N so large that

U contains the ball centered at q of radius 2−N , and also ‖q‖ < 2N . Suppose m is an arbitrary
integer larger thanN . Let q′ be a point in the intersection of V and the ball of radius 2−m centered
at q. There is an integer k (at least as large as m) for which

2−(k+1) ≤ d(q′) ≤ 2−k.

By construction, some point of the sequence {pj} has distance from q′ less than 2−(k+2). This
point lies in V because the open ball centered at q′ of radius 2−(k+2) is entirely contained in V
(since this ball is contained in U ∩ G and intersects V , which is a component of U ∩ G). Thus
there is a subsequence of {pj} that lies in V and converges to the arbitrary boundary point q.

Property (2) provides a holomorphic function that blows up along the sequence {pj}. This
function evidently is completely singular at every boundary point of G. Thus (2) ⇐⇒ (7).
Next consider the implication that (6) ⇐⇒ (5). Evidently d(K̂)

≤ d(K), sinceK ⊆ K̂ . Seeking
a contradiction, suppose that d(K̂) is strictly less than d(K). Then there is a point w in K̂ and
a point p in the boundary of G such that ‖w − p‖ < d(K). Consequently, there is an n-tuple
(r1,… , rn) of positive radii such that the open polydisc centered at w with polyradius r equal to
(r1,… , rn) contains the point p, yet for every point z in K , the closed polydisc centered at z with
polyradius r is contained in G.
Under the hypothesis thatG is a weak domain of holomorphy, there is a holomorphic function f

onG that is completely singular at p. The union of the closed polydiscs with polyradius r centered
at points of the compact set K is a compact subset of G, so the function f is bounded on this set
by some constantM . By Cauchy’s estimates for derivatives (these inequalities follow from the
iterated Cauchy integral on polydiscs),

|f (�)(z)| ≤ M�!
r�

for z in K and for every multi-index �.
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Since w ∈ K̂ , the same inequalities hold with z replaced by w. Consequently, the Taylor series
for f centered at w converges in the interior of the polydisc centered at w with polyradius r (by
comparison with a product of convergent geometric series).

Thus f fails to be completely singular at p. In view of this contradiction, the supposition that
d
(

K̂
)

< d(K) is untenable. Accordingly, (6) ⇐⇒ (5).
The proof that (3) ⇐⇒ (4) is similar. Seeking a contradiction, suppose there is a unit vector v

in ℂn and a point w in K̂ such that dv(w) < dv(K). Let �0 be a complex number of modulus
equal to dv(w) such that w + �0v lies in the boundary of G. Apply property (3) to produce
a holomorphic function f on G that is unbounded on the sequence {w + j

j+1
�0v}. Then the

function of one complex variable that sends � to f (w+ �v) has a Maclaurin series with radius of
convergence equal to dv(w). The goal now is to obtain a contradiction by showing that the radius
of convergence actually is larger than dv(w).Choose a number r strictly between dv(w) and dv(K). The set of points

{ z + �v ∶ z ∈ K and |�| ≤ r }

is a compact subset ofG, so the function f is bounded on this set, say byM . Cauchy’s estimate for
derivatives implies that when z ∈ K , the kth Maclaurin coefficient of the single-variable function
sending � to f (z + �v) is bounded byM∕rk. By the chain rule, the Maclaurin coefficient is the
value at z of a linear combination of partial derivatives of f , hence is a holomorphic function
on G. Since w ∈ K̂ , the corresponding Maclaurin coefficient of the function that sends � to
f (w + �v) admits the same bound M∕rk. But k is arbitrary, so f (w + �v) is a holomorphic
function of � at least in an open disk of radius r. This deduction contradicts that the radius of
convergence is equal to dv(w). Thus (3) ⇐⇒ (4).

Putting together the above deductions shows that (1) ⇐⇒ (2) ⇐⇒ (7) ⇐⇒ (6) ⇐⇒ (5) ⇐⇒ (1), and
also (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) ⇐⇒ (1). Additionally, (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (1). Thus all
seven statements are equivalent.
After one singular function is known to exist, the magic wand of the Baire category theorem

shows that most functions are singular. The next result is essentially a corollary of Theorem 11.
Theorem 12. The following properties of a domain G in ℂn are equivalent.

1. For every boundary point p, there exists a holomorphic function on G that is completely
singular at p. (In other words, G is a weak domain of holomorphy.)

2. For every boundary point p, the generic (in the sense of Baire category) holomorphic func-
tion on G is completely singular at p.

3. There exists a holomorphic function on G that is completely singular at every boundary
point of G. (In other words, G is a domain of holomorphy.)

4. The generic (in the sense of Baire category) holomorphic function on G is completely sin-
gular at every boundary point.
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The space of holomorphic functions on a domainG carries a topology induced by uniform con-
vergence on compact subsets (normal convergence), and this topology is metrizable. Namely, ex-
haustG by an increasing sequence {Kj} of compact subsets, let dj(f, g) = maxz∈Kj |f (z)−g(z)|,and define a metric on holomorphic functions by d(f, g) = ∑

j 2−jdj(f, g)∕(1 + dj(f, g)). Sincethe normal limit of holomorphic functions is holomorphic, the space of holomorphic functions
onG is a complete metric space. This property was used already on page 15 in the proof of Theo-
rem 4 to bring in the Baire category theorem. The word “generic” in the statement of Theorem 12
means “belonging to a residual set: namely, the complement of a set of first Baire category.”
Proof of Theorem 12. Evidently (4) ⇐⇒ (3) ⇐⇒ (1) and (4) ⇐⇒ (2) ⇐⇒ (1). What remains to show
is that (1) ⇐⇒ (4). A particular consequence is that properties (1) and (3) are equivalent (which
was already demonstrated in the proof of Theorem 11).

Suppose, then, that property (1) holds. LetU be a connected open set that intersects the bound-
ary of G, and let V be a component of the intersection G ∩ U . By hypothesis, there exists a
holomorphic function on G that cannot be extended holomorphically from V to U .
The first claim is that most holomorphic functions on G cannot be extended holomorphically

from V toU . The vector space of holomorphic functions onG is not only a complete metric space
but also an F -space or Fréchet space (that is, the vector space operations are continuous, and the
metric is invariant under translation). A standard notation for the space of holomorphic functions
on G is (G). The subspace of (G) consisting of functions that extend holomorphically from
V to U can be viewed as a Fréchet space whose metric is the sum of the metrics from (G) and
(U ); this subspace is embedded continuously into (G). By the hypothesis from the preceding
paragraph, the image of the embedding is not the whole of(G), so by a theorem from functional
analysis, the image is of first Baire category.18 Thus the functions in a residual set in(G) cannot
be extended holomorphically from V to U .
To strengthen the conclusion, choose a countable dense set of points in the boundary ofG. For

each point, choose a countable neighborhood basis of open balls centered at the point, say the
balls whose radii are reciprocals of positive integers. The intersection of each ball with G has
either a finite or a countably infinite number of connected components. Arrange the collection of
components from all balls and all points into a countable list {Vj}∞j=1. According to what was justshown, the set of holomorphic functions on G that extend holomorphically from a particular Vjto the corresponding ball is a set of first category in (G). Therefore the set of holomorphic
functions on G that extend from any Vj whatsoever is a countable union of sets of first category,
hence still a set of first category. In other words, the complementary set of holomorphic functions
on G that extend from no Vj to the corresponding ball is a residual set.What remains to check is the plausible assertion that every member of this residual set of
holomorphic functions is completely singular at every boundary point. Indeed, ifU is an arbitrary
connected open set that intersects the boundary of G, and V is a component of G ∩U , then some
18The argument is the same as the one on page 17. The theorem from Banach’s book cited there applies, or one could

invoke the version of the open mapping theorem from Walter Rudin’s book Functional Analysis (section 2.11,
page 48 of the second edition): a continuous linear mapping between Fréchet spaces either is a surjective open
map or has image of first category.
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ball in the constructed sequence simultaneously is contained in U and is centered at a boundary
point of V . Some Vj corresponding to this ball is a subset of V , so all of the functions in the
indicated residual set fail to extend holomorphically from V to U . Thus every function in the
residual set is completely singular at every boundary point of G.
Exercise 28. For each of the following subsets of ℂ2, determine if the subset is a domain of
holomorphy.
(a) The complement of the real line { (z1, 0) ∶ Im z1 = 0 }.
(b) The complement of the complex line { (z1, 0) ∶ z1 ∈ ℂ }.
(c) The complement of the totally real 2-plane { (z1, z2) ∶ both Im z1 = 0 and Im z2 = 0 }.
(d) The complement of the half-line { (z1, 0) ∶ Im z1 ≥ 0 }.
Exercise 29. (a) Is the union of two domains of holomorphy again a domain of holomorphy?
(b) Is the intersection of two domains of holomorphy again a domain of holomorphy (assuming

that the intersection is a nonvoid connected set)?
(c) If G1 is a domain of holomorphy in ℂn1 , and G2 is a domain of holomorphy in ℂn2 , is the

Cartesian product G1 × G2 a domain of holomorphy in Cn1+n2?
(d) Show that holomorphic convexity is a biholomorphically invariant property. In other words,

if f ∶ G1 → G2 is a bijective holomorphic map, then G1 is a domain of holomorphy if and
only if G2 is a domain of holomorphy.

(e) Suppose G is a domain of holomorphy in ℂn, and f ∶ G → ℂn is a holomorphic map (not
necessarily either injective or surjective). If the image f (G) is an open set in ℂn, must the
image be a domain of holomorphy?

(f) Suppose G is a domain of holomorphy in ℂn, and f ∶ G → ℂk is a holomorphic map (not
necessarily either injective or surjective). Show that if D is a domain of holomorphy in ℂk,
then (each connected component of) the inverse image f−1(D) [that is, { z ∈ G ∶ f (z) ∈ D }]
is a domain of holomorphy in ℂn.

