IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v18y1982i3p337-349.html
   My bibliography  Save this item

When is an aggregate of a time series efficiently forecast by its past?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
  2. WAN, Shui-Ki & WANG, Shin-Huei & WOO, Chi-Keung, 2012. "Total tourist arrival forecast: aggregation vs. disaggregation," LIDAM Discussion Papers CORE 2012039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Carlomagno, Guillermo, 2014. "The pairwise approach to model a large set of disaggregates with common trends," DES - Working Papers. Statistics and Econometrics. WS ws141309, Universidad Carlos III de Madrid. Departamento de Estadística.
  4. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2018. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for the Day and Night Air Pollution in Silesia Region - A Critical Overview," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 53-73, March.
  5. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
  6. Thiago Carlomagno Carlo & Emerson Fernandes Marçal, 2016. "Forecasting Brazilian inflation by its aggregate and disaggregated data: a test of predictive power by forecast horizon," Applied Economics, Taylor & Francis Journals, vol. 48(50), pages 4846-4860, October.
  7. Martin McCarthy, Stephen Snudden, 2024. "Forecasts of Period-Average Exchange Rates: New Insights from Real-Time Daily Data," LCERPA Working Papers jc0148, Laurier Centre for Economic Research and Policy Analysis, revised Oct 2024.
  8. Brüggemann, Ralf & Lütkepohl, Helmut, 2013. "Forecasting contemporaneous aggregates with stochastic aggregation weights," International Journal of Forecasting, Elsevier, vol. 29(1), pages 60-68.
  9. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
  10. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
  11. Francisco Dias & Maximiano Pinheiro & António Rua, 2018. "A bottom-up approach for forecasting GDP in a data-rich environment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 718-723, June.
  12. Barrera, Carlos, 2013. "El sistema de predicción desagregada: Una evaluación de las proyecciones de inflación 2006-2011," Working Papers 2013-009, Banco Central de Reserva del Perú.
  13. Guillermo Carlomagno & Nicolas Eterovic & L. G. Hernández-Román, 2023. "Disentangling Demand and Supply Inflation Shocks from Chilean Electronic Payment Data," Working Papers Central Bank of Chile 986, Central Bank of Chile.
  14. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
  15. Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
  16. Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
  17. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
  18. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
  19. David F. Hendry & Kirstin Hubrich, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 216-227, April.
  20. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
  21. Angela Capolongo & Claudia Pacella, 2021. "Forecasting inflation in the euro area: countries matter!," Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
  22. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941.
  23. Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
  24. Colin Bermingham & Antonello D’Agostino, 2014. "Understanding and forecasting aggregate and disaggregate price dynamics," Empirical Economics, Springer, vol. 46(2), pages 765-788, March.
  25. Kovtun, Vladimir & Giloni, Avi & Hurvich, Clifford, 2019. "The value of sharing disaggregated information in supply chains," European Journal of Operational Research, Elsevier, vol. 277(2), pages 469-478.
  26. Espasa, Antoni & Mayo-Burgos, Iván, 2013. "Forecasting aggregates and disaggregates with common features," International Journal of Forecasting, Elsevier, vol. 29(4), pages 718-732.
  27. Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
  28. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
  29. Widiarta, Handik & Viswanathan, S. & Piplani, Rajesh, 2009. "Forecasting aggregate demand: An analytical evaluation of top-down versus bottom-up forecasting in a production planning framework," International Journal of Production Economics, Elsevier, vol. 118(1), pages 87-94, March.
  30. Zhang, Keyi & Gençay, Ramazan & Ege Yazgan, M., 2017. "Application of wavelet decomposition in time-series forecasting," Economics Letters, Elsevier, vol. 158(C), pages 41-46.
  31. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2017. "Aggregated moving functional median in robust prediction of hierarchical functional time series - an application to forecasting web portal users behaviors," Papers 1710.02669, arXiv.org, revised Jul 2018.
  32. Giacomo Sbrana & Andrea Silvestrini, 2012. "Comparing aggregate and disaggregate forecasts of first order moving average models," Statistical Papers, Springer, vol. 53(2), pages 255-263, May.
  33. Muellbauer, John & Aron, Janine, 2010. "Does aggregating forecasts by CPI component improve inflation forecast accuracy in South Africa?," CEPR Discussion Papers 7895, C.E.P.R. Discussion Papers.
  34. Zeda Li & William W. S. Wei, 2024. "Measuring the advantages of contemporaneous aggregation in forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1308-1320, August.
  35. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
  36. Clive W. J. Granger, 1988. "Aggregation of time series variables-a survey," Discussion Paper / Institute for Empirical Macroeconomics 1, Federal Reserve Bank of Minneapolis.
  37. Stéphane Dées & Jochen Güntner, 2014. "Analysing and forecasting price dynamics across euro area countries and sectors: A panel VAR approach," Economics working papers 2014-10, Department of Economics, Johannes Kepler University Linz, Austria.
  38. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
  39. Nijman, T.E. & Palm, F.C., 1987. "Predictive accuracy gain from disaggregate sampling in ARIMA-models," Other publications TiSEM 73cf32e2-d741-45a0-8b3e-f, Tilburg University, School of Economics and Management.
  40. Hendry, David & Hubrich, Kirstin, 2006. "Forecasting Economic Aggregates by Disaggregates," CEPR Discussion Papers 5485, C.E.P.R. Discussion Papers.
  41. Janine Aron & John Muellbauer, 2008. "New methods for forecasting inflation and its sub-components: application to the USA," Economics Series Working Papers 406, University of Oxford, Department of Economics.
  42. Monterrey Mayoral, Juan & Sánchez Segura, Amparo, 2017. "Una evaluación empírica de los métodos de predicción de la rentabilidad y su relación con las características corporativas," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 20(1), pages 95-106.
  43. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
  44. Stephen Snudden, 2024. "Don’t Ruin the Surprise: Temporal Aggregation Bias in Structural Innovations," LCERPA Working Papers jc0149, Laurier Centre for Economic Research and Policy Analysis, revised Nov 2024.
  45. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
  46. Garcia-Ferrer, A. & de Juan, A. & Poncela, P., 2006. "Forecasting traffic accidents using disaggregated data," International Journal of Forecasting, Elsevier, vol. 22(2), pages 203-222.
  47. Kirstin Hubrich & David F. Hendry, 2005. "Forecasting Aggregates by Disaggregates," Computing in Economics and Finance 2005 270, Society for Computational Economics.
  48. Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
  49. Moosa, Imad A. & Vaz, John, 2018. "Direct and Indirect Forecasting of Cross Exchange Rates," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 71(2), pages 173-190.
  50. Reinhard Ellwanger, Stephen Snudden, Lenin Arango-Castillo, 2023. "Seize the Last Day: Period-End-Point Sampling for Forecasts of Temporally Aggregated Data," LCERPA Working Papers bm0142, Laurier Centre for Economic Research and Policy Analysis.
  51. Vladimir Kovtun & Avi Giloni & Clifford Hurvich & Sridhar Seshadri, 2023. "Pivot Clustering to Minimize Error in Forecasting Aggregated Demand Streams Each Following an Autoregressive Moving Average Model," Stats, MDPI, vol. 6(4), pages 1-28, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy