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Estimating a social cost of carbon for global 
energy consumption

Ashwin Rode1 ✉, Tamma Carleton2,3, Michael Delgado4, Michael Greenstone3,5, 
Trevor Houser4, Solomon Hsiang3,6 ✉, Andrew Hultgren1,5, Amir Jina3,7, Robert E. Kopp8,9, 
Kelly E. McCusker4, Ishan Nath10, James Rising11 & Jiacan Yuan12,13,14,15

Estimates of global economic damage caused by carbon dioxide (CO2) emissions can 
inform climate policy1–3. The social cost of carbon (SCC) quantifies these damages by 
characterizing how additional CO2 emissions today impact future economic outcomes 
through altering the climate4–6. Previous estimates have suggested that large, 
warming-driven increases in energy expenditures could dominate the SCC7,8, but they 
rely on models9–11 that are spatially coarse and not tightly linked to data2,3,6,7,12,13. Here we 
show that the release of one ton of CO2 today is projected to reduce total future energy 
expenditures, with most estimates valued between −US$3 and −US$1, depending on 
discount rates. Our results are based on an architecture that integrates global data, 
econometrics and climate science to estimate local damages worldwide. Notably, we 
project that emerging economies in the tropics will dramatically increase electricity 
consumption owing to warming, which requires critical infrastructure planning. 
However, heating reductions in colder countries offset this increase globally. We 
estimate that 2099 annual global electricity consumption increases by about 
4.5 exajoules (7 per cent of current global consumption) per one-degree-Celsius 
increase in global mean surface temperature (GMST), whereas direct consumption of 
other fuels declines by about 11.3 exajoules (7 per cent of current global consumption) 
per one-degree-Celsius increase in GMST. Our finding of net savings contradicts 
previous research7,8, because global data indicate that many populations will remain 
too poor for most of the twenty-first century to substantially increase energy 
consumption in response to warming. Importantly, damage estimates would differ if 
poorer populations were given greater weight14.

Quantifying the benefits of greenhouse gas mitigation is a topic of 
considerable importance to researchers and policymakers alike. The 
‘social cost of carbon’ (SCC)—defined as the dollar value of climate 
change damages imposed globally by an additional (that is, ‘marginal’) 
ton of carbon dioxide (CO2) emissions (or its equivalent)—provides 
a means to determine the global social benefits of mitigation poli-
cies6. So far, our understanding of the SCC has been informed by 
theoretical-numerical integrated assessment models (IAMs)9–11. These 
pioneering models have produced numerous valuable insights and 
guided research and policy for decades1,5. For instance, SCC estimates 
derived from these models have been used by the US federal gov-
ernment to assess over 80 policies so far, with a combined value of 
US$1 trillion in estimated benefits15. Yet as research has progressed 
with advances in data and computing, new challenges and opportuni-
ties have emerged3,13.

Recent assessments2,3,6,7 have raised concerns that the category of cur-
rent IAMs used to perform aggregate benefit–cost analyses related 
to climate change16 are not tightly constrained by data. They also do 
not utilize the best-available Earth-system models, do not capture 
many known linkages between climate change and society, and only 
resolve damages at the geographic scale of large regions (for example, 
continents). We address these concerns by designing a fully modu-
lar ‘bottom up’ architecture, the Data-driven Spatial Climate Impact 
Model (DSCIM) 17, to develop ‘partial’ SCC estimates for individual 
subsectors of the global economy (for example, agriculture, health and 
labour), using representative data and detailed climate models7,18–25. 
Each global partial SCC is built up from econometrically derived, proba-
bilistic, local damage estimates for thousands of geographic regions. In 
ongoing work, we are integrating these partial SCC estimates17 to com-
pute a total SCC, taking into account intersector linkages. Previously, 
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‘top down’ econometric results describing the gross domestic prod-
uct (GDP) impacts of warming26,27 have been translated into SCC val-
ues28,29; however, to our knowledge, no existing IAM transparently 
assembles a bottom-up and globally representative SCC based on local 
econometric-based projections of damage6.

Climate-driven energy expenditures
Here we develop empirically derived estimates of the net change in 
global energy expenditures associated with an additional ton of CO2 
emissions, that is, a partial SCC for energy expenditure. IAM develop-
ers have themselves argued that the uncertainty over this number is 
the most important uncertainty to resolve in the total SCC8, in part 
because some models predict that increasing energy expenditures will 
be the single largest global cost from warming16. Previous econometric 
studies have measured the effect of local temperatures on local elec-
tricity consumption30–34, although they often omit non-electric energy 
consumption (for example, natural gas used for heating) because the 
data are difficult to obtain. Moreover, these studies generally focus on 
residential end uses in regions that are wealthy and thus not globally 
representative (for example, California). In contrast, an appealing fea-
ture of non-econometric studies using process-based models is that they 
simulate how climate change will affect all aspects of the production, 
conversion, delivery and use of energy35–38. However, similar to IAMs, 
their drawback is that they are not generally constrained by plausibly 
causal econometric estimates of consumption behaviour in response to 
warming. This analysis recovers globally representative measurements 
of total energy consumption in response to increasing temperatures, 
accounting for economic development and adaptive behaviour, and 
uses these results to compute a partial SCC for energy expenditure.

As there remains debate on how best to aggregate costs across popu-
lations over time39,40 (that is, discounting), here we present results 
using multiple approaches and a range of parameter values6. When 
aggregating costs between different populations within a time period, 
we treat all individuals equally, consistent with guidance to US federal 
agencies6, although alternative approaches that upweight costs to poor 
populations have been proposed14.

Computing a social cost of carbon
Our modular approach to computing partial SCC values using DSCIM 
has five steps, each of which can be implemented for each sector of 
the global economy. Here we apply these steps to compute the energy 
expenditure component of the SCC.

First, we match globally representative, longitudinal data on energy 
consumption with 0.25° × 0.25° globally harmonized historical climate 
data41. This represents, to our knowledge, the most comprehensive global 
dataset compiled on energy consumption and temperature (‘Data assem-
bly’ in Methods, Supplementary Section A). Energy consumption data are 
derived from International Energy Agency (IEA) data files42 that describe 
electricity and direct fuel consumption across residential, commer-
cial, industrial and agricultural end-uses (excluding transportation) in 
146 countries during 1971–2010. To make these data usable for global 
analysis, we harmonize data across diverse reporting systems and use 
econometric methods that minimize the influence of errors in record 
keeping (‘Data assembly’ in Methods, Supplementary Section A.1).

Second, we econometrically estimate the effect of historical tempera-
ture distributions on national annual per-capita energy consumption 
using random year-to-year variation24, and measure how this energy–
temperature response differs across energy types (electricity and other 
fuels), income levels and climate zones17. This allows us to observe the 
effects of adaptive behaviours that populations undertake as they 
become richer31 and/or are exposed to warmer climates34 (for exam-
ple, the adoption of air conditioning). Our approach accounts for all 
permanent differences between countries in energy consumption (for 

example, due to geography or history) and all common trends in energy 
consumption (for example, due to macroeconomic fluctuations, price 
changes or technological innovations) to identify a plausibly causal 
effect30 of temperature distributions on energy consumption. We then 
use the variation in income level and climate zone to predict how the 
energy–temperature relationship may change in association with 
these two factors (‘Econometric estimation of energy–temperature 
responses’ in Methods, Supplementary Section B).