(g) Show that if f1, . . . , fk are holomorphic functions on a holomorphically convex domain G,
then each connected component of { z ∈ G ∶ ∑k

j=1 |fj(z)| < 1 } is a domain of holomorphy.
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4.2.4 Pseudoconvexity

Pseudoconvexity means convexity with respect to a certain class of real-valued functions that
Kiyoshi Oka19 called “pseudoconvex functions.” Pierre Lelong20 called these functions “plurisub-
harmonic functions,” and this name has become standard. The discussion had better start with
the base case of dimension 1.

Subharmonic functions

A function u that is defined on an open subset of the complex plane ℂ and that takes values in
[−∞,∞) is called subharmonic if firstly u is upper semicontinuous, and secondly u satisfies one
of the following equivalent properties.

1. For every point a in the domain of u, there is a radius r(a) such that u satisfies the sub-mean-
value property on every disc of radius � less than r(a): namely, u(a) ≤ 1

2�
∫ 2�
0 u(a+�ei�) d�.

2. The function u satisfies the sub-mean-value property on every closed disc contained in the
domain of u.

3. For every closed disc D in the domain of u and every harmonic function ℎ on D, if u ≤ ℎ
on the boundary of D, then u ≤ ℎ in all of D.

4. For every compact subset K of the domain of u, and for every function ℎ that is harmonic
on K , if u ≤ ℎ on the boundary of K , then u ≤ ℎ on all of K .

5. If Δ denotes the Laplace operator d2

dx2
+ d2

dy2
, then Δu ≥ 0. (If u does not have second

derivatives in the classical sense, then Δu is understood in the sense of distributions.)
That these properties are equivalent is shown in textbooks on the theory of functions of one
complex variable. Some authors exclude from the class of subharmonic functions the function
that is constantly equal to −∞ (on a component of the domain).

A basic example of a subharmonic function is |f |, where f is holomorphic. Since a holomor-
phic function has the mean-value property, the modulus of the function has the sub-mean-value
property because the modulus of an integral does not exceed the integral of the modulus.

Another elementary example of a subharmonic function in ℂ is log |z|. This function is even
harmonic when z ≠ 0, so the mean-value property holds on small discs centered at nonzero
points; and the sub-mean-value property holds automatically at 0, because the function takes the
value −∞ at 0. Since the class of harmonic functions is preserved under composition with a

19Kiyoshi Oka, Sur les fonctions analytiques de plusieurs variables. VI. Domaines pseudoconvexes, Tôhoku Math-
ematical Journal 49 (1942) 15–52.

20Pierre Lelong, Définition des fonctions plurisousharmoniques, Comptes rendus hebdomadaires des séances de
l’Académie des sciences 215 (1942) 398–400; Sur les suites de fonctions plurisousharmoniques, Comptes rendus
hebdomadaires des séances de l’Académie des sciences 215 (1942) 454–456.
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4 Convexity

holomorphic function, property 4 implies that the class of subharmonic functions is preserved
too. In particular, log |f | is subharmonic when f is holomorphic.

The following two useful lemmas about subharmonic functions can be proved from first prin-
ciples.
Lemma 5. If u is subharmonic, then the integral of u on a circle is a weakly increasing function
of the radius. In other words, ∫ 2�

0 u(a + r1ei�) d� ≤ ∫ 2�
0 u(a + r2ei�) d� when 0 < r1 < r2.

Lemma 6. A subharmonic function on a connected open set is either locally integrable or identi-
cally equal to −∞.
Proof of Lemma 5. Since u is upper semicontinuous, there is for each positive " a continuous
function ℎ on the circle of radius r2 such that u < ℎ < u+ " on this circle. By solving a Dirichletproblem, one may assume that ℎ is harmonic in the disc of radius r2, or, after slightly dilating thecoordinates, in a neighborhood of the closed disc. Then u < ℎ on the circle of radius r1, since
u is subharmonic, so ∫ 2�

0 u(a+ r1ei�) d� < ∫ 2�
0 ℎ(a+ r1ei�) d� = 2�ℎ(a) = ∫ 2�

0 ℎ(a+ r2ei�) d� <
2�" + ∫ 2�

0 u(a + r2ei�) d�. Let " go to 0 to obtain the required inequality.
Proof of Lemma 6. An upper semicontinuous function is locally bounded above, so what needs
to be proved is that the integral of a subharmonic function u on a disc is not equal to −∞ unless
the function is identically equal to −∞.

Suppose a is a point at which u(a) ≠ −∞. Then the sub-mean-value property implies that
1
2�

∫ 2�
0 u(a + rei�) d� ≥ u(a) when the closed disc centered at a of radius r is contained in the

domain of u. Averaging with respect to r shows that |D|−1 ∫D u ≥ u(a) for every disc D centered
at a. Hence u is locally integrable in a neighborhood of every point of D.
On the other hand, if b is a point such that u(b) = −∞, but u is not identically equal to −∞

in a neighborhood of b, then there is a point a closer to b than to the boundary of the domain of
definition of u such that u(a) ≠ −∞. Then by what was just observed, the function u is integrable
in a neighborhood of b.

The preceding two paragraphs show that the set of points such that u is integrable in a neigh-
borhood of the point is both open and relatively closed. Therefore the function u, if not identically
equal to −∞, is locally integrable in a neighborhood of every point of its domain.
Exercise 30. (a) The sum of two subharmonic functions is subharmonic.
(b) If u is subharmonic and c is a positive constant, then cu is subharmonic.
(c) If u1 and u2 are subharmonic, then so is the pointwise maximum of u1 and u2.
(d) If ' is an increasing convex function on the range of a subharmonic function u, then the

composite function '◦u is subharmonic. [A useful special case is '(|z|).]
Some care is needed in handling infinite processes involving subharmonic functions. Simple

examples show that two things could go wrong in taking the pointwise supremum of an infinite
family of subharmonic functions. If fk(z) is the constant function k, then the sequence {fk} of
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subharmonic functions has limit +∞, which is not an allowed value for an upper semicontinuous
function. If fk(z) = 1

k
log |z|, then the sequence {fk} of subharmonic functions on the unit disc

has pointwise supremum equal to 0 when z ≠ 0 and equal to −∞ when z = 0; this limit function
is not upper semicontinuous. The following exercise says that these two kinds of difficulties are
the only obstructions to subharmonicity of a pointwise supremum.
Exercise 31. If u� is a subharmonic function for each � in an index set A (not necessarily count-
able), and the pointwise supremum sup�∈A u� is a measurable function, then this pointwise supre-
mum satisfies the sub-mean-value property. Consequently, the pointwise supremum is subhar-
monic if it is upper semicontinuous (which entails, in particular, that the supremum is nowhere
equal to +∞).

Taking a pointwise supremum of subharmonic functions is a process used in Perron’s method
for solving the Dirichlet problem.

Although taking the maximum of two subharmonic functions produces another one, taking the
minimum does not. For instance, min(1, |z|) does not have the sub-mean-value property at the
point where z = 1. Nonetheless, monotonically decreasing sequences of subharmonic functions
have subharmonic limits.
Theorem 13. The pointwise limit of a decreasing sequence of subharmonic functions is subhar-
monic. Moreover, every subharmonic function on an open set is, on each compact subset, the
limit of a decreasing sequence of infinitely differentiable subharmonic functions.

Proof. First observe that the limit u of a decreasing sequence {uk}∞k=1 of upper semicontinuous
functions is still upper semicontinuous, because { z ∶ u(z) < a } =

⋃∞
k=1{ z ∶ uk(z) < a }, and

the union of open sets is open. Now if K is a compact subset of the domain of definition of the
functions, and ℎ is a harmonic function onK such that u ≤ ℎ on the boundary ofK , then certainly
u < ℎ+" on the boundary ofK for every positive ". If z is a point of bK , then uk(z) < ℎ(z)+" forall sufficiently large k. The upper semicontinuity of uk implies that uk(w) ≤ ℎ(w)+2" for everyw
in a neighborhood of z. Since bK is compact, and the sequence of functions is decreasing, there is
some k such that uk ≤ ℎ+2" on all of bK . The subharmonicity of uk then implies that uk ≤ ℎ+2"
on all of K . Therefore u ≤ ℎ + 2" on K , and letting " go to 0 shows that u ≤ ℎ on K . Hence the
limit function u is subharmonic.

To prove the second part of the theorem, let u be a subharmonic function on a domain G
in ℂ, and extend u to be identically equal to 0 outside G. Let ' be an infinitely differentiable,
nonnegative function, with integral 1, supported in the unit ball, and depending only on the radius;
and let '"(x) denote "−2'(x∕"). Let u" denote the convolution of u and '": namely, u"(z) =
∫ℂ '"(z − w)u(w) dAw = ∫ℂ u(z − w)'"(w) dAw, where dA denotes Lebesgue area measure
in the plane. Thus the value of u" at a point is a weighted average of the values of u in an "-
neighborhood of the point.

The sub-mean-value property of subharmonic functions implies that u(z) ≤ u"(z) at everypoint z whose distance from the boundary of G is at least ". Moreover, Lemma 5 implies that
on a compact subset of G, the functions u" decrease when " decreases, once " is smaller than the
distance from the compact set to bG. Since u is upper semicontinuous, the average of u over a
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sufficiently small disc is arbitrarily little more than the value of u at the center of the disc; the
decreasing limit of u"(z) is therefore equal to u(z). The first expression for the convolution showsthat the functions u" are infinitely differentiable, for one can differentiate under the integral sign,letting the derivatives act on '". That u" is subharmonic follows by integrating u" on a circle,
interchanging the order of integration, and invoking the subharmonicity of u.

