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Abstract. Task-based runtime systems, characterized by their dynamic
execution models and optimized resource management, contribute signif-
icantly to the computational revolution. They enable the development of
more intricate and adaptable algorithms, essential in the field of compu-
tational science. This paper provides an in-depth exploration of the PaR-
SEC task-based runtime system, particularly focusing on its versatility
in managing a variety of matrix computations. More specifically, we ex-
amine PaRSEC’s role in enhancing efficiency when solving linear systems
and processing dense, low-rank, mixed-precision, and sparse matrix oper-
ations, which are crucial in scientific applications, e.g., climate/weather
prediction and 3D unstructured mesh deformation—the primary focus
of this study. Through experimentation and analysis, we showcase PaR-
SEC’s ability to significantly boost computational efficiency and scala-
bility across a range of computationally intensive and less intensive tasks
on various hardware architectures. Our findings not only underscore the
potential of PaRSEC in advancing sustainable, efficient, and accurate
domain modeling and simulation but also emphasize the growing neces-
sity of task-based runtime systems in supporting the next generation of
matrix computations.

Keywords: Task-based runtime · Matrix computations · Cholesky fac-
torization · Low rank approximation · Mixed precision · Sparse operation.

1 Introduction

The world of High-Performance Computing (HPC) has undergone a remarkable
evolution, transitioning from simple, single-processor systems to today’s complex
multi-core, multi-accelerator, and multi-node architectures [1]. This advance-
ment has brought forth a new era of computing power, capable of performing
quintillions of calculations per second. However, with this increase in power
comes a corresponding rise in complexity, particularly in hardware design and
architecture. HPC systems now feature a diverse array of components such as
CPUs and GPUs, each with memory hierarchies adding layers to the compu-
tational puzzle. This complexity presents significant challenges in terms of pro-
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gramming and optimization, demanding innovative approaches to fully harness
the potential of these sophisticated machines [2].

Parallel to the evolution of hardware, the complexity of domain-specific appli-
cations in HPC has also escalated. These applications, ranging from molecular
dynamics to large-scale astrophysics, now require the processing of enormous
datasets and the execution of highly complex algorithms. The computational
demands of these tasks have grown exponentially, often outpacing the advance-
ments in hardware capabilities. As a result, there is an increasing need for spe-
cialized software that can effectively leverage the available hardware resources
while managing the intricacies of these domain applications. This necessity is
particularly acute in areas such as climate modeling and biomedical research,
where accurate and timely results are critical.

In response to these challenges, task-based runtime systems have emerged as
a pivotal solution [3–8]. These systems adopt a dynamic execution model, which
allows for more efficient and adaptive management of computational tasks. Un-
like traditional static execution models, task-based runtimes dynamically allo-
cate resources based on the real-time demands of each task. This flexibility is
crucial for optimizing performance across a diverse range of applications and
hardware architectures [9–13]. Furthermore, these systems enable better load
balancing, communication-computation overlap, and reduce idle time of compu-
tational resources, thereby enhancing overall efficiency and scalability.

In this study, we delve into the multifaceted capabilities of the PaRSEC task-
based runtime system [8,14], with a special emphasis on its adept handling of di-
verse matrix operations, including dense, low-rank, mixed-precision, and sparse
matrices. These matrix types are integral to a wide spectrum of scientific en-
deavors, notably in the realms of climate forecasting and 3D unstructured mesh
deformation [15–21] – areas that form the cornerstone of our research. Through
a series of experiments and analytical processes, we illuminate the profound im-
pact of PaRSEC on elevating the performance and scalability of computational
tasks. These tasks vary in their computational demands, yet consistently benefit
from PaRSEC’s robust architecture across diverse hardware platforms. This is
particularly significant in an era where accuracy and efficiency are paramount.

The contributions of this paper are as follows. We go a step further to illus-
trate the indispensable role of task-based runtime systems like PaRSEC in the
landscape of scientific computing. By adeptly balancing computational loads and
optimizing resource utilization, PaRSEC not only excels in current computing
environments but also paves the way for groundbreaking advancements in com-
plex matrix computations. This study, therefore, not only showcases PaRSEC’s
current achievements but also sets the stage for task-based runtime’s pivotal role
in the evolution of scientific computing, with PaRSEC guiding the way beyond
the traditional niche of dense, regular algorithms.

The remainder of this paper unfolds in the following manner. We present re-
lated work in Section 2 and introduce PaRSEC in Section 3. Section 4 details the
scientific applications. Then, we present the performance analysis in Section 5,
followed by conclusions and planned work in Section 6.
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2 Related Work

In the realm of HPC, the emergence of task-based runtime systems has been a
pivotal development, particularly in their adept handling of the intricacies and
concurrent nature of contemporary computing architectures. These systems are
adept at decomposing computational processes into smaller, manageable tasks.
This decomposition facilitates dynamic allocation and balancing of computa-
tional load, while concurrently mitigating the overheads associated with com-
munication and synchronization processes.

OpenMP [5], a widely recognized standard for parallel programming in shared-
memory systems, includes task-based features that have transformed it into a
dynamic, task-oriented environment. Parallelism is achieved through a mix of di-
rectives and library routines, enabling efficient task management by the compiler
and runtime system. OmpSs [4], an extension to OpenMP, introduces support for
heterogeneous systems, asynchronous tasks, and data dependencies, enhancing
flexibility. Similarly, COMP Superscalar (COMPSs) [22] aims to simplify devel-
opment for distributed systems with a programming interface and a runtime
system that leverages application parallelism. StarPU [3] provides a framework
for environments with distributed, heterogeneous multicore systems, enabling
task-specific kernel annotations and efficient task scheduling and data manage-
ment by the runtime system. HPX (High-Performance ParalleX) [6], based on the
ParalleX model, offers a C++ runtime system optimized for high-performance
computing in parallel and distributed environments. Lastly, Legion [7], a runtime
system with a unique approach, is designed for distributed and heterogeneous
computing architectures. Legion’s programming model distinctively separates
the definition of tasks and data from their actual mapping onto hardware re-
sources. This approach not only facilitates automatic parallelism detection but
also optimizes data locality, thereby enhancing both performance and scalability.

In this work, we concentrate on PaRSEC [8], which offers a set of original
programming paradigms that often enable higher scalability than competing
approaches; our study particular emphasis is on assessing performance efficiency
and scalability of these programming concepts within the context of real-world
scientific applications, instead of relying on synthetic benchmarks like in [23].

3 The PaRSEC Runtime System

The core design of PaRSEC, akin to other similar systems, leverages the con-
cepts of tasks and dependencies. These concepts are instrumental in defining
computations and their data flows, allowing for the representation of algorithms
as Directed Acyclic Graphs (DAGs) where tasks are nodes and dependencies
are edges. PaRSEC distinguishes itself in its ability to dynamically map these
DAGs across distributed resources, ensuring that data dependencies are metic-
ulously managed. This involves adeptly moving data across various memory
spaces—be it within a node, across nodes, or between different devices—and
efficiently assigning tasks to diverse computational resources. The system’s in-
teraction with users is facilitated through a range of Domain-Specific Languages
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(DSLs), offering users heightened flexibility and enabling scientists to express
complex algorithms more intuitively. One such DSL that is used in this research,
the Parameterized Task Graph (PTG) [24] provides a succinct yet expansive
description of task dependencies through a format known as the Job Data Flow
(JDF). This representation allows for the categorization of tasks into classes, each
encompassing the necessary details for the instantiation and execution of task
instances on various computational units. PaRSEC is further enhanced by inte-
grating Template Task Graph (TTG) [25], a C++ API that expands on PTG by
allowing dynamic task dependency selection with varied parameter types. More-
over, PaRSEC incorporates the Dynamic Task Discovery (DTD) [26], a DSL
that focuses on sequential task insertion in DAG construction, though it shares
the overhead challenges common to distributed task-insertion runtimes.