Third, we project impacts of climate change in 24,378 globally 
comprehensive geographic regions (roughly the size of US counties; 
Extended Data Fig. 1) to 2099 (the final-year high-resolution climate 
simulations are available) by combining the econometric results above 
with a probabilistic ensemble of downscaled climate projections 
(Extended Data Fig. 2)43 based on Coupled Model Intercomparison 
Project phase 5 (CMIP5) models19. When projecting these impacts, we 
account for how the energy–temperature response will evolve as popu-
lations become richer and exposed to warmer climates (‘Projecting 
the impacts of climate change’ in Methods). Standard socioeconomic 
scenarios22 forecast that over 90% of the end-of-century population will 
still remain within the range of historical temperatures and incomes 
that we currently observe around the world (Extended Data Fig. 3). In 
isolating the impact of future climate change on energy consumption, 
we hold constant the current energy supply mix, an assumption that 
should be relaxed in future work.

Fourth, we monetize and pool the empirically derived damage esti-
mates from the previous step and fit global energy expenditure dam-
age functions by aggregating impacts across locations and indexing 
them against the global mean surface temperature anomaly (ΔGMST) 
expressed in each climate model realization18. These functions describe 
the full distribution of global damage conditional on ΔGMST. We esti-
mate damage functions up to 2100 that evolve over time to reflect 
expected changes in socioeconomics and adaptation, and extrapolate 
their continuing evolution forward to 2300 (‘Estimating global energy 
damage functions’ in Methods, Supplementary Section D)17.

Fifth, we adapt a probabilistic, simple climate–carbon cycle model25 
to project the distribution of annual ΔGMST up to 2300 that results 
from the release of an additional 1 GtC of CO2 (‘Calculating the partial 
SCC’ in Methods, Supplementary Section E). Applying the distribution 
of the impulse responses of ΔGMST to the damage functions from the 
previous step generates a probability distribution for the stream of 
total global damages that result from the emission of a marginal ton 
of CO2 today. This probability distribution accounts for uncertainty 
in our econometric estimates at all stages of the analysis as well as 
climatological uncertainty. Finally, the value of the flow of damage is 
discounted6 to capture the partial SCC for global energy expenditure.

Energy consumption and temperature
The role of income
Empirically, we find that a population’s average income per capita is a 
key determinant of how its end-use energy consumption responds to 
temperature. Electricity–temperature responses (Fig. 1a) are U-shaped 
(that is, increasing with hot and cold temperatures), but only in the 
seventh decile or higher of the global income distribution (annual 
per-capita income ≥US$11,258, 2019 purchasing power parity (PPP)), 
whereas the other fuels–temperature response is L-shaped (that is, 
increasing with cold temperatures) in the third decile or higher (annual 
per-capita income ≥US$ 2,849, 2019 PPP). Above these thresholds, 
increasing incomes appear to amplify both responses, such that in the 
top decile, electricity consumption increases by 0.017 GJ per capita 
(4.6 kWh per capita, 66% of 2010 global average per-capita daily con-
sumption) on a 35 °C day (relative to a 20 °C day) and by 0.0068 GJ per 
capita (1.9 kWh per capita, 27% of 2010 global average per-capita daily 
consumption) on a 0 °C day, on average, whereas direct consumption of 
other fuels increases by 0.034 GJ per capita (50% of 2010 global average 
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per-capita daily consumption) on a 0 °C day. These differing responses 
probably reflect the use of electricity for cooling and heating, compared 
with the use of other fuels (for example, natural gas, oil and coal) for 
heating. Previous research has documented similarly U-shaped electric-
ity–temperature responses in the top decile30,32–34 (see Supplementary 
Section H for comparisons), but our data reveal that such responses do 
not generalize to other income levels nor do they capture the substan-
tial other fuels–temperature response, which dominates on cold days 
(Fig. 1b). These findings represent an empirical demonstration of how 
economic development shapes energy–temperature responses on a 
global, macroeconomic scale. The differing income thresholds at which 
electricity and other fuels consumption start to respond to temperature 
are consistent with microeconomic evidence that air conditioning is 
widely adopted only at very high income levels31,44, whereas solid fuels 
are burned for heating even in lower-income settings45,46.

Adaptation to local long-run climate
Although income per capita is the dominant driver of the energy–
temperature response, long-run climate also has a smaller role in how 
populations adapt. For instance, higher air-conditioning adoption in 
hot locations may increase electricity use on hot days31,34. We empirically 
recover how income and long-run climate continuously and jointly shape 
the energy–temperature response (Methods, equation (3), Supplemen-
tary Section B.3), thereby accounting simultaneously for the effects of 
economic development and climate (Fig. 1c). We find evidence that popu-
lations adapt to their long-run climate in ways that change their energy 
consumption during hot and cold periods, conditional on their income 
level. For instance, on a 35 °C day, per-capita electricity consumption 
is 0.004 GJ (16% of 2010 global average per-capita daily consumption) 
greater in the hottest climate tercile relative to the coldest. Conversely, 
on a 0 °C day, per-capita consumption of electricity and other fuels are 
0.0002 GJ (1% of 2010 global average per-capita daily consumption) 
and 0.027 GJ (40% of 2010 global average per-capita daily consump-
tion) greater, respectively, in the coldest tercile relative to the hottest. 
These results are consistent with populations adopting more heating or 
cooling technologies when their climate is cooler or hotter, respectively.

Impacts of future climate change
Accounting for local adaptation globally
Combining the measured relationships estimated using country-by-year 
energy consumption observations (Fig. 1c) with projections for how 

incomes and climate will change over the next century in each of 24,378 
globally comprehensive geographic units, we project how the structure 
of energy–temperature responses will evolve (‘Projecting the impacts of 
climate change’ in Methods, Supplementary Section B.3). This spatial granu-
larity contrasts with existing IAMs used to develop SCC estimates, which 
partitioned the world into at most 16 units10 (Extended Data Fig. 1). Previous 
analysis18 has demonstrated that accounting for this spatial granularity is 
crucial to capture the unequal impacts of climate change within countries. 
Applying the ensemble of downscaled climate models and surrogates  
(‘Data assembly’ in Methods, Supplementary Section A.2.2) to our evolv-
ing projections of local energy–temperature responses, we isolate the 
additional energy consumption in each region caused by changes in the 
temperature distribution, over and above any changes to consumption that 
would occur without climate change, such as those increases associated 
with economic development (Methods, equation (4)).

Impacts on energy consumption
In a high-emissions scenario (representative concentration pathway 
(RCP) 8.5), we project that by the end of the century, most of the world is 
expected to increase net annual per-capita electricity consumption and 
decrease consumption of other fuels due to climate change (Fig. 2a). The 
amplitude of these effects reflects differences in incomes and climates 
across locations. Hot and wealthy locations show large net increases in 
electricity consumption, although very cold locations show net declines 
where warming does not increase the number of hot days enough to offset 
the loss of cold days. Low-income regions, such as much of sub-Saharan 
Africa, do not increase electricity consumption as dramatically because 
they are projected to still have relatively low incomes at the end of the 
century (for example, see Ethiopia in Fig. 1a). Declines in the consumption 
of other fuels are projected throughout the world, consistent with the use 
of these fuels for heating across a wider range of incomes.