Here are two interesting examples that follow from the preceding considerations.
Example 14. Let {ak}∞k=1 be a bounded sequence of distinct points of ℂ, and define u(z) to be
∑∞

k=1 2
−k log |z − ak|. Then u is a subharmonic function on the whole plane. The sequence {ak}might be dense in some compact set: for instance, the sequence could be the set of points in the

unit square having rational coordinates.
To see why u is subharmonic, first suppose that z0 is not a point of the sequence nor a limit

point of the sequence. Then log |z − ak| is bounded above and below for z in a neighborhood
of z0, independently of k, so the series defining u(z) converges uniformly in the neighborhood.
The limit of a uniformly convergent series of harmonic functions is harmonic, so u is harmonic
on the complement of the closure of the sequence {ak}.Next suppose that z0 is a point in the closure of the sequence {ak}. Split the sum defining u(z)
into the sum of terms for which |ak − z0| < 1∕2 and the sum of terms for which |ak − z0| ≥ 1∕2.The second sum converges uniformly for z in a neighborhood of z0 (as in the preceding paragraph)and represents a harmonic function there. The first sum is a sum of negative terms (for z in a
neighborhood of z0), so the partial sums form a decreasing sequence of subharmonic functions.
By Theorem 13, the partial sums converge to a subharmonic function.

Thus u is subharmonic in the whole plane ℂ, and u takes the value −∞ at every point of
the sequence {ak}. The set where u equals −∞ necessarily is a set of measure zero, since the
subharmonic function u is locally integrable by Lemma 6.
Example 15. LetG be a proper subdomain of the complex plane. If d(z) denotes the distance from
the point z to the boundary of G, then − log d(z) is a subharmonic function of z in G. Indeed, if
a is a point of the boundary of G, then − log |z − a| is a harmonic function on G. Since

sup{− log |z − a| ∶ a ∈ bG } = − inf{ log |z − a| ∶ a ∈ bG } = − log d(z),

the subharmonicity follows from Exercise 31.

Plurisubharmonic functions

Introduction An upper semicontinuous function is called a plurisubharmonic function if the
restriction to every complex line is subharmonic. The name and the fundamental properties of
plurisubharmonic functions are due to Lelong.21
Adomain inℂn that is convex with respect to the class of plurisubharmonic functions is called a

pseudoconvex domain. It will be shown later that Example 15 has a higher-dimensional analogue:
21The following seminal article develops the basic theory: Pierre Lelong, Les fonctions plurisousharmoniques,

Annales scientifiques de l’École Normale Supérieure, Sér. 3, 62 (1945) 301–338.
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4 Convexity

a proper subdomain ofℂn is pseudoconvex if and only if− log d(z) is a plurisubharmonic function
of z in the domain.

If f is holomorphic, then |f | is plurisubharmonic. Consequently, the hull of a compact set
with respect to the class of plurisubharmonic functions is no larger than the holomorphically
convex hull. Therefore every holomorphically convex domain is pseudoconvex. The famous Levi
problem, to be solved later, is to prove the converse: every pseudoconvex domain is a domain of
holomorphy.

Equivalent definitions Suppose that u is an upper semicontinuous function on a domain G
inℂn. Each of the following properties is equivalent to u being a plurisubharmonic function onG.

1. For every point z in G and every vector w in ℂn, the function � → u(z + �w) is a subhar-
monic function of � inℂwhere it is defined. (This is the precise statement of what it means
for the restriction of u to every complex line to be subharmonic.)

2. For every holomorphic mapping f from the unit disc into G, the composite function u◦f
is subharmonic on the unit disc. (In other words, the restriction of u to every analytic disc
is subharmonic.)

3. If u is twice continuously differentiable, then
n
∑

j=1

n
∑

k=1

)2u
)zj)zk

wjwk ≥ 0 for every vector w in ℂn.

The notation )∕)zj means 1
2
()∕)xj − i)∕)yj) in terms of the underlying real coordinates

for which zj = xj + iyj . Similarly, )∕)zj means 1
2
()∕)xj + i)∕)yj). This notation for

complex partial derivatives goes back to the Austrian mathematician Wilhelm Wirtinger22
(1865–1945).
If u is not twice differentiable, then one can interpret the preceding inequality in the sense
of distributions. Alternatively, one can say that u is the limit of a decreasing sequence of
infinitely differentiable functions satisfying the inequality.

4. For every closed polydisc of arbitrary orientation contained inG, the value of u at the center
of the polydisc is at most the average of u on the torus in the boundary of the polydisc. It is
equivalent to say that each point of G has a neighborhood such that the indicated property
holds for polydiscs contained in the neighborhood.

The last property needs some explanation. A polydisc is a product of one-dimensional discs.
One part of the boundary of the polydisc is the Cartesian product of the boundaries of the one-
dimensional discs. This Cartesian product of circles is a multidimensional torus. There is no stan-
dard designation for this torus, which different authors call by various names, including “spine,”
22W.Wirtinger, Zur formalen Theorie der Funktionen vonmehr komplexen Veränderlichen,Mathematische Annalen

97 (1927) 357–376.
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4 Convexity

“skeleton,” and “distinguished boundary.” Lelong uses the French word “arête,” which means
“edge” in mathematical contexts and more generally can refer to a mountain ridge, the bridge of
a nose, and a fishbone. The words “arbitrary orientation” mean that the polydisc need not have its
sides parallel to the coordinate axes: the polydisc could be rotated by a unitary transformation.

It is useful to look at some examples of plurisubharmonic functions before proving the equiv-
alence of the various properties. If f is a holomorphic function, then both |f | and log |f | are
plurisubharmonic because the restriction of f to every complex line is a holomorphic function
of one variable.

Less obvious examples are log(|z1|2+|z2|2) and log(1+|z1|2+|z2|2). The plurisubharmonicity
can be verified by computing second derivatives and checking that the complex Hessian matrix
is nonnegative, but here is an alternative approach that handles the higher-dimensional analogue
with no extra work. Observe that |z1|2 + |z2|2 = sup{ |z1w1 + z2w2| ∶ |w1|

2 + |w2|
2 = 1 }. For

fixed values of w1 and w2, the function z1w1 + z2w2 is a holomorphic function of z1 and z2, so
log |z1w1+z2w2| is plurisubharmonic. The pointwise supremum of a family of plurisubharmonic
functions, if upper semicontinuous, is plurisubharmonic (just as in the one-dimensional case), so
log(|z1|2 + |z2|2) is plurisubharmonic. The same argument shows that log(|z1|2 + |z2|2 + |z3|2)is a plurisubharmonic function in ℂ3, and fixing z3 equal to 1 shows that log(1 + |z1|2 + |z2|2) isa plurisubharmonic function in ℂ2.
Exercise 32. Show that log(|z1| + |z2|) and log(1 + |z1| + |z2|) are plurisubharmonic functions
in ℂ2.

The functionmax(|z1|, |z2|) is plurisubharmonic inℂ2 because the pointwise maximum of two
(pluri)subharmonic functions is again (pluri)subharmonic. Accordingly, the bidisc in ℂ2, whose
definition as a polynomial polyhedron requires two functions, can be defined as a sub-level set
of one plurisubharmonic function. Moreover, every polynomial polyhedron can be defined by a
single plurisubharmonic function. This example shows that compared to holomorphic functions,
plurisubharmonic functions have an advantageous flexibility.
Exercise 33. There is no identity principle for plurisubharmonic functions: Give an example of an
everywhere defined plurisubharmonic function, not identically equal to zero, that is nonetheless
identically equal to zero on a nonvoid open set.

The example (log |z1|)(log 1
|z2|
) on the open set where z1z2 ≠ 0 shows that a function can

be subharmonic in each variable separately without being plurisubharmonic. On this open set,
the function is even harmonic in each variable separately, but the determinant of the complex
Hessian is negative (as a routine calculation shows), so the function is not plurisubharmonic.
A routine calculation shows too that the restriction of the function to a complex line on which
z1 = cz2 (where c is an arbitrary nonzero complex number) has negative Laplacian, hence is not
subharmonic. A function that is subharmonic in each variable separately has the sub-mean-value
property on polydiscs with faces parallel to the coordinate axes, which explains why property (4)
needs to allow polydiscs of arbitrary orientation.
Exercise 34. Show that the function (log |z1|)(log |z2|) is not plurisubharmonic in any neighbor-
hood of a point where z1z2 ≠ 0.
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It is tempting to try to extend the list of equivalent properties in parallel with the equivalent
properties for subharmonicity. One might define a function to be “subpluriharmonic” [a non-
standard term] if whenever the function is bounded above on the boundary of a compact set by
a pluriharmonic function, the bound propagates to the whole set. (A function is pluriharmonic
if the restriction to each complex line is harmonic. Equivalently, a function is pluriharmonic if
locally the function equals the real part of a holomorphic function.) A plurisubharmonic function
is subpluriharmonic, but the converse is false. Indeed, every plurisubharmonic function on ℂn

is subharmonic as a function on ℝ2n, every pluriharmonic function is harmonic, and every sub-
harmonic function is subpluriharmonic. But the function |z1|2 − |z2|2 is harmonic as a function
on ℝ4, hence subpluriharmonic, but not plurisubharmonic.
Proof of the equivalence of definitions of plurisubharmonicity. Suppose first that u is twice con-
tinuously differentiable. Then saying that u(z+ �w) is subharmonic as a function of � in ℂ is the
same as saying that the Laplacian is nonnegative. The chain rule implies that this Laplacian equals
4
∑n

j=1
∑n

k=1 ujkwjwk, where ujk means )2u∕)zj)zk. Hence property (1) implies property (3).
To see that property (3) implies (2), observe that the composite function u◦f is subharmonic

precisely when the Laplacian is nonnegative. The chain rule implies that when f is a holomorphic
mapping, the Laplacian of u◦f equals 4∑n

j=1
∑n

k=1 ujkfjf k.Evidently property (2) implies property (1). Accordingly, properties (1), (2), and (3) are all
equivalent when u is sufficiently smooth.