4 Applications as Testbed

Two scientific applications are utilized as testbeds, summarized in the following.
Geospatial Modeling Towards Climate and Weather Prediction [16,

20,21]. Gaussian processes (GPs) serve as a cornerstone in machine learning and
Bayesian statistics, particularly for their versatility in modeling and predicting
complex behaviors. They are especially prevalent in spatial data analysis. One
of the key methods in employing GPs for spatial data is through Maximum
Likelihood Estimation (MLE). This involves defining a GP model with specific
mean and covariance functions for a set of spatial points. The MLE method then
seeks to optimize the model parameters to best fit the observed data. Consider a
set of spatial observations Z, where Z = {Z(s1), . . . , Z(sn)}⊤ corresponds to the
observed values at n different locations s1, . . . , sn in a d-dimensional space Rd.
We assume these observations come from a stationary and isotropic Gaussian
random field with a mean of zero. The covariance between any two points is
defined by the function C(h;θ) = cov{Z(s), Z(s+h)}, where h is the lag vector
in Rd, and θ is a vector of unknown parameters. The covariance matrix for these
points, denoted by Σ(θ), has entries Σij = C(si − sj ;θ) for i, j = 1, . . . , n, and
is both symmetric and positive definite. The statistical inference of θ is based
on the Gaussian log-likelihood function: ℓ(θ) = −n

2 log(2π) − 1
2 log |Σ(θ)| −

1
2Z

⊤Σ(θ)−1Z. The goal in GP modeling is to determine the optimal parameter
vector θ̂ that maximizes this log-likelihood function. We consider the squared
exponential covariance function for 2D/3D spaces, which is given by: C(h;θ) =

σ2 exp
(
−h2

β

)
, where h = ∥h∥ is the Euclidean distance between spatial points,

σ2 is the variance, β represents the correlation range, and θ = (σ2, β)⊤.
3D Unstructured Mesh Deformation [19, 27]. In simulations involving

fluid-structure interactions with 3D moving bodies, handling large mesh defor-
mations is a significant challenge. The Radial Basis Function (RBF) method of-
fers a solution for generating high-quality adaptive meshes, which is particularly
useful for determining the movement of internal nodes within a volume based on
the movement of nodes on the boundary. Following the approach outlined in [28],



Evaluating PaRSEC 5

we can express the displacement d within the entire domain as a sum of radial
basis functions: d(x) =

∑nb

i=1 αiϕ(∥x − xbi∥) + p(x), where xbi = [xbi , ybi , zbi ]
represents the known boundary nodes, p is a polynomial, nb is the number of
boundary nodes, and ϕ is a chosen basis function. The coefficients αi and the
polynomial p are determined by the boundary conditions d(xbi) = dbi , with
db containing the known displacement values at the boundary. The unknown
coefficients α must satisfy the constraint

∑nb

i=1 αip(xbi) = 0. We consider the
Gaussian RBF, which is defined as ϕ(r) = exp(−r2), where r is the Euclidean
distance. To manage the condition numbers of the RBF matrices, global support
functions are scaled by a shape parameter δ, leading to the scaled RBF func-
tion ϕδ(r) := ϕ(r/δ), with δ typically set to half the minimum distance between
nodes: δ = 1

2 ×min ∥x− xbi∥.
These two scientific applications both necessitate the solution of large-scale

dense linear systems, which involve conducting a Cholesky factorization on a
symmetric positive-definite covariance matrix, a process that is intensive in terms
of both memory usage and computational load. HiCMA [15–21], a leading-edge
solution for these applications, powered by PaRSEC, explores the data spar-
sity and/or sparsity in these applications and adopts tile low-rank (TLR) and
mixed-precision (MP) technologies to address these challenges. In this study, we
assess PaRSEC via HiCMA, focusing on several matrix computations (employ-
ing dense/MP and TLR/DP for geospatial modeling, and TLR+sparse/DP for
3D unstructured mesh deformation), as illustrated in Fig. 1.

– Fig. 1(a) demonstrates the traditional approach, where the entire matrix is
handled in double-precision (DP or FP64).