To understand the scale of these impacts, they can be compared with 
current levels of energy consumption (Fig. 2b). In many of today’s rich 
countries, impacts at the end of the century are projected to be modest 
relative to current consumption, for example, a +2.7% relative increase 
in annual US electricity consumption. This small magnitude is due 
to high current consumption levels in conjunction with the fact that 
many rich countries are in temperate climates, where large projected 
increases and decreases in electricity consumption—from more hot and 
fewer cold days, respectively—offset one another. In contrast, in many of 
the poorest and/or most populous countries, the additional consump-
tion imposed by climate change is projected to be substantial relative 
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Fig. 1 | Estimated effect of temperature on energy consumption is mediated 
by income and climate. Additional daily electricity (blue) or other fuels (orange) 
consumption per capita (GJ per capita) in response to daily average temperature, 
relative to a reference temperature of 20 °C. Solid lines depict point estimates 
and shading is the 95% CI (n = 7,563). a, Separate energy–temperature 
relationships for global deciles of income (sample is 146 countries over 
1971–2010, see Supplementary equation (B.3)), based on 15-year moving-average 
annual GDP per capita. Income decile boundaries are held fixed over time and 
incomes of selected country–years are indicated. Future income is drawn from 

the SSP3 socioeconomic scenario22. b, Overlay of fuel-specific responses for the 
richest decile on a common scale. c, Estimated energy–temperature relationship 
as simultaneously influenced by income and local long-run climate (Methods, 
equation (3)). Each cell within a matrix illustrates a predicted energy–
temperature relationship for a level of income and long-run climate. The rows 
separate income terciles (increasing income from bottom to top) and the 
columns separate climate terciles based on annual cooling degree days 
(increasingly warm climate from left to right; ‘Econometric estimation of 
energy–temperature responses’ in Methods, Supplementary Section B.3).
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to current consumption, for example, a +2,000% relative increase in 
annual Nigerian electricity consumption. This is due both to uniformly 
hot temperatures and very low levels of current energy use.

Aggregating energy impacts globally, we project that in a 
high-emissions scenario, annual electricity consumption will increase 
due to climate change by 1.21 GJ per capita (90% confidence interval 
(CI) = [0.54,  2.43], P < 0.001) in 2099 (RCP 8.5), whereas consump-
tion of other fuels will decline by 2.94 GJ per capita ([1.02,  6.15], 
P < 0.01) (Fig. 2c). Estimates in a moderate emissions scenario (RCP 
4.5) are 0.44 GJ per capita and 1.16 GJ per capita, respectively. (Elec-
tricity impacts do not include the primary energy lost in conversion 

to electricity.) It is notable that ignoring the effects of income growth 
and climate adaptation on the energy–temperature response would 
have resulted in dramatic underestimation of projected changes to 
global energy consumption due to warming (green lines in Fig. 2c, 
Supplementary Section D).

Impacts on total energy expenditures
We monetize the climate change-induced changes in total energy con-
sumption (electricity and other fuels combined) to develop a measure 
of the economic damages from climate change, that is, all economic 
resources that would be available for other purposes in the absence of 
warming. In a baseline scenario of future real energy price growth of 
1.4% per year (the historical growth rate of US energy prices), we project 
that end-of-century warming will cause net energy expenditure declines 
in much of the world, although there are net increases in many tropi-
cal and subtropical middle-income regions, such as portions of India, 
China, Indonesia and Mexico (Fig. 3a). This pattern occurs because 
currently low-income countries will probably be rich enough by the 
end of the century to consume other fuels on cold days but not rich 
enough to consume electricity on hot days; thus, they experience sav-
ings from warming because it reduces other fuel costs (for example, 
Ethiopia in Fig. 1a). Hot middle-income countries will be rich enough 
to spend on electricity for cooling in the future, so in some regions, 
the additional spending on electricity during hot days outweighs the 
savings on cold days (for example, India in Fig. 1a). The largest overall 
savings are projected to occur among today’s richest countries; how-
ever, net savings are projected across most of the present-day income 
distribution (Extended Data Fig. 4).

Aggregating costs globally, we project modest net savings at 
the end of the century due to climate change, amounting to 0.17% 
([−0.1%, 0.53%], P < 0.3) and 0.08% ([−0.03%, 0.21%], P < 0.25) of 2099 
world GDP in RCP 8.5 and RCP 4.5, respectively (Fig. 3b). The magnitude 
of net global savings is similar across alternative pricing scenarios 
(Extended Data Fig. 5, Supplementary Section C). This result differs 
qualitatively from the increased energy spending reported in previous 
studies16,18,30,32–34 that focused on electricity consumption in wealthy 
regions. As low-income and middle-income populations spend little 
on electricity to cool and other fuels are consumed everywhere almost 
exclusively for heating, projections that use only electricity–tempera-
ture responses from high-income populations will overestimate new 
cooling expenditures and underestimate savings from reduced heat-
ing, leading to systematic overestimation of the total energy damages 
from climate change.