When u is not smooth, property (2) still implies property (1), which is the special case of a
holomorphic mapping that is a first-degree polynomial. To prove the converse, take a decreasing
sequence of smooth plurisubharmonic functions converging to u (by convolving u with smooth
mollifying functions, just as in one variable). For the smooth approximants, property (2) holds
by the first part of the proof, and this property evidently continues to hold in the limit.

It remains to show that property (1) is equivalent to property (4). Property (1) is invariant under
composition with a complex-linear transformation (since such transformations take complex lines
to complex lines), so it suffices to show that (1) ⇐⇒ (4) for polydiscs with faces parallel to the
coordinate axes. Integrate on the torus by integrating over each circle separately. Applying (1) for
each integral shows that (4) holds. Conversely, suppose (4) holds. Since upper semicontinuous
functions are bounded above on compact sets, subtracting a constant from u reduces to the case
that u is negative. Integrate on a polydisc and let n−1 of the radii tend to 0. Apply Fatou’s lemma
to deduce that the restriction of u to a disc in a complex line satisfies the sub-mean-value property.
Thus (1) holds.

Along with plurisubharmonic functions, a certain geometric property is useful for character-
izing pseudoconvexity. Ordinary convexity says that if the boundary of a line segment lies in the
domain, then the whole line segment lies in the domain. A natural way to generalize this notion
to multidimensional complex analysis is to ask for an analytic disc to lie in the domain whenever
the boundary of the disc lies in the domain. An analytic disc means a continuous mapping from
the closed unit disc D in ℂ into ℂn that is holomorphic on the interior of the disc. Often an an-
alytic disc is identified with the image (at least when the mapping is one-to-one). Here are two
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versions of the so-called continuity principle for analytic discs, also known by the German name,
Kontinuitätssatz. The principle may or may not hold for a particular domain G in ℂn.
(a) If for each � in some index setA, the mapping f� ∶ D → G is an analytic disc whose image is

contained in the domain G, and if there is a compact subset of G that contains⋃�∈A f�(bD)(the “boundaries” of the analytic discs), then there is a compact subset of G that contains
⋃

�∈A f�(D).
(b) If ft∶ D → ℂn is a family of analytic discs varying continuously with respect to the parame-

ter t in the interval [0, 1], if⋃0≤t≤1 ft(bD) is contained in the domainG (hence automatically
contained in a compact subset of G), and if f0(D) is contained in G, then ⋃

0≤t≤1 ft(D) iscontained in G (hence in a compact subset of G).
The following theorem characterizes pseudoconvex domains by four equivalent properties. A

sufficiently smooth function is called strictly (or strongly) plurisubharmonic if the complex Hes-
sian matrix is positive definite (rather than positive semi-definite). A function u∶ G → [−∞,∞)
is an exhaustion function for G if for every real number a, the set u−1[−∞, a) is contained in a
compact subset of G. The intuitive meaning of an exhaustion function is that the function blows
up at the boundary of G (and also at infinity, if G is unbounded).
Theorem 14. The following properties of a domain G in ℂn are equivalent.

1. There exists an infinitely differentiable, strictly plurisubharmonic exhaustion function forG.

2. The domain G is convex with respect to the plurisubharmonic functions (that is, G is a
pseudoconvex domain).

3. The continuity principle (Kontinuitätssatz) holds for G.

4. The function − log d(z) is plurisubharmonic, where d(z) denotes the distance from z to the
boundary of G.

Exercise 35. The unit ball { z ∈ ℂn ∶ ‖z‖ < 1 } (where ‖z‖2 = |z1|2+⋯+|zn|2) is convex, henceconvex with respect to the holomorphic functions, hence convex with respect to the plurisubhar-
monic functions. The distance from z to the boundary equals 1−‖z‖. Verify that − log(1−‖z‖)
is plurisubharmonic and that − log(1 − ‖z‖2) is an infinitely differentiable, plurisubharmonic
exhaustion function.
Proof of Theorem 14. The plan of the proof is (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (1).

Suppose (1) holds: let u be a plurisubharmonic exhaustion function for G. If K is a compact
subset ofG, then u is bounded above onK by some constantM . The plurisubharmonic hull ofK
is contained in { z ∈ G ∶ u(z) ≤ M } by the definition of the hull. This set is contained in a
compact subset of G by the definition of exhaustion function. Being a relatively closed subset
ofG that is contained in a compact subset ofG, the plurisubharmonic hull ofK is compact. Thus
(1) ⇐⇒ (2).
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Suppose (2) holds. If f ∶ D → G is an analytic disc, and u is a plurisubharmonic function onG,
then u◦f is a subharmonic function on the unit disc, and the maximum principle for subharmonic
functions implies that u(f (�)) ≤ max{ u(f (ei�)) ∶ 0 ≤ � ≤ 2� } for every point � in D. In
other words, f (D) is contained in the plurisubharmonic hull of f (bD). Hence version (a) of the
continuity principle holds: the plurisubharmonic hull of a compact set containing⋃�∈A f�(bD) isa compact set containing⋃�∈A f�(D). To get version (b) of the continuity principle, consider theset S of points t in the interval [0, 1] for which ft(D) ⊂ G. This set is nonvoid, since S contains 0
by hypothesis. If t ∈ S, then ft(D) is a compact subset of G (since ft is continuous on the
closed disc D), so fs(D) ⊂ G for s near t (since the discs vary continuously with respect to the
parameter). Thus S is an open set. Version (a) of the continuity principle implies that the set S is
closed. Hence S is all of [0, 1], which is what needed to be shown. Consequently, (2) implies (3).

Suppose that (3) holds. To see that − log d(z) is plurisubharmonic, fix a point z0 in G and
a vector w0 in ℂn such that the closed disc { z0 + �w0 ∶ |�| ≤ 1 } lies in G. To show that
− log d(z0 + �w0) is subharmonic as a function of �, it suffices to fix a polynomial p of one
complex variable such that

− log d(z0 + �w0) ≤ Re p(�) when |�| = 1
and to show that the same inequality holds when |�| < 1. This problem translates directly into
the equivalent problem of showing that if

d(z0 + �w0) ≥ |e−p(�)| when |�| = 1,
then the same inequality holds when |�| < 1. A further reformulation is to show that if, for every
point � in the open unit ball of ℂn, the point z0 + �w0 + �e−p(�) lies in G when |�| = 1, then the
same property holds when |�| < 1.
Now the map taking � to z0 + �w0 + �e−p(�) is an analytic disc in ℂn depending continuously

on the parameter � . When � = 0, the analytic disc lies in G by hypothesis. Also by hypothesis,
the boundaries of all these analytic discs lie in G. Hence version (b) of the continuity principle
(applied along the line segment joining 0 to � ) implies that all the analytic discs lie in G. Thus
(3) implies (4).

Finally, suppose (4) holds, that is, − log d(z) is plurisubharmonic. This function evidently
blows up at the boundary of G. The method for obtaining property (1) is to modify this function
to make the function both smooth and strictly plurisubharmonic. Here are the technical details.

To start, let u(z) denote max(‖z‖2,− log d(z)). Evidently u is a continuous, plurisubharmonic
exhaustion function for G. Add a suitable constant to u to ensure that the minimum value of u
on G is equal to 0. For each positive integer j, let Gj denote the subset of G on which u < j.
These sets form an increasing sequence of relatively compact open subsets of G.

Extend u to be equal to 0 outside G. For each j, convolve u with a smooth, radially symmetric
mollifying function having small support to obtain an infinitely differentiable function on ℂn that
is plurisubharmonic on a neighborhood of the closure ofGj and that closely approximates u from
above on that neighborhood. Adding "j‖z‖2 for a suitably small positive constant "j gives asmooth function uj on ℂn, strictly plurisubharmonic on a neighborhood of the closure ofGj , such
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that u < uj < u+ 1 on that neighborhood. It remains to splice the functions uj together to get therequired smooth, strictly plurisubharmonic exhaustion function for G.
A natural way to build the final function is to use an infinite series. A simple way to guarantee

that the sum remains infinitely differentiable is to make the series locally finite. To carry out this
plan, let � be an infinitely differentiable, convex function of one real variable such that �(t) = 0
when t ≤ 0, and both � ′ and � ′′ are positive when t > 0.
Exercise 36. Verify that an example of such a function � is

{

0, if t ≤ 0,
ete−1∕t, if t > 0.

Exercise 37. Show that if ' is an increasing convex function of one real variable, and v is a
plurisubharmonic function, then the composite function '◦v is plurisubharmonic. Moreover, if
' is strictly convex and v is strictly plurisubharmonic, then '◦v is strictly plurisubharmonic.
The remainder of the proof consists of inductively choosing cj to be a suitable positive constantto make the series∑∞

j=1 cj�(uj(z) − j + 1) have the required properties. The induction statement
is that on the set Gk, the sum ∑k

j=1 cj�(uj(z) − j + 1) is strictly plurisubharmonic and larger
than u(z).

For the basis step (k = 1), observe that u1 is strictly larger than u on a neighborhood of the
closure of G1 and hence is strictly positive there. By Exercise 37, the composite function �◦u1is strictly plurisubharmonic on the neighborhood. Take the constant c1 large enough that c1�◦u1exceeds u on G1.Suppose now that the induction statement holds for an integer k. There is a neighborhood of
the closure of Gk+1 such that if z is in that neighborhood but outside Gk, then k ≤ u(z) < uk+1(z).For such z, the function �(uk+1(z) − k) is positive and strictly plurisubharmonic. Multiply by a
sufficiently large constant ck+1 to guarantee that∑k+1

j=1 cj�(uj(z) − j + 1) is both strictly plurisub-harmonic and larger than u(z)when z is inGk+1 but outsideGk. Since the function �(uk+1(z)−k)is nonnegative and (weakly) plurisubharmonic on all of Gk+1, the induction hypothesis implies
that the sum of all k + 1 terms is strictly plurisubharmonic and larger than u on all of Gk+1.It remains to check that the infinite series does converge to an infinitely differentiable function
on G. This property is local, so it is enough to check the property on a ball whose closure is
contained in G and hence in some Gm. If j ≥ m + 2, then �(uj(z) − j + 1) = 0 when z ∈ Gm(since uj < u+1 on Gj), so only finitely many terms contribute to the sum on the ball. Hence the
series converges to an infinitely differentiable function. The preceding paragraph shows that the
limit function is strictly plurisubharmonic. Since the sum exceeds the exhaustion function u, the
sum is an exhaustion function too.