– Fig. 1(b) presents a tile-based precision-aware approach for matrix compu-
tations. Here, the precision of each tile (DP, single-precision (SP or FP32),
or half-precision (HP or FP16)) is determined by its norm relative to the
overall matrix norm [20, 29]. The choice of precision affects computational
load, memory requirements, and communication volume.

– Fig. 1(c) illustrates the use of TLR compression by condensing the off-
diagonal tiles of the dense covariance matrix to a certain accuracy, spe-
cific to the application (see the heatmap in [15] for 2D/3D kernels). The
varying rank of each tile, along with the rank discrepancy between on- and
off-diagonal tiles, poses a new challenge in balancing computation, memory,
and communication loads.

– Fig. 1(d) also shows the TLR compression format, but combined with spar-
sity, meaning the ranks of some tiles are reduced to zero after compression.
The level of sparsity is application-specific [19], further exacerbating the load
imbalance challenges inherent in the TLR format.

5 Performance Results and Analysis

5.1 Experimental Settings

Experiments were carried out on four systems, each with a unique architecture.
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Dense DP

(a) Dense/DP

Dense DP

Dense SP

Dense HP

(b) Dense/MP
Dense DP

TLR DP

(c) TLR/DP

Dense DP

TLR DP

(d) TLR+sparse/DP

Fig. 1: Matrix computations.

– Shaheen II: This is a Cray XC40 system comprising 6,174 compute nodes.
Each node is equipped with two 16-core Intel Haswell CPUs operating at
2.30 GHz and has 128 GB of DDR4 main memory.

– Fugaku: This system is based on ARM architecture and includes over 150,000
compute nodes. Each node features a 48-core A64FX CPU running at a
maximal 2.2 GHz (boost mode), coupled with 32 GB of HBM2 main memory.

– Haxane: An Intel-based GPU compute node, incorporating two 8-core Xeon(R)
Silver 4309Y CPUs at 2.80 GHz, 63 GB of main memory, and a single
NVIDIA H100 PCIe GPU.

– Frontier: This is a GPU-based AMD cluster with 9,408 compute nodes. Each
node is composed of a 64-core AMD Optimized 3rd Gen EPYC CPU and
four AMD MI250X GPUs, with access to 512 GB of DDR4 memory.

Accuracy thresholds are set according to the requirements of each application:
10−9 for geospatial modeling and 10−5 for 3D unstructured mesh deformation.
The “band distribution” strategy [16] for TLR formats is employed, comple-
mented by a two dimensional block cyclic data distribution (2DBCDD) strategy
for tiles outside the band, using a process grid of P ×Q (as square as possible),
where P ≤ Q. A 2D squared exponential covariance function is used in geospatial
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modeling unless otherwise specified. Experiments are repeated multiple times to
ensure consistency; as minimal variation is observed, the highest performance
achieved is reported.

5.2 Load Balancing

Figure 2 illustrates the distribution of computational load across the 48 cores
within a single Fugaku node for the four matrix computations discussed in Fig-
ure 1. The size of the matrices is consistent across these four evaluations. In
each one, the cost for each core is represented by two components: the blue
bars indicate the time spent on executing numerical kernels (including POTRF
for Cholesky decomposition on diagonal tiles, TRSM for solving triangular ma-
trix equations, SYRK for symmetric rank-k updates, and GEMM for general
matrix multiplication), whereas the orange bars represent all additional costs
incurred by that core, encompassing CPU idle periods, runtime overheads, com-
munication delays, etc. The analysis of these figures reveals several key insights:
(1) a progressive reduction in the time-to-solution transitioning from dense/DP,
to dense/MP, to TLR/DP, and finally to TLR+sparse/DP formats; (2) an ex-
ceptionally balanced workload distribution, high CPU utilization, and minimal
overhead across all cores, particularly notable in the TLR+sparse/DP format
where variations in rank and the presence of sparsity are factors, as detailed in
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Fig. 2: Load balancing across shared memory on Fugaku.
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Fig. 3: Load balancing across distributed memory on Shaheen II.