Future damages from CO2 emissions today
Damage functions describe the relationship between ΔGMST and global 
aggregate costs in a sector or the economy as a whole—they are at the 
centre of all IAMs used to develop SCC estimates4,9–11, informing mitiga-
tion policy implications by summarizing the costs of additional warm-
ing. We construct empirically based global damage functions for energy 
consumption using the method in refs. 17,18, organizing global aggregate 
costs into functions of realized ΔGMST across 33,000 simulations 
(Fig. 3c). These damage functions evolve over time, thereby capturing 
the influence of changing demographics, increasing incomes and warm-
ing local climates (‘Estimating global energy damage functions’ in Meth-
ods). Damages are slightly quadratic in ΔGMST, although essentially 
linear, with an additional +1 °C ΔGMST warming at the end of the century 
(relative to the 2001–2010 average) increasing annual consumption of 
electricity by an additional 4.54 EJ ([4.50, 4.59], P < 0.001) and decreas-
ing consumption of other fuels by 11.28 EJ ([11.12, 11.44], P < 0.001), 
causing a net reduction in energy expenditures by US$176 billion per  
1 °C in ΔGMST ([169, 183], P < 0.001). Earlier and later damage functions 
are less and more steep, respectively, primarily due to trends in income 
and population (Fig. 3d, ‘Estimating global energy damage functions’ 
in Methods, Supplementary Section D).
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Fig. 2 | Projected impact of climate change on energy consumption in the 
twenty-first century. Projected impacts of climate change under high (RCP 
8.5) or moderate (RCP 4.5) emissions scenarios (SSP3 socioeconomic 
scenario). a, The spatial distribution of projected consumption impacts across 
24,378 subnational geographic regions in 2099 (RCP 8.5), accounting for the 
effect of income growth and adaptation on energy–temperature responses in 
each region. Map (produced with R software, ggplot2 package, using GADM 
basemap50) shows mean impacts across 33 climate models and model 
surrogates. b, Aggregating to countries, grey bars show total impacts in 2099 
(RCP 8.5) alongside current consumption levels for selected countries (blue, 
electricity; orange, other fuels). Percentages are ratios of grey bars relative to 
coloured bars. Intervals indicate 10th–90th percentiles of projected 
distributions, accounting for climate model and econometric uncertainty 
(Supplementary Section B.5). c, Aggregating globally, time series of total 
global impacts. Shading indicates 10th–90th percentile range of projected 
distributions, accounting for climate model and econometric uncertainty. 
Boxplots show full distribution in 2099 (boxes, interquartile range; solid 
whiskers, 10th–90th percentiles; dashed whiskers, 5th–95th percentiles). The 
green lines illustrate projected impacts if present-day energy–temperature 
responses are held fixed and do not respond to increasing incomes and 
changing temperatures.
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As CO2 is long lived in the atmosphere, the US National Academy of 
Sciences recommends computing SCC values that capture damages to 
the year 23006. To do this, we combine our empirically derived damage 
functions with the Finite Amplitude Impulse Response (FAIR) climate 
model25 to project to 2300 the distribution of ΔGMST responses to 
the emission of a marginal 1 GtC of CO2 (Supplementary Section E) 
(The high-resolution CMIP5 model runs used above to project spatially 
granular impacts end in 2100.) A CO2 pulse emitted today perturbs 
the future trajectory of atmospheric CO2 concentrations nonlinearly, 
affected by the half-life of CO2 in the atmosphere as it is stored and 
released in the oceans and biosphere (Fig. 4a, b). This results in future 
ΔGMST that deviates from the baseline scenario, which in turn causes 
a stream of energy damages in future years (Fig. 4c, d). The partial 
SCC from energy expenditure is the net present value (NPV) of these 
annual damages. As there are multiple views on how best to discount 
future damages into an NPV (see refs. 39,40), we present multiple esti-
mates using both constant discount rates and rates that evolve with 
economic growth6 (‘Ramsey’ discounting47; ‘Calculating the partial 
SCC’ in Methods).

We find that 1 t of CO2 emitted today generates a total energy 
expenditure burden valued at −US$13.93 to −US$0.69 in NPV under 
the high-emissions RCP 8.5 scenario and −US$4.16 to −US$0.76 under 
the moderate-emissions RCP 4.5 scenario (central estimates, 1.4% 
price growth scenario, Fig. 4e), with most estimates between −US$3 
and −US$1. Our finding that the partial SCC from energy expenditure 

is negative and small in magnitude is broadly robust across multiple 
pricing scenarios (Fig. 4e, Extended Data Tables 1, 2).

Discussion
Our estimates make use of globally comprehensive data and empirical 
relationships to compute a global partial SCC for energy expenditure. 
This approach reveals the critical role of economic development in 
shaping how energy consumption patterns respond to climate change, 
as we find that much of the world will remain too poor in the coming 
decades to spend substantially on energy-intensive cooling technolo-
gies. Our approach also demonstrates the importance of accounting 
for non-electricity energy consumption as global populations use 
other fuels to cope with cold temperatures even at low income levels. 
Together, these two factors explain why our analysis indicates that total 
global energy expenditures are not likely to increase dramatically in 
response to warming, and why marginal emissions today may in fact 
produce savings in global energy expenditures.

The modest magnitude of the aggregate global impacts, however, 
masks substantial important shifts in projected energy consumption. 
Most notably, projected impacts of warming in many of today’s emerg-
ing economies may impose substantial costs and represent a large 
fraction of current consumption. For instance, we project that climate 
change will increase end-of-century electricity consumption in India 
by over 100% of its current consumption (Fig. 2b). Future work should 
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Fig. 3 | Economic costs from energy consumption impact of climate 
change. a, Change in 2099 total annual energy expenditures 
(electricity + other fuels) due to warming in a high-emissions scenario (RCP 
8.5), SSP3 socioeconomic scenario and 1.4% annual price growth scenario, 
expressed as a percentage of 2099 local GDP for 24,378 geographic regions. 
The map (produced with R software, ggplot2 package, using GADM basemap50) 
depicts the mean; the probability density functions for selected cities plot the 
distribution of projected impacts accounting for climate model and 
econometric uncertainty (Supplementary Section B.5). b, Time series of 
globally aggregated change in total energy expenditures under both high (RCP 
8.5) and moderate (RCP 4.5) emissions scenarios, expressed as a percentage of 

global GDP in each year. c, Global energy damage functions. Total global 
electricity consumption impacts, other fuels consumption impacts and total 
energy expenditure impacts at the end of the century, indexed against ΔGMST 
realized in each climate model simulation (blue dots, RCP 4.5; red dots, RCP 8.5; 
‘Estimating global energy damage functions’ in Methods). The probability 
density functions show the distribution of ΔGMST at the end of the century in 
each emissions scenario. d, Damage functions evolve over time. Estimated 
using high-resolution projections pre-2100 (for example, orange curves, every 
10 years) and extrapolated post-2100 (for example, grey curves, every 50 years; 
Supplementary Section D).
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explore alternative approaches to valuing global damages across space 
and time when costs are distributed unequally, as we find14.

Our approach is designed to isolate the effect of future climate 
change on energy consumption under given emissions and socioeco-
nomic pathways. However, a natural area for future exploration is to 
account for feedback effects that climate change and climate policy 
may introduce via changes in the energy supply mix, the trajectory 
of global CO2 and local air pollutant emissions, and technological 
innovation48,49. Although future work should explore the potential 
for these factors to alter the partial SCC for energy consumption, we 
believe at least the CO2 emissions feedbacks are probably immaterial, 
given the small size of our aggregate estimated impacts (Extended 
Data Table 3).

Another extension to this analysis would be to account for additional 
types of future technological advancement that may affect the energy 
consumption response to climate change (for example, changes in the 
relative cost of cooling technologies). As we allow energy–temperature 
responses to evolve with increasing incomes and temperatures in our 
projection, our estimates reflect historical trends in advancement and 
diffusion of technology that occur with changes in these two factors. 
Theoretically, larger values of the partial SCC for energy consumption 
can arise if the price of cooling technology falls indefinitely relative to 
other goods and services without a corresponding trend in efficiency. 
However, these assumptions are unlikely to hold and we do not observe 
evidence of such a trend historically. The difficulty of predicting the 
direction and magnitude of unprecedented technological innova-
tion under climate change underscores the critical need for further 
research in this area.