65
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4.3 The Levi problem

The characterizations of pseudoconvexity considered so far are essentially internal to the domain.
Eugenio Elia Levi (1883–1917) discovered23 a characterization of pseudoconvexity that involves
the differential geometry of the boundary of the domain. This condition requires the boundary to
be a twice continuously differentiable manifold. Since Levi’s condition is local, one ought first
to observe that pseudoconvexity is indeed a local property of the boundary.
Theorem 15. A domain G in ℂn is pseudoconvex if and only if each boundary point of G has an
open neighborhoodU inℂn such that (each component of) the intersectionU∩G is pseudoconvex.

Proof. If G is pseudoconvex, and B is a ball centered at a boundary point, then the maximum
of − log dB(z) and − log dG(z) is a plurisubharmonic exhaustion function for B ∩ G, so (each
component of) the intersection B ∩ G is pseudoconvex.
Conversely, suppose each boundary point p of G has a neighborhood U such that − log dU∩Gis a plurisubharmonic function on U ∩ G. The neighborhood U contains a ball centered at p,

and if z lies in the concentric ball B of half the radius, then the distance from z to the boundary
of G is less than the distance from z to the boundary of U . Therefore the function − log dGis plurisubharmonic on B ∩ G, being equal on this set to the function − log dU∩G. The union
of such balls for all boundary points of G is an open neighborhood V of the boundary of G
such that − log dG is plurisubharmonic on V ∩ G. What remains to accomplish is to modify this
function to get a plurisubharmonic exhaustion function defined on all ofG. IfG is bounded, then
G ⧵ V is a compact set, and − log dG has an upper boundM on G ⧵ V . The continuous function
− log dG is less thanM + 1 on an open neighborhood of G ⧵ V , and max{M + 1,− log dG} is aplurisubharmonic exhaustion function for G.
If G is unbounded, then the set G ⧵ V is closed but not necessarily compact. For each nonneg-

ative real number r, the continuous function − log dG has a maximum value on the intersection of
G ⧵ V with the closed ball of radius r centered at 0. By Exercise 38 below, there is a continuous
function '(‖z‖) that is plurisubharmonic on ℂn, exceeds − log dG(z) when z is in G ⧵ V , and
blows up at infinity. Then max{'(‖z‖),− log dG(z)} is a plurisubharmonic exhaustion function
for G, so G is pseudoconvex.

Although pseudoconvexity is a local property of the boundary of a domain, none of the prop-
erties so far shown to be equivalent to holomorphic convexity appears to be local. In particular,
there is no evident way, given a locally defined holomorphic function that is singular at a bound-
ary point of a domain, to produce a globally defined holomorphic function that is singular at the
point. The essence of the Levi problem—the equivalence between holomorphic convexity and
pseudoconvexity—is to show that being a domain of holomorphy actually is a local property of
the boundary of the domain.
Exercise 38. If g is a continuous function on [0,∞), then there is an increasing convex function '
such that '(t) > g(t) for every t.
23E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse, Annali

di Matematica Pura ed Applicata (3) 17 (1910) 61–87.
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4 Convexity

4.3.1 The Levi form

Suppose that in a neighborhood of a boundary point of a domain there is a real-valued defining
function �: namely, the boundary of the domain is the set where � = 0, the interior of the domain is
the set where � < 0, and the exterior of the domain is the set where � > 0. Suppose additionally
that � has continuous partial derivatives of second order and that the gradient of � is nowhere
equal to 0 on the boundary of the domain. The implicit function theorem then implies that the
boundary of the domain (in the specified neighborhood) is a twice differentiable real manifold.
The abbreviation for this set of conditions is that the domain has “class C2 boundary” or “class
C2 smooth boundary.”
Levi’s local condition is that at boundary points of the domain,

n
∑

j=1

n
∑

k=1

)2�
)zj)zk

wjwk ≥ 0 whenever
n
∑

j=1

)�
)zj

wj = 0.

This condition is weaker than plurisubharmonicity of the defining function � for two reasons: the
inequality holds only at boundary points of the domain, not on an open set; and the inequality
holds only for certain vectorsw inℂn: namely, for complex tangent vectors (vectors satisfying the
side condition). The indicated Hermitian quadratic form, restricted to act on the complex tangent
space, is known as the Levi form. If the Levi form is strictly positive definite everywhere on the
boundary, then the domain is called strictly pseudoconvex (or strongly pseudoconvex).
Exercise 39. Although the Levi form depends on the choice of the defining function �, positivity
(or nonnegativity) of the Levi form is independent of the choice of defining function. Moreover,
positivity (or nonnegativity) of the Levi form is invariant under local biholomorphic changes of
coordinates.

Levi’s condition can be rephrased as the existence of a positive constant C such that
n
∑

j=1

n
∑

k=1

)2�
)zj)zk

wjwk + C‖w‖
|

|

|

|

n
∑

j=1

)�
)zj

wj
|

|

|

|

≥ 0 for every vector w in ℂn.

The constantC can be taken to be locally independent of the point where the derivatives are being
evaluated. An advantage of this reformulation is the elimination of the side condition about the
complex tangent space: the inequality now holds for every vector w. The second formulation
evidently implies the first statement of Levi’s condition. To see, conversely, that Levi’s condition
implies the reformulation, decompose an arbitrary vector w into an orthogonal sum w′ + w′′,
where ∑n

j=1 �jw
′
j = 0 (here �j is a typographically convenient abbreviation for )�∕)zj), and

∑n
j=1 �jw

′′
j =

∑n
j=1 �jwj . By hypothesis, the length of the gradient of � is locally bounded away

from 0, so the length of the vector w′′ is comparable to∑n
j=1 �jwj . Levi’s condition implies that

n
∑

j=1

n
∑

k=1

)2�
)zj)zk

wjwk =
n
∑

j=1

n
∑

k=1

)2�
)zj)zk

w′
jw

′
k + O(‖w‖ ‖w

′′
‖) ≥ −C‖w‖

|

|

|

|

n
∑

j=1

)�
)zj

wj
|

|

|

|

for some constant C , which is the reformulated version of the Levi condition.
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Theorem 16. A domain with class C2 smooth boundary is pseudoconvex if and only if the Levi
form is positive semi-definite at each boundary point.

Proof. First suppose that the domain G is pseudoconvex in the sense that the negative of the
logarithm of the distance to the boundary of G is plurisubharmonic. A convenient function � to
use as defining function is the signed distance to the boundary:

�(z) =

{

−dist(z, bG), z ∈ G,
+dist(z, bG), z ∉ G.

The implicit function theorem implies that this defining function is class C2 in a neighborhood
of the boundary of G. By hypothesis, the complex Hessian of − log |�| is nonnegative in the part
of this neighborhood inside G:

n
∑

j=1

n
∑

k=1

(

−1
�

)2�
)zj)zk

+ 1
�2
)�
)zj

)�
)zk

)

wjwk ≥ 0 for every w in ℂn.

But −1∕� is positive at points inside the domain, so
n
∑

j=1

n
∑

k=1

)2�
)zj)zk

wjwk ≥ 0 when
n
∑

j=1

)�
)zj

wj = 0.

As observed just before the statement of the theorem, this Levi condition is equivalent to the
existence of a positive constant C such that

n
∑

j=1

n
∑

k=1

)2�
)zj)zk

wjwk + C‖w‖
|

|

|

|

n
∑

j=1

)�
)zj

wj
|

|

|

|

≥ 0 for every vector w in ℂn.

The constant C depends on the maximum of the second derivatives of � and the maximum of
1∕|∇�|, and these quantities are bounded near the boundary of G by hypothesis. The continuity
of the second derivatives of � implies that the inequality persists on the boundary ofG, and Levi’s
condition follows.

Conversely, suppose that Levi’s condition holds. What is required is to construct a plurisub-
harmonic exhaustion function for the domain G. In view of Theorem 15, a local construction
suffices.

The implicit function theorem implies that a boundary of classC2 is locally the graph of a twice
continuously differentiable real-valued function. After a complex-linear change of coordinates, a
local defining function � takes the form '(Re z1, Im z1,… ,Re zn−1, Im zn−1,Re zn) − Im zn. Thehypothesis is the existence of a positive constant C such that at boundary points in a local neigh-
borhood,

n
∑

j=1

n
∑

k=1

)2�
)zj)zk

wjwk + 2C‖w‖
|

|

|

|

n
∑
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|

|

|
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≥ 0 for every vector w in ℂn
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(where a factor of 2 has been inserted for later convenience). Since � depends linearly on Im zn,all derivatives of � are independent of Im zn. Thus the preceding condition holds not only locallyon the boundary of G but also locally off the boundary, say in some ball in ℂn.
Let u denote − log |�|. The goal is to modify the function u to get a local plurisubharmonic

function in G that blows up at the boundary. At points inside G, the same calculation as above
shows that

n
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j=1

n
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k=1

)2u
)zj)zk

wjwk =
1
|�|

n
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n
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1
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≥ −2C
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|
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2

for every vector w in ℂn. But −2ab ≥ −a2 − b2 for real numbers a and b, so
n
∑

j=1

n
∑

k=1

)2u
)zj)zk

wjwk ≥ −C2
‖w‖2.