Section 4. Moreover, the sparsity level in Figure 2(d) is approximately 2% for this
smaller matrix size, explaining the modest improvement when moving from TL-
R/DP to TLR+sparse/DP. Similarly, Figure 3 assesses the balance of workload
distribution across nodes/processes for TLR/DP on 16 Shaheen II nodes.

5.3 GPU Efficiency

HiCMA currently lacks support for TLR computations on GPUs. Consequently,
we present an analysis of GPU utilization for computations in dense formats, as
illustrated in Figure 4. Each point in these figures corresponds to the actual GPU
occupancy, determined through periodic measurements using Nvidia’s suite of
diagnostic tools. The analysis reveals that attaining full (100%) GPU utilization
is achievable during operations in both dense/DP and dense/MP formats. This
observation underscores that the computational workflows are not hindered by
data transfer operations (D2H and H2D), confirming that data transfers can be
effectively overlapped with computational operations in PaRSEC.

5.4 Scalability

Fig. 5 illustrates the performance scalability of PaRSEC on homogeneous CPU
architectures. Specifically, Fig. 5(a) presents the weak scaling of dense/DP Cholesky
factorization via HiCMA on Shaheen II, benchmarked against ConfCHOX [30].
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Fig. 4: GPU occupancy on H100.
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Fig. 5: Performance scalability on homogenous CPU architectures.

The settings follow the specifications in [30], e.g., matrix size of 8192×
√

P where
P is the number of processes. In this figure, the left y-axis quantifies the achieved
performance, whereas the right y-axis compares this performance to the theo-
retical peak. Notably, HiCMA consistently outperforms ConfCHOX, frequently
securing doubled performance gains. Fig. 5(b) and 5(c) detail the performance
on Fugaku for TLR/DP in 2D and 3D respectively. These two figures highlight
strong scalability for each matrix size, with individual graphs indicating weak
scalability per node. The transition from 2D to 3D kernels represents a shift to
more computationally intensive problems, thereby enhancing scalability along
with smaller solvable matrices on identical resources. This effect is particularly
pronounced for TLR+sparse/DP, as depicted in Fig. 5(d). Here, the upper part
displays performance across varying node counts, while the lower part evaluates
this performance relative to the bounded critical path in Cholesky factoriza-
tion. This critical path includes the serial and incompressible steps: POTRF,
the initial TRSM, and the first SYRK for each panel factorization. This analysis
considers only the computational costs of these three kernels, with attainable
performance reaching 90% across all matrix sizes.

Furthermore, Fig. 6 presents the performance for dense/DP and dense/MP
across varying node counts on Frontier. Annotations related to the “MP effect”
highlight the observed maximum performance enhancement achieved by MP
over DP under different node configurations, consistently achieving a speedup
exceeding 3×. Additionally, in terms of parallel efficiency, there is a notable
improvement in performance, with a 13.6× and 10.6× enhancement observed
when scaling from 4 nodes to 64 nodes for dense/DP and dense/MP, respectively.
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MP effect: 3.3X    3.2X    3.6X 

10.6X

13.6X

Fig. 6: Performance scalability on heterogeneous GPU system Frontier.

All in all, these findings highlight PaRSEC’s versatility in handling com-
plex real-world scientific applications, particularly regarding load balancing, ef-
ficiency, and scalability.

6 Conclusion and Future Work

This study focuses on PaRSEC’s versatility in handling operations introduced
by scientific applications, which involve dense matrices, low-rank matrices, ma-
trices in mixed-precision formats, and sparse matrices, each presenting unique
challenges. Through experiments and analysis, we demonstrate PaRSEC’s re-
markable capabilities in enhancing load balancing, computational efficiency, and
scalability across a variety of hardware architectures. Looking forward, we aim
to delve deeper into task-level behaviors and hardware counter metrics to un-
cover more granular insights, especially on Frontier. Furthermore, we envisage
expanding our investigation to encompass additional task-based runtime sys-
tems, thereby broadening the scope of our research.
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