The results of our analysis contrast with estimates derived from 
alternative approaches. For example, the numerical-theoretical Cli-
mate Framework for Uncertainty, Negotiation and Distribution (FUND) 
IAM10—the only modelling framework where direct comparison is pos-
sible—estimates a partial SCC for energy expenditure16 of US$10 per 
ton of CO2, which constitutes 90% of that model’s total SCC estimate 
(high-emissions scenario, 3% discount rate) and is considered uncertain 
by its developers8. Our findings using DSCIM differ from this estimate, 
in part, because FUND projects very large increases in energy expen-
ditures due to warming across many middle-income and low-income 
regions, such as China, North Africa, Southeast Asia and sub-Saharan 
Africa; in contrast, we project small or negative changes in these regions 
(Supplementary Section I). This divergence can be explained by the data 
used to inform these projections. In FUND, these regional projections 
are driven by parameters (for example, the income elasticity of cooling 
and heating energy demand) that are calibrated using data from a single 
high-income country (the United Kingdom)10, which we found shows 
energy consumption behaviour that is fundamentally different from 
these regions (Fig. 1a). Our findings thus underscore the importance 
of employing a representative empirical approach when estimating 
global impacts of climate change.

We demonstrate the feasibility of combining global data, economet-
rics, detailed climate models and modern computing within DSCIM to 
estimate a partial SCC for energy expenditure. Although implementing 
such an approach substantially reduces the energy expenditure partial 
SCC relative to previous estimates, this does not necessarily hold for all 
sectors of the economy. Although focusing on data from only wealthy 
locations can lead to large estimates of certain climate change damages 
(for example, energy expenditures), a similarly limited data focus has 
been shown to severely underestimate damages in other areas (for 
example, human health17). A total SCC, composed of many partial SCCs 
for different sectors of the economy, would be required to determine 
the full social cost of warming to global society. Our approach can be 
extended to the full range of outcomes potentially affected by climate 
(for example mortality17, agriculture and labour), thereby providing an 
empirically based characterization of the total SCC.
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Fig. 4 | Social cost of carbon for global energy consumption. a–d, Effects of 
CO2 pulse using the FAIR simple climate model25 (RCP 8.5). The black line  
is the median trajectory from sampling the constrained joint distribution of 
climate parameters (b,c) and also damage function quantiles (d); shading 
indicates interquartile ranges (Supplementary Sections E.2, E.4). a, A 1 GtC 
(3.66 GtCO2) pulse released in 2020. b, Response of atmospheric CO2 
concentrations, relative to baseline. c, Impact on ΔGMST. d, Change in 
discounted flow of energy expenditures (2% yr−1 discount rate) using damage 
functions in Fig. 3d. The integral of this flow is the partial SCC for energy 
consumption. e, Estimates of partial SCC for energy consumption under high 
(RCP 8.5) and moderate (RCP 4.5) emissions scenarios. The rows apply 
different constant or Ramsey discount rates (δ, pure rate of time preference; η, 
elasticity of marginal utility of consumption; ‘Calculating the partial SCC’ in 
Methods). ‘1.4% price growth’ assumes future energy prices reflect the 
historical average US price growth (1.4% yr−1). The parentheses contain 5th–
95th percentile ranges, accounting for damage function and climate model 
uncertainty. ‘Minimum–maximum range across price scenarios’ shows the 
range of central estimates across alternative energy price scenarios, including 
those from other models (Extended Data Tables 1, 2). All estimates use 
socioeconomic scenario SSP3 (Supplementary Section F contains alternative 
scenarios).
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Methods

Here we provide an overview of the data and methods used to complete 
each of the five stages of analysis that compose DSCIM, our modular 
approach to constructing a partial SCC. Details on each stage can be 
found in Supplementary Information.

Data assembly
In the first step, we compile a comprehensive dataset on historical 
energy consumption, climate and income, as well as future projections 
of climate, income, populations and energy prices (Supplementary 
Section A). Historical data are used to econometrically estimate the 
energy–temperature response, and how it differs by energy type (elec-
tricity and other fuels), income and climate. Future projection data  
are used to generate high-resolution projected impacts of climate 
change, accounting for the effects of income growth and warming on 
the shape of the energy–temperature response.

Historical datasets. Annual data on final consumption of electric-
ity and other fuels for 146 countries from 1971 to 2010 were obtained 
from the IEA’s World Energy Balances dataset42. We take electricity 
consumption directly from the dataset, whereas other fuels consump-
tion is constructed by aggregating over coal, peat, oil shale and oil 
sands, oil products, natural gas, solar, wind, goethermal, biofuels and 
waste, heat, and heat production from non-specified combustible fuels. 
For both electricity and other fuels, we aggregate over the industrial, 
commercial/public services, residential, agricultural, forestry, fishing 
and non-specified sectors. Data inconsistencies and quality issues 
in the IEA’s records are extensively documented42. We classify every 
such change in record-keeping methodology and employ specific data 
preparation and econometric techniques to address each individually 
(Supplementary Section A.1).

Historical data on daily average temperature and precipitation, as well 
as historical climatologies, are obtained from the Global Meteorologi-
cal Forcing Dataset, v1 (GMFD)41, a global gridded (0.25° × 0.25°) daily 
climate record available from 1948 to 201020. We link high-resolution 
daily climate data to country-level annual energy consumption data 
using a procedure detailed in Supplementary Section A.2.4 that pre-
serves nonlinearity in the energy consumption response to daily  
temperature.

We obtain historical values of country-level annual income per capita 
(constant dollar PPP) from within the IEA’s World Energy Balances data-
set, which in turn sources these data from the World Bank.

Datasets of future projections. We use a set of 21 high-resolution 
(0.25° × 0.25°) bias-corrected global climate projections that provide 
daily temperature and precipitation to the year 2099 from the NASA 
Earth Exchange (NEX) Global Daily Downscaled Projections (GDDP) 
dataset51. We obtain climate projections based on two standardized 
emissions scenarios: RCP 4.5 (an emissions stabilization scenario) and 
RCP 8.5 (a scenario with intensive growth in fossil fuel emissions)52–54. 
As this set of 21 climate models systematically underestimates tail risks 
of future climate change43,55, we assign probabilistic weights to climate 
projections and use 12 surrogate models that describe local climate 
outcomes in the tails of the climate-sensitivity distribution43. The 21 
models and 12 surrogate models are treated identically in our calcu-
lations and are referred to as the surrogate/model mixed ensemble 
(SMME). We utilize the probabilistic weights when calculating and 
reporting summary statistics of impact estimates across the 33 models 
and surrogates (Extended Data Fig. 2, Supplementary Section B.5). Full 
details on the SMME climate projections are in Supplementary Sec-
tion A.2.3. The gridded output from these projections is aggregated 
to 24,378 globally comprehensive agglomerated political units that we 
call impact regions using the same method applied to historical climate 
data (Supplementary Section A.2.4). Impact regions are constructed to 

(1) respect national borders, (2) be roughly equal in population across 
regions and (3) have approximately homogenous within-region climatic 
conditions (Extended Data Fig. 1).

Projections of national populations and income per capita are 
derived from the shared socioeconomic pathways (SSPs)56, a set of 
scenarios of socioeconomic development over the twenty-first cen-
tury in the absence of climate impacts. We utilize population57 and 
country-level GDP58,59 projections for scenarios SSP1, SSP2, SSP3, SSP4 
and SSP560. These projections have been used as inputs to IAM-based 
projections of other social and economic outcomes, such as land-cover 
changes or air pollution, through the SSP research programme56, 
although we do not utilize these outputs in our main calculations. 
However, we do examine the sensitivity of our results to assuming 
alternative energy price projections that are output from these IAM 
exercises. National population projections are respectively allocated to 
24,378 impact regions based on current satellite-based within-country 
population distributions61 (Supplementary Section A.3.3) or an alter-
native, time-varying scenario of within-country population distri-
butions that reflects projected urbanization62,63 (Supplementary  
Section G.1).

The price trajectories we use to monetize estimated impacts of 
climate change are constructed based on either of two distinct data 
sources—present-day statistics from the IEA are used for our main 
estimates and price projections from IAMs are used in the sensitivity 
tests. We obtain present-day average electricity generation costs by 
region of the world from the IEA’s World Energy Outlook 2017 (Fig-
ure 6.25); prices for other fuels are obtained from the IEA’s Energy 
Prices and Taxes Statistics dataset. Price projections of electricity 
and other fuels’ prices from five IAMs were obtained from the Inter-
national Institute for Applied Systems Analysis (IIASA) Scenario 
Explorer database64. Price projections from IAMs are used only to 
examine the sensitivity of our results to alternative pricing assump-
tions; however, we note that they are derived using models that 
express market equilibria different from the projected changes in 
energy consumption that we estimate here. Details on how prices are 
assigned across countries and over time can be found in Supplementary  
Section C.

Econometric estimation of energy–temperature responses
In the second step, we use historical data on national annual per-capita 
energy consumption, climate and income to flexibly model electricity 
and other fuels consumption each as a function of daily average tem-
peratures within a year, while accounting for heterogeneity in energy–
temperature responses along the dimensions of both income and 
long-run climate. Importantly, our econometric procedure is designed 
to recover nonlinear changes in local per-capita energy consumption 
at the grid-cell-by-day level, in response to locally experienced daily 
temperatures and these other factors. Accounting for such local nonlin-
earity is crucial in this context, as different locations within a country on 
the same day, or the same location on different days within a year, may 
show very different temperatures, which generate divergent energy 
consumption responses.

We apply methods from previous research that has demonstrated 
that the local effect of climate variables on many outcomes (includ-
ing energy consumption) may be nonlinear in important ways65. These 
outcome variables are sometimes measured at the same temporal and 
spatial resolution as that at which these nonlinear effects manifest 
(for example, refs. 66,67). However, in most contexts, nonlinear effects 
emerge over timescales and spatial scales (for example, for individual 
grid cells on single days) that are much finer than the scale at which out-
come data are available24,30,68 (for example, for entire countries over 
a year). Yet, despite only observing spatially and temporally aggre-
gated outcomes (that is, annual national per-capita energy consump-
tion), it is possible to empirically recover the nonlinear relationships 
that take place at the spatial and temporal scale at which the climate 
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variables are recorded (that is, the effect of daily grid-cell temperature 
on daily grid-cell per-capita energy consumption), provided that the 
climate variables are themselves aggregated in a way that preserves  
nonlinearities24,68.

Recovering such high-resolution energy consumption–tempera-
ture responses is only possible because we observe the temperature 
on each day in each grid cell. Conceptually, these data enable us to 
search for the grid-cell-level energy–temperature consumption 
relationship that, if applied to every grid cell for every daily tempera-
ture, would generate predicted per-capita energy consumption at 
the country-by-year level that best matches observed consumption. 
This approach is established in the broader literature; for example, 
ref. 68 estimates nonlinear local effects of daily temperature on crop 
yields using annual aggregate yields, and the approach is derived in 
the review by ref. 24. Here we implement this approach through a coun-
try–year-level regression of per-capita energy consumption on specific 
population-weighted nonlinear climate variables (described below). 
A crucial step in implementation is properly constructing weighted 
aggregates of nonlinear transformations of local daily temperature 
(Supplementary Section A.2.4).

Specifically, let Ezjdtc denote consumption in GJ per capita in grid cell 
z of country j, on day d of year t, for fuel category c (electricity, other 
fuels), and let Tzjdt denote the daily average temperature at grid cell z 
on day d. Let Tzjdt denote an M-element vector in which each element 
(Tzjdt1, …, TzjdtM) is a nonlinear transformation of grid-cell-level daily 
temperature (for example, polynomial terms, T T T T= , =zjdt zjdt zjdt zjdt1

1
2

2  ). 
We assume per-capita fuel category c energy consumption at grid cell 
z on day d is a function of the grid cell’s temperature on that day, where 
this function, fc(Tzjdt), is a linear combination of the nonlinear elements 
in Tzjdt:

T ∑E f β T β T β T= ( ) = + … + = , (1)zjdtc c zjdt c zjdt cM zjdtM
m

M

cm zjdtm1 1
=1

where βc1, …, βcM are assumed to be constant average coefficients.
Daily grid-cell-level per-capita energy consumption (Ezjdtc) is unavail-

able to us, but we observe national annual per-capita energy consump-
tion (Ejtc), which is the population-weighted average of daily per capita 
consumption across grid cells in the country, summed over days in the 
year24. Let wzj denote the share of a country j’s population that falls into 
grid cell z. Country j’s per-capita annual consumption in the year t is 
thus the weighted average of daily per capita consumption across grid 
cells in j, aggregated over all 365 days d in year t:
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The second line of equation (2) is obtained by substitution from 
equation (1) and interchanging the order of summation, expressing 
national annual per-capita energy consumption as f ( ~ )c jtT , where T~ jt  is 
an M-element vector in which the mth element, T~ jtm, is a country-by-year 
aggregation of the corresponding element from the grid-cell-level 
daily vector Tzjdt (Supplementary Section A.2.4). Removing the coef-
ficients βc1, …, βcM from the summation over grid cells and days is pos-
sible given that these coefficients are assumed homogenous within a 
country and year. Thus, a regression of country-level annual per-capita 
energy consumption (Ejtc) on variables that are country–year weighted 
aggregates of the nonlinear temperature terms (T T~ , …, ~

jt jtM1 ) recovers 
the same coefficients, βc1, …, βcM, that describe the primitive grid 

cell-by-day relationship described by equation (1). (See Extended Data 
Fig. 6 for a simplified, graphical illustration of this concept.)

In practice, we allow energy–temperature responses to vary by 
income and long-run climate, estimating the function fc(⋅) conditional 
on these covariates. If this conditional function is homogenous within 
a country and year, then we can recover a grid cell-by-day relationship, 
as demonstrated above. To model heterogeneity by income, we use 
the 15-year moving average of a country j’s natural log of per-capita 
GDP in year t (logGDPPCjt

). To model heterogeneity by long-run climate, 
we use average annual cooling degree days and heating degree days 
over the sample period (CDDj and HDDj, respectively). Annual cooling 
(heating) degree days are a common measure of exposure to warm 
(cold) temperatures and are defined as the cumulative deviations of 
daily average temperatures from a benchmark of 20 °C, over all days 
in the year where the average temperature exceeded (fell below) 20 °C. 
As these measures do not change substantially over the historical 
record, we do not rely on long-run temporal variation within the times-
pan of the sample and instead use the average over the sample period 
(Supplementary Section B.3).

Our estimating equation takes the following form:

E f g α δ ε= ( ~ |logGDPPC , CDD , HDD ) + ( ~ ) + + + . (3)jtc c jt jt j j c jt jic wtc jtcT P

In our main specifications,T~ jt  contains linear and quadratic  
terms for a spline in daily average temperatures (allowing a kink at 
20 °C), each averaged over grid cells and summed across the year, 
as shown in equation (2). Exploiting flexible interactions between 
the three income and long-run climate covariates (logGDPPCjt

, CDDj 
and HDDj) and all terms in the temperature vector ( ~ )jtT , we estimate 
an energy–temperature response fc for fuel category c that is con-
ditional on income and long-run climate. Details of this procedure 
can be found in Supplementary Section B.3. Importantly, the inter-
actions involving the long-run climate covariates are country-by-year 
aggregations of grid-cell-level interactions, allowing us to recover 
heterogeneity in the energy–temperature response due to long-run 
climate at the grid-cell level. In contrast, because our income data 
are available only at the country level, we recover heterogeneity in 
the energy–temperature response due to income only at the country 
level.

All our econometric specifications control for the effects of pre-
cipitation through the function gc(⋅), constructed analogously to fc(⋅); 
the vector ~ jtP  contains linear and quadratic terms of daily cumulative 
precipitation, each averaged over grid cells and summed annually. We 
also include a full set of country-by-reporting regime intercepts, 
referred to here as ‘fixed effects’ (αjic), where reporting regimes (i) are 
time spans within a country where observations for a given fuel cate-
gory are documented by the IEA to be comparable (Supplementary 
Section A.1). These fixed effects flexibly account for all permanent 
differences in energy consumption across country regimes. In addition, 
we include world region-by-year fixed effects (δwtc) for each fuel cate-
gory, where w indexes world regions based on United Nations classifi-
cations (Oceania, N. America, N. Europe, S. Europe, W. Europe, E. 
Europe, E. Asia, S.E. Asia, Central America/Caribbean, South America, 
sub-Saharan Africa, N. Africa/W. Asia, S. Asia). These fixed effects flex-
ibly account for all world region-level trends and shocks in energy 
consumption. The use of fixed effects is more reliable than trying to 
individually control explicitly for determinants of energy consumption 
because it accounts for time-invariant and time-trending factors 
non-parametrically. We thus exploit random within-country-regime, 
year-to-year variation in realized daily temperatures to identify a plau-
sibly causal effect of historical temperature distributions on energy 
consumption, and we use variation in income and long-run climate to 
predict how the energy–temperature relationship may change in asso-
ciation with these two factors (Supplementary Section B.3). It should 
be noted that because our long-run climate measures (CDDj and HDDj) 



do not vary over time within a country, their direct effect on energy 
consumption is absorbed in the fixed effects αjic. However, our objects 
of interest in equation (3) are the interactions of income and long- 
run climate with temperature, and not their direct effect on the level 
of energy consumption. Finally, εjtc denotes the stochastic error  
term.

Owing to evidence of unit root behaviour in the dependent vari-
able, we estimate equation (3) in first differences (Supplementary 
Section A.1). Furthermore, we employ inverse variance weighting to 
address differences in data quality across reporting regimes (Supple-
mentary Section B.1). Standard errors are clustered by country–fuel 
category–reporting regime.

Although equation (3) is designed to causally identify the effect of 
daily temperatures on per-capita energy consumption, it does not 
identify overall levels of per-capita energy consumption as these 
are absorbed in the spatial and temporal fixed effects. We therefore 
express estimated electricity–temperature or other fuels–tempera-
ture responses as predicted consumption relative to a ‘mild’ day with 
an average temperature of 20 °C. The matrices of electricity–tem-
perature and other fuels–temperature responses in Fig. 1c summarize 
the results from estimating equation (3), whereas Fig. 1a, b displays 
responses that are estimated for each decile of the in-sample income 
distribution, but do not differ by long-run climate (Supplementary 
Section B.2).

Projecting the impacts of climate change
In the third step, we estimate future per-capita energy consumption 
impacts of climate change. We first use estimates from equation (3) 
along with observable characteristics (logGDPPC, CDD and HDD) to 
predict energy–temperature responses at different points in time 
for each of 24,378 impact regions. For each impact region r in country 
j at year t, we use the estimated function �f ( ⋅ )c  from equation (3), 
along with 15-year moving averages of the covariates (logGDPPCjt

, 
CDDrjt  and HDDrjt ), to predict energy–temperature responses for 
each fuel category. Responses evolve over time as 15-year moving 
averages of the covariates change for a given impact region r in 
country j, thereby reflecting the effects of adaptive behaviours that 
populations undertake as they become richer and/or are exposed 
to warmer climates. Because equation (3) estimates the interaction 
between temperature and country-level income as well as the inter-
action between temperature and grid-cell-level climate, our projec-
tions reflect changes in income and climate at these two 
corresponding spatial scales for internal consistency (Supplemen-
tary Section B.3).

We then apply a set of probabilistic climate change projections to 
the spatially and temporally heterogeneous energy–temperature 
responses to compute per-capita consumption impacts for each fuel 
category c and impact region r in country j for each year from 2015 to 
2099. The distribution of future daily average temperatures under a 
given emissions scenario (RCP 8.5 or RCP 4.5) is obtained from the 33 
projections in the SMME (Supplementary Section A.2.3).

Let rjtT
∼

 represent a vector containing impact region-by-year aggre-
gations of nonlinear grid-cell-level transformations of daily tem-
perature in a future year t, under a warmer climate. In contrast, let ∼

rjt 0
T  represent the counterfactual temperature vector for the same 
impact region under a climatology that is the same as that of a  
historical baseline period t0 (Supplementary Section B.4). These vec-
tors are constructed in exactly the same way as for the temperature 
vectors used in estimating equation (3), except that we take a weighted 
aggregation only over grid cells z within the impact region rather 
than the entire country; for example, element m of Trjt

∼
 is 

∼
T w T= ∑ ∑rjtm d t z r zr zjdtm∈ ∈ , where wzr denotes the share of an impact 
region r’s population that falls into grid cell z (Supplementary Sec-
tion  A.2.4). The impact of climate change on fuel category c is 
expressed as the estimated change in per-capita consumption relative 

to a no-climate-change counterfactual in which the future climatol-
ogy is the same as in t0:
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Impact of climate change per capita

= ~ |logGDPPC , CDD , HDD

− ~ |logGDPPC , CDD , HDD .

crjt

c rjt jt rjt rjt

c rjt jt rjt rjt

Temperature−induced per−capita energy consumptionunder climate change

(withincome growthand climate−drivenadaptation) (A)

Temperature−induced per−capita energy consumptionwithout climate change

(with income growth) (B)

0 0 0

T

T

The object Impact of climate change per capitacrjt in equation (4) rep-
resents the change in annual per-capita electricity or other fuels con-
sumption due to a shift in the temperature distribution under climate 
change, accounting for the evolution of energy–temperature responses 
as locations warm and incomes increase. It isolates the additional 
impact of climate change net of other factors (for example, income) 
that will change in the future. The two projections (A) and (B) are iden-
tical in every way, except for the climate. Thus, we evaluate (B) using 
future levels of income but use 

∼
T, CDD and HDD values from a histori-

cal baseline t0 (Supplementary Section B.4). All fixed effects and other 
controls cancel out and are therefore omitted.