The preceding inequality implies that u(z) + C2
‖z‖2 is a plurisubharmonic function in the

intersection of G with a small ball B centered at a boundary point a, and this function blows up
at the boundary of G. If the ball B has radius r, then max{− log(r − ‖z − a‖), u(z) + C2

‖z‖2} is
a plurisubharmonic exhaustion function for B ∩ G. Thus G is locally pseudoconvex near every
boundary point, so by Theorem 15, the domain G is pseudoconvex.
In view of Levi’s condition, the notion of pseudoconvexity can be rephrased as follows.

Theorem 17. A domain is pseudoconvex if and only if the domain can be expressed as the union of
an increasing sequence of class C∞ smooth domains each of which is locally biholomorphically
equivalent to a strongly convex domain.

Proof. A convex domain is pseudoconvex, and pseudoconvexity is a local property that is biholo-
morphically invariant, so a domain that is locally equivalent to a convex domain is pseudoconvex.
Version (b) of the Kontinuitätssatz implies that an increasing union of pseudoconvex domains is
pseudoconvex. Thus one direction of the theorem follows by putting together prior results.

Conversely, suppose that G is a pseudoconvex domain. Then G admits an infinitely differen-
tiable, strictly plurisubharmonic exhaustion function u. Fix a base point in G, let c be a large real
number, and consider the connected component of the set where u < c that contains the base
point. By Sard’s theorem,24 the gradient of u is nonzero on the set where u = c for almost every
value of c (all but a set of measure zero in ℝ). Thus G is exhausted by an increasing sequence of
C∞ smooth, strictly pseudoconvex domains.
24Arthur Sard, The measure of the critical values of differentiable maps, Bulletin of the American Mathematical

Society 48 (1942) 883–890. Since the function u takes values in ℝ1, the claim already follows from an earlier
result of Anthony P. Morse, The behavior of a function on its critical set, Annals of Mathematics (2) 40 (1939),
number 1, 62–70.
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4 Convexity

What remains to show is that each smooth level set where the strictly plurisubharmonic func-
tion u equals a value c is locally equivalent to a strongly convex domain via a local biholomorphic
mapping. Fix a point a such that u(a) = c, and consider the Taylor expansion of u(z) − c in a
neighborhood of a: namely,

2Re
[ n
∑

j=1

)u
)zj

(a)(zj − aj) +
1
2

n
∑

j=1

n
∑

k=1

)2u
)zj)zk

(a)(zj − aj)(zk − ak)
]

+
n
∑

j=1

n
∑

k=1

)2u
)zj)zk

(a)(zj − aj)(zk − ak) + O(‖z − a‖3).
(4.1)

The expression whose real part appears on the first line of (4.1) is a holomorphic function of z
with nonzero gradient at the point a. This function will serve as the first coordinate w1 of a localbiholomorphic change of coordinatesw(z) such thatw(a) = 0. In a neighborhood of the point a,
the level surface on which u(z) − c = 0 has a defining function �(w) in the new coordinates of
the form

2Rew1 +
n
∑

j=1

n
∑

k=1
Ljkwjwk + O(‖w‖3),

where the matrixLjk is a positive definite Hermitian matrix corresponding to the positive definite
matrix ujk in the new coordinates. Thus the quadratic part of the real Taylor expansion of � in the
real coordinates corresponding to w is positive definite, which means that the level set on which
� = 0 is strongly convex in the real sense.
Exercise 40. Solve the Levi problem for complete Reinhardt domains inℂ2 by showing that Levi’s
condition in this setting is equivalent to logarithmic convexity.

4.3.2 Applications of the ) problem

Theorem 15 shows that pseudoconvexity is a local property of the boundary of a domain, but
the corresponding local nature of holomorphic convexity is far from obvious. To solve the Levi
problem for a general pseudoconvex domain, one needs some technical machinery to forge the
connection between the local and the global. One approach is sheaf theory, another is integral
representations, and a third is the )-equation. The following discussion uses the third method,
which seems the most intuitive.

Some notation is needed. If f is a function, then )f denotes ∑n
j=1()f∕)zj) dzj , a so-called

(0, 1)-form. A function f is holomorphic precisely when )f = 0. The question of interest
here is whether a given (0, 1)-form �, say ∑n

j=1 bj(z) dzj , can be written as )f for some func-
tion f . Necessary conditions for the mixed second-order partial derivatives of f to match are
that )bj∕)zk = )bk∕)zj for every j and k. These conditions are abbreviated by writing that
)� = 0; in words, the form � is )-closed.

The key ingredient for solving the Levi problem is the following theorem about solvability of
the inhomogeneous Cauchy–Riemann equations.
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Theorem 18. Let G be a bounded pseudoconvex domain in ℂn with C∞ smooth boundary. If �
is a )-closed (0, 1)-form with C∞ coefficients in G, then there exists a C∞ function f in G such
that )f = �.

The conclusion holds without any hypothesis about boundary smoothness, but then the proof is
more technical. For present purposes, proving the theorem under the additional hypothesis of
strong pseudoconvexity suffices.

Solution of the Levi problem for bounded strongly pseudoconvex domains

Granted Theorem 18, one can easily solve the Levi problem for the approximating strongly pseu-
doconvex domains arising in the proof of Theorem 17. Indeed, let G be a bounded domain with
boundary defined by an infinitely differentiable, strictly plurisubharmonic function. (One need
not assume here that the gradient of the defining function is nonzero on the boundary of G, for
Theorem 18 will be applied not on G but on a smooth domain approximating G from outside.)
Showing that G is a (weak) domain of holomorphy requires producing a global holomorphic
function on G that is singular at a specified boundary point p. The proof of Theorem 17 provides
a holomorphic function fp defined in a neighborhood of p, equal to 0 at p, and zero-free on the
part of G ⧵ {p} in the neighborhood. Indeed, the polynomial whose real part appears in the first
line of formula (4.1) will serve for fp, since the expression on the second line of (4.1) is strictly
positive on a small punctured neighborhood of p. The goal is to modify 1∕fp, the locally definedreciprocal function, to obtain a globally defined function on G that is singular at p.
Let � be a smooth, real-valued, nonnegative cut-off function that is identically equal to 1 in a

neighborhood of p and identically equal to 0 outside a larger neighborhood (contained in the set
where fp is defined). The function �∕fp is defined globally on G and blows up at p, but �∕fp isnot globally holomorphic. The tool for adjusting this function to get a holomorphic function is
the theorem on solvability of the )-equation.
The (0, 1) form ()�)∕fp is identically equal to 0 in a neighborhood of p, and the zero set of fp

touches G only at p inside the support of � . Therefore the form ()�)∕fp has C∞ coefficients in a
neighborhoodD ofG, which may be taken to be a strictly pseudoconvex domain with C∞ smooth
boundary. The form ()�)∕fp is )-closed on this domainD, since )� is )-closed, and 1∕fp is holo-morphic away from the zeroes of fp. Theorem 18 produces an infinitely differentiable function v
on D such that )v = ()�)∕fp.
The function v− (�∕fp) is a holomorphic function on the set where fp ≠ 0, hence on G ⧵ {p}.

The function v, being smooth on G, is bounded there, so the holomorphic function v− (�∕fp) issingular at p. Since there exists a holomorphic function on all ofG that is singular at a prescribed
boundary point, the domainG is a weak domain of holomorphy, hence (by Theorem 11) a domain
of holomorphy.

The preceding argument solves the Levi problem for bounded strictly pseudoconvex domains,
modulo the proof of solvability of the )-equation.
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It is worthwhile noticing that this argument implies the existence of a peak function at an arbi-
trary boundary point p of a strictly pseudoconvex domain G: namely, a holomorphic function ℎ
on a neighborhood ofG that takes the value 1 at p and has modulus strictly less than 1 everywhere
on G ⧵ {p}. Indeed, to construct a peak function, first observe that the function fp obtained from
formula (4.1) has negative real part on the intersection of G ⧵ {p} with a small neighborhood
of p. Let c be a real constant larger than the maximum of |v| on G, and let g denote the function
1∕[c+v−(�∕fp)]. Then g is well defined and holomorphic onG⧵{p}, because the denominator
has positive real part (and so is nonzero). On the other hand, in the neighborhood of p where
the cut-off function � is identically equal to 1, the function g equals fp∕[(c + v)fp − 1], so g is
holomorphic in a small neighborhood of p and equals 0 at p. Thus g is holomorphic in a neigh-
borhood of G, has positive real part on G ⧵ {p}, and equals 0 at p. Therefore e−g serves as the
required holomorphic peak function ℎ.

Proof of the Oka–Weil theorem

Another application of the solvability of the )-equation on strongly pseudoconvex domains is the
Oka–Weil theorem (Theorem 10). Indeed, the tools are at hand to prove the following general-
ization.
Theorem 19. If G is a domain of holomorphy in ℂn, and K is a compact subset of G that is
convex with respect to the holomorphic functions on G, then every function holomorphic in a
neighborhood of K can be approximated uniformly on K by functions holomorphic on G.

Theorem 10 follows by taking G equal to ℂn, because convexity with respect to entire func-
tions is the same as polynomial convexity, and approximation by entire functions is equivalent to
approximation by polynomials.
Proof of Theorem 19. Suppose f is holomorphic in an open neighborhood U of K , and " is a
specified positive number. The goal is to approximate f on K within " by functions that are
holomorphic on the domain G. There is no loss of generality in supposing that the closure of the
neighborhood U is a compact subset of G.

Let L be a compact subset of G containing U and convex with respect to (G). The initial
goal is to show that f can be approximated on K within " by functions that are holomorphic in a
neighborhood of L. Then a limiting argument as L expands will finish the proof.
Fix an open neighborhood V of L having compact closure in G. The first observation is that

there are finitely many holomorphic functions f1, . . . , fk on G such that
K ⊆ { z ∈ V ∶ |f1(z)| ≤ 1,… , |fk(z)| ≤ 1 } ⊂ U.

In other words, the compact set K can be closely approximated from outside by a compact an-
alytic polyhedron defined by functions that are holomorphic on G. The reason is similar to the
proof of Theorem 9: the set V ⧵ U is compact, and each point of this set can be separated from
the holomorphically convex set K by a function holomorphic on G, so a compactness argument
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furnishes a finite number of separating functions. Hence there is no loss of generality in assuming
from the start that K is equal to the indicated analytic polyhedron.
For the same reason, the holomorphically convex compact setL can be approximated from out-

side by a compact analytic polyhedron contained in V and defined by a finite number of functions
holomorphic on G. Again, one might as well assume that L equals that analytic polyhedron.
The main step in the proof is to show that functions holomorphic in a neighborhood of L are

dense in the functions holomorphic in a neighborhood of { z ∈ L ∶ |f1(z)| ≤ 1 }. An evident
induction on the number of functions defining the polyhedron K then implies that (L) is dense
in (K).

At this point, Oka’s great insight enters: Oka had the idea that raising the dimension by looking
at the graph of f1 can simplify matters. Let L1 denote { z ∈ L ∶ |f1(z)| ≤ 1 }, and let D denote
the closed unit disc in ℂ. The claim is that if g is a holomorphic function in a neighborhood
of L1, then there is a corresponding function F (z,w) in ℂn ×ℂ, holomorphic in a neighborhood
of L ×D, such that g(z) = F (z, f1(z)) when z is in a neighborhood of L1. In other words, there
is a holomorphic function on all of L ×D whose restriction to the graph of f1 recovers g on L1.How does this construction help? The point is that F can be expanded in a Maclaurin series in
the last variable, F (z,w) = ∑∞

j=0 aj(z)w
j , in which the coefficient functions aj are holomorphic

on L. Then g(z) = ∑∞
j=0 aj(z)f1(z)

j in a neighborhood of L1, and the partial sums of this series
are holomorphic functions on L that uniformly approximate g on L1.To construct F , take an infinitely differentiable cut-off function � inℂn that is identically equal
to 1 in a neighborhood ofL1 and that is identically equal to 0 outside a slightly larger neighborhood(contained in the set where g is defined). Consider in ℂn+1 the (0, 1)-form

g(z) )�(z)
f1(z) −w

, where z ∈ ℂn, and w ∈ ℂ.

This (0, 1)-form is well defined and smooth on a neighborhood ofL×D, for if z lies in the support
of )� , then z lies outside a neighborhood of L1, whence |f1(z)| > 1, and the denominator of the
form is nonzero. Evidently the form is )-closed. The compact analytic polyhedron L can be ap-
proximated from outside by open analytic polyhedra, so L×D can be approximated from outside
by domains of holomorphy (more precisely, each connected component can be so approximated).
By Theorem 17, the compact set L ×D can be approximated from outside by bounded, smooth,
strongly pseudoconvex open sets. Consequently, the solvability of the )-equation guarantees the
existence of a smooth function v in a neighborhood ofL×D such that g(z)�(z)−v(z,w)(f1(z)−w)is holomorphic on L × D. The latter function is the required holomorphic function F (z,w) on
L ×D such that F (z, f1(z)) = g(z) on L1.The proof is now complete that (L) is dense in (K). What remains is to approximate a
function holomorphic in a neighborhood ofK by a function holomorphic on all ofG. To this end,
let {Kj}∞j=0 be an exhaustion ofG by an increasing sequence of holomorphically convex, compact
subsets ofG, each containing an open neighborhood of the preceding one, where the initial setK0may be taken equal to K . By what has already been proved, (Kj) is dense in (Kj−1) forevery positive integer j. Suppose given a function f holomorphic in a neighborhood of K0 and a
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positive ". There is a function ℎ1 holomorphic in a neighborhood of K1 such that |f −ℎ1| < "∕2onK0. For j > 1, inductively choose ℎj holomorphic onKj such that |ℎj−ℎj−1| < "∕2j onKj−1.The telescoping series ℎ1 +∑∞
j=2(ℎj − ℎj−1) then converges uniformly on every compact subset

of G to a holomorphic function that approximates f within " on K0.

Solution of the Levi problem for arbitrary pseudoconvex domains

What has been shown so far is that if G is a pseudoconvex domain, then there exists an infinitely
differentiable, strictly plurisubharmonic exhaustion function u, and the Levi problem is solvable
for the sublevel sets of u, which are thus domains of holomorphy. A limiting argument is needed
to show that G itself is a domain of holomorphy.

For each real number r, let Gr denote the sublevel set { z ∈ G ∶ u(z) < r }, and let Gr denote
the closure, the set { z ∈ G ∶ u(z) ≤ r }. The key lemma is that (Gt) is dense in (Gr) when
t > r.

In view of the preceding approximation result, Theorem 19, what needs to be shown is that the
compact set Gr is convex with respect to the holomorphic functions on Gt. Since Gt is a domain
of holomorphy, the hull ofGr with respect to the holomorphic functions onGt is a compact subset
of Gt. Seeking a contradiction, suppose that this hull properly contains Gr. Then the exhaustion
function u attains a maximal value s on the hull, where r < s < t, and this maximal value is
assumed at some point p on the boundary of Gs. As observed on page 72, there is a holomorphic
peak function ℎ for Gs at p such that ℎ(p) = 1, and |ℎ(z)| < 1 when z ∈ Gs. Since ℎ is
holomorphic in a neighborhood of the holomorphically convex hull of Gr with respect to Gt, thefunction ℎ can be approximated on this hull by functions holomorphic on Gt (by Theorem 19).
Since ℎ separates p from Gr, so do holomorphic functions on Gt, and therefore p is not in the
holomorphic hull ofGr after all. The contradiction shows thatGr is(Gt)-convex, so Theorem 19
implies that (Gt) is dense in (Gr).The same argument as in the final paragraph of the proof of Theorem 19 (with a telescoping
series) now shows that (G) is dense in (Gr) for every r.To prove that G is a domain of holomorphy, fix a compact subset K . What needs to be shown
is that K̂G is a compact subset ofG. Fix a real number r so large thatK is a compact subset ofGr.
Since Gr is a domain of holomorphy, the hull K̂Gr is a compact subset of Gr. The claim now is
that K̂G ⊆ K̂Gr (whence K̂G = K̂Gr , since K̂Gr automatically is a subset of K̂G). In other words,
the claim is that if p ∉ K̂Gr , then there is a holomorphic function on G that separates p from K .
If p ∈ Gr, then there is no difficulty, because there is a holomorphic function on Gr thatseparates p from K , and (G) is dense in (Gr). If p ∉ Gr, then choose some s larger than r

for which p ∈ Gs. Since (Gs) is dense in (Gr), the intersection of K̂Gs with Gr equals K̂Gr .
Therefore the function that is identically equal to 0 in a neighborhood of K̂Gr and identically
equal to 1 in a neighborhood of G ⧵ Gr is holomorphic on K̂Gs . By Theorem 19, this function
can be approximated on K̂Gs by functions holomorphic on Gs and hence (since (G) is dense in
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(Gs)) by functions holomorphic on G. Thus the point p can be separated from K by functions
holomorphic on G, so p is not in K̂G.The argument has shown that the pseudoconvex domain G is holomorphically convex, so G is
a domain of holomorphy. The solution of the Levi problem for pseudoconvex domains is now
complete, except for proving the solvability of the )-equation on bounded strongly pseudoconvex
domains with smooth boundary.

4.3.3 Solution of the )-equation on smooth pseudoconvex domains

The above resolution of the Levi problem requires knowing that the )-equation is solvable on
a bounded, strongly pseudoconvex domain G with smooth boundary. The following discussion
proves this solvability by using ideas developed in the 1950s and 1960s by Charles B. Morrey,
Donald C. Spencer, Joseph J. Kohn, and Lars Hörmander.

The method is based on Hilbert-space techniques. The relevant Hilbert space is L2(G), the
space of square-integrable functions onGwith inner product ⟨f, g⟩ equal to ∫G f g dV , where dV
denotes Lebesgue volume measure. The inner product extends to differential forms by summing
the inner products of components of the forms.

The operator ) acts on square-integrable functions in the sense of distributions, so one can
view ) as an unbounded operator from the space L2(G) to the space of (0, 1)-forms with coef-
ficients in L2(G). A function f lies in the domain of the operator ) when the distributional co-
efficients of )f are represented by square-integrable functions. Since the compactly supported,
infinitely differentiable functions are dense in L2(G), the operator ) is a densely defined operator,
and routine considerations show that this operator is a closed operator. Consequently, there is a
Hilbert-space adjoint ) ∗, which too is a closed, densely defined operator.
If f is a (0, 1)-form∑n

j=1 fj dzj , then

)f =
∑

1≤j<k≤n

(

)fj
)zk

−
)fk
)zj

)

dzk ∧ dzj .

If you are unfamiliar with the machinery of differential forms, then you can view the preceding
expression as simply a formal gadget that is a convenient notation for stating the necessary con-
dition for solvability of the equation )u = f : namely, that )f = 0. The goal is to show that this
necessary condition is sufficient on bounded pseudoconvex domains with C∞ smooth boundary.
Moreover, the solution u is infinitely differentiable if the coefficients of f are infinitely differen-
tiable. (The solution u is not unique, because any holomorphic function can be subtracted from u,
but if one solution is an infinitely differentiable function in G, then every solution is infinitely
differentiable.)
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Reduction to an estimate

The claim is that the whole problem boils down to proving the following basic estimate: there
exists a constant C such that

‖f‖2 ≤ C(‖)f‖2 + ‖)
∗
f‖2) (4.2)

for every (0, 1)-form f that belongs to both the domain of ) and the domain of ) ∗. The constant C
turns out to depend on the diameter of the domain, so boundedness of the domain is important.
Why does this estimate imply solvability of the )-equation?
Suppose that g is a specified )-closed (0, 1)-form with coefficients in L2(G). Consider the

mapping that sends ) ∗f to ⟨f, g⟩ when f is a (0, 1)-form belonging to both the domain of ) ∗
and the kernel of ). The basic estimate implies that ‖) ∗f‖ dominates ‖f‖, so this mapping is a
well-defined bounded linear operator on the subspace ) ∗(dom ) ∗∩ ker )) of L2(G).
The Riesz representation theorem produces a square-integrable function u such that ⟨) ∗f, u⟩ =

⟨f, g⟩ for every f in the intersection of the domain of ) ∗and the kernel of ). On the other hand,
if f is in the intersection of the domain of ) ∗and the orthogonal complement of the kernel of ),
then the same equality holds trivially because sides vanish (namely, ⟨f, g⟩ = 0 because g is in
the kernel of ); similarly ⟨f, )'⟩ = 0 for every infinitely differentiable, compactly supported
function ', so ⟨)

∗
f, '⟩ = 0, and therefore ) ∗f = 0). Consequently, u is in the domain of the

adjoint of ) ∗, hence in the domain of ), and ⟨f, )u⟩ = ⟨f, g⟩ for every f in the domain of ) ∗. The
domain of ) ∗ is dense, so )u = g.
Thus the basic estimate implies the existence of a solution of the )-equation in L2(G). Why is

the solution u infinitely differentiable inG when g has coefficients that are infinitely differentiable
functions in G? For each index j, the function )u∕)zj is a component of g and hence is infinitely
differentiable. The question, then, is whether the distributional derivative )|�|u∕)z� exists as
a continuous function for every multi-index �. In view of Sobolev’s lemma (or the Sobolev
embedding theorem) from functional analysis, what needs to be shown is that such derivatives
of u are locally square-integrable. An equivalent problem is to show that for every infinitely
differentiable, real-valued function ' having compact support in G, the integral

∫G
')

|�|u
)z�

)|�|u
)z�

dV

is finite. Integrating all the derivatives by parts results in a sum of integrals involving only barred
derivatives of u, and these derivatives are already known to be smooth functions (and hence locally
square-integrable). Thus all derivatives of u are square-integrable on compact subsets of G, and
the solution u is infinitely differentiable in G when g is. (The catchphrase here from the theory
of partial differential equations is “interior elliptic regularity.”)

The much more difficult question of whether the derivatives of the solution u extend smoothly
to the boundary of the domain G when g has this property is beyond the scope of these notes.
This question of boundary regularity is the subject of current research, and the situation is not
completely understood.
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Proof of the basic estimate

The cognoscenti sometimes describe the proof of the basic estimate as “an exercise in integration
by parts.” This characterization becomes less of an exaggeration if you admit Stokes’s theorem
as an instance of integration by parts.

The plan is to work on the right-hand side of the basic estimate, assuming that the differential
forms have coefficients that are sufficiently smooth functions on the closure of G. There is a
technical point that needs attention here: namely, to prove that reasonably smooth forms are
dense in the intersection of the domains of ) and ) ∗. That the necessary density does hold is a
special case of the so-called Friedrichs lemma, a general construction of Kurt Friedrichs.25

Suppose, then, that f =
∑n

j=1 fj dzj , and each fj is a smooth function on the closure of G.
Since

|)f |2 =
∑

1≤j<k≤n

|

|

|

|

|

)fj
)zk

−
)fk
)zj

|

|

|

|

|

2

= 1
2

n
∑

j=1

n
∑

k=1

|

|

|

|

|

)fj
)zk

−
)fk
)zj

|

|

|

|

|

2

=
n
∑

j=1

n
∑

k=1

(

|

|

|

|

|

)fj
)zk

|

|

|

|

|

2

−
)fj
)zk

)fk
)zj

)

,

integrating over G shows that

‖)f‖2 =
n
∑

j=1

n
∑

k=1
∫G

(

|

|

|

|

|

)fj
)zk

|

|

|

|

|

2

−
)fj
)zk

)fk
)zj

)

dV . (4.3)

To analyze ‖) ∗f‖ requires a formula for ) ∗f . If u is a smooth function on the closure of G,
and � is a defining function for G normalized such that |∇�| = 1 on the boundary of G, then

⟨)
∗
f, u⟩ = ⟨f, )u⟩ = ∫G

n
∑

j=1
fj
)u
)zj

dV

= ∫G

n
∑

j=1
−
)fj
)zj

u dV + ∫bG

n
∑

j=1
fj
)�
)zj

u dS,

where dS denotes (2n − 1)-dimensional Lebesgue measure on the boundary of G. Since u is
arbitrary, the (0, 1)-form f is in the domain of ) ∗ if and only if

n
∑

j=1
fj
)�
)zj

= 0 on the boundary of G, (4.4)

and then ) ∗f = −∑n
j=1 )fj∕)zj .

25K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Transactions of the American
Mathematical Society 55, number 1, (1944) 132–151.
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Now integrate by parts:

‖)
∗
f‖2 =

n
∑

j=1

n
∑

k=1
∫G

)fj
)zj

)fk
)zk

dV = −
n
∑

j=1

n
∑

k=1
∫G

)2fj
)zj)zk

f k dV ,

where the boundary term vanishes because f satisfies the boundary condition (4.4) for member-
ship in the domain of ) ∗. Integrating by parts a second time shows that

‖)
∗
f‖2 =

n
∑

j=1

n
∑

k=1
∫G

)fj
)zk

)fk
)zj

dV −
n
∑

j=1

n
∑

k=1
∫bG

)fj
)zk

f k
)�
)zj

dS.

The boundary condition (4.4) implies that the differential operator∑n
k=1(f k)()∕)zk) is a tangen-tial differential operator, so applying this operator to (4.4) shows that on the boundary,

0 =
n
∑

k=1
f k

)
)zk

( n
∑

j=1
fj
)�
)zj

)

=
n
∑

j=1

n
∑

k=1

(

f k
)fj
)zk

)�
)zj

+ fjf k
)2�

)zj)zk

)

.

Combining this identity with the preceding equation shows that

‖)
∗
f‖2 =

n
∑

j=1

n
∑

k=1
∫G

)fj
)zk

)fk
)zj

dV +
n
∑

j=1

n
∑

k=1
∫bG

)2�
)zj)zk

fjf k dS

≥
n
∑

j=1

n
∑

k=1
∫G

)fj
)zk

)fk
)zj

dV ,

(4.5)

where the final inequality uses for the first (and only) time that the domain G is pseudoconvex
(which implies nonnegativity of the boundary term).

Combining (4.3) and (4.5) shows that

‖)f‖2 + ‖)
∗
f‖2 ≥

n
∑

j=1

n
∑

k=1
∫G

|

|

|

|

|

)fj
)zk

|

|

|

|

|

2

dV .

Actually, the preceding inequality is not the one that is needed, but if you followed the calculation,
then you should be able to keep track of some extra terms in the integrations by parts to solve the
following exercise.
Exercise 41. If a is an infinitely differentiable positive weight function, then

∫G
(|)f |2 + |)

∗
f |2) a dV =

n
∑

j=1

n
∑

k=1
∫G

|

|

|

|

|

)fj
)zk

|

|

|

|

|

2

a dV + ∫bG
)2�

)zj)zk
fjf k a dS

−
n
∑

j=1

n
∑

k=1
∫G

)2a
)zj)zk

fjf k dV + 2Re
⟨ n
∑

k=1
fk
)a
)zk

, )
∗
f
⟩

≥ −
n
∑

j=1

n
∑

k=1
∫G

)2a
)zj)zk

fjf k dV + 2Re
⟨ n
∑

k=1
fk
)a
)zk

, )
∗
f
⟩

.
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In the preceding exercise, replace the positive weight function a by 1− eb, where b is a smooth
negative function. Then

)2a
)zj)zk

= −eb )2b
)zj)zk

− eb )b
)zj

)b
)zk

,

so it follows that

∫G
(|)f |2 + |)

∗
f |2) a dV

≥
n
∑

j=1

n
∑

k=1
∫G

)2b
)zj)zk

fjf k e
b dV + ∫G

|

|

|

|

n
∑

k=1

)b
)zk

fk
|

|

|

|

2

eb dV − 2Re
⟨ n
∑

k=1
fk
)b
)zk

eb∕2, eb∕2 )
∗
f
⟩

.

Applying the Cauchy-Schwarz inequality to the last term on the right-hand side and using that
a + eb = 1 shows that

‖)
∗
f‖2 + ‖)f‖2 ≥ ∫G

|)
∗
f |2 + a|)f |2 dV ≥

n
∑

j=1

n
∑

k=1
∫G

)2b
)zj)zk

fjf ke
b dV .

Now choose a point p in G, let � denote the diameter of G, and set the negative function b equal
to −1 + |z − p|2∕�2. The preceding inequality then implies that

‖)f‖2 + ‖)
∗
f |2 ≥ ‖f‖2∕(�2e).

Thus the basic estimate (4.2) holds with the constant C equal to e times the square of the diameter
of the domain G.

79


	Introduction
	Power series
	Integral representations
	Partial differential equations
	Geometry

	Power series
	Domain of convergence
	Characterization of domains of convergence
	Elementary properties of holomorphic functions
	The Hartogs phenomenon
	Natural boundaries
	Summary: domains of convergence
	Separate holomorphicity implies joint holomorphicity

	Holomorphic mappings
	Fatou–Bieberbach domains
	Example
	Theorem

	Inequivalence of the ball and the bidisc
	Injectivity and the Jacobian
	The Jacobian conjecture

	Convexity
	Real convexity
	Convexity with respect to a class of functions
	Polynomial convexity
	Linear and rational convexity
	Holomorphic convexity
	Pseudoconvexity

	The Levi problem
	The Levi form
	Applications of the d-bar problem
	Solution of the d-bar-equation on smooth pseudoconvex domains