We construct estimates of equation (4) for all impact regions up to 
2099 under emissions scenarios RCP 8.5 and RCP 4.5, using each of 
the 33 climate projections in the SMME. Figure 2a maps mean impact 
estimates across these 33 climate projections at year 2099 under RCP 
8.5, whereas Fig. 2b, c shows impacts aggregated to the country and 
global levels, respectively. Confidence intervals around the means are 
constructed to reflect both climatological and econometric sources 
of uncertainty. The distribution of impacts across 33 climate projec-
tions captures uncertainties in the climate system to 2099, and we 
additionally capture uncertainty arising from econometric estimation 
of equation (3) using the delta method69. Supplementary Section B.5 
details the method used to combine both these independent sources 
of uncertainty.

To highlight the critical importance of income growth and 
climate-driven adaptation in shaping future energy–temperature 
responses, we also consider a ‘no adaptation’ impact projection that 
ignores these factors (green lines in Fig. 2c). To do this, we project
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= ~ |logGDPPC , CDD , HDD
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crjt

c rjt jt rjt rjt

c rjt jt rjt rjt

No adaptation

Temperature−induced per−capita energy consumptionunder climate change

(no adaptation)

Temperature−induced per−capita energy consumptionwithout climate change

(no adaptation)

0 0 0

0 0 0 0

which captures the change in consumption responses due to future 
temperature, holding each impact region’s income and climate fixed 
at historical baseline values for all years in the projection.

Estimating global energy damage functions
Our fourth step is to pool empirical estimates of climate change impacts 
constructed using equation (4) to fit global energy damage functions, 
which express global energy consumption costs of climate change as 
a function of the change in global mean surface temperature relative 
to the 2001–2010 average level (ΔGMST)4. These damage functions 
summarize the economic costs of all impacts measured in the detailed 
empirical analysis, demonstrating how they vary with the change in 
global mean surface temperature.
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Damage functions to 2099 are directly built from estimates of global 

costs (Dtlps, denominated in either EJ or dollars) in each year (t) using 
33 climate models (l), two emissions scenarios (p) and a resampling of 
estimates (s) that captures uncertainty in the estimation of equation (3). 
We interpret each of the resulting 33,000 simulation outputs Dtlps as a 
potential realization of damages that result from the spatial distribu-
tion of warming in model l, given the overall ΔGMST that is shown by 
that model under the emissions scenario p. Multiple simulations lead 
to an empirically derived distribution of potential outcomes that are 
conditional on the ΔGMST value for the year, climate model and emis-
sions scenario used to generate that projection. To construct damage 
functions, we use these outcomes to estimate a conditional distribu-
tion of damages17,18 using ordinary least squares, to obtain expected 
values, and quantile regressions, to capture uncertainty in damages 
conditional on ΔGMST.

In our projections of the future, the underlying population distri-
bution and level of per-capita income are evolving over time, thereby 
shaping the sensitivity of energy consumption to warming and through 
it, global damages. These changes over time require the construction of 
year-specific damage functions. Thus, we separately estimate a quad-
ratic damage function in each year:

D t ψ ψ ψ ε(ΔGMST, ) = + ΔGMST + ΔGMST + , (6)tlps
t t

tlp
t

tlp tlps0 1 2
2

where ψ ψ ψ, andt t t
0 1 2  represent year-specific coefficients to be esti-

mated, and where we use  all simulations within a five-year window of  
year t, thereby allowing the shape of the function D(ΔGMST,  t)tlps to 
evolve flexibly and smoothly  over the century. Figure 3c shows  
examples of damage functions at the end of the century, with each 
point in the scatterplot representing an individual realization of  
Dtlps. The left and middle panels demonstrate examples of  
separate damage functions for electricity and other fuels, respectively, 
where the realizations are denominated in EJ. In these panels, a  
realization of Dtlps is a global aggregation of per-capita consumption 
impacts projected in every impact region at year t under climate  
model l, emissions scenario p  and simulation s, that is, 
D W= ∑ ∑ × Impact of climate change per capitatlps j r j rjt crjt lps∈ ,

, for fuel 
category c (electricity or other fuels), where Wrjt denotes the population 
of impact region r in country j at year t (Supplementary Section  
A.3.3). The right panel shows a damage function for total energy 
expenditure, denominated in dollars. To monetize the projected 
impacts of climate change on energy consumption, we apply 
country-specific real prices for electricity and other fuels to the pro-
jected quantity impacts, thus reflecting differential costs across geog-
raphies and fuels. Hence, a realization of Dtlps in the right panel is 

W ρ∑ ∑ ∑ × × Impact of climate change per capitaj r j c rjt cjt crjt lps∈ ,
, where 

ρcjt denotes a country–year-specific price for fuel category c. Price 
trajectories up to 2099 are constructed in one of two ways: (1) by 
extrapolating present-day prices under various price-growth-scenario 
assumptions or (2) by utilizing price projections developed in existing 
IAMs (Supplementary Section C).

In addition to estimating expected damages, we estimate 19 quan-
tile regressions (for every 5th quantile from the 5th to 95th quantiles) 
to capture the full distribution of damages conditional on ΔGMST 
(Supplementary Section E.4). Quantile regressions also use a quad-
ratic functional form (equation (6)), but with different coefficients 
and residuals. The resulting conditional distribution reflects econo-
metric uncertainty in the impact estimates from which damages are 
constructed, as well as differences in the spatial patterns of warming 
exhibited across different climate models within the SMME. The 5th–
95th quantile ranges from this conditional distribution are indicated 
by the shaded areas in Fig. 3c.

As described in the next step, we use the estimated dollar- 
denominated damage functions to compute the net change in global 
energy expenditures associated with an additional ton of CO2. As 

CO2 is long lived in the atmosphere, the US National Academy of Sci-
ences recommends computing SCC values that capture damages to 
the year 23006. As CMIP5 models are not run beyond 2099, the SMME 
sample ends in 2099. Therefore, it is necessary to develop a separate 
approach to extend these damage functions beyond 2099. Details of 
this approach can be found in Supplementary Section D.

Figure 3d depicts damage functions for every ten years up to the end 
of the century (orange and black curves, estimated using equation (6)), 
as well as extended damage functions for every 50 years post-2100 
(grey curves).

Calculating the partial SCC
In the final step, we combine a probabilistic, simple climate–carbon 
cycle model with the set of damage functions described above to com-
pute the partial SCC. The partial SCC at time t0 is defined as the marginal 
social cost from elevated energy expenditures imposed by the emission 
of a marginal ton of CO2 at t0 holding all other factors fixed (including 
the forecast trajectory of baseline greenhouse gas emissions). This is 
expressed as:

∑ D t
Partial SCC = DF

d ^(ΔGMST, )
dΔGMST

dΔGMST
dCO

, (7)t
t t

t
t

t

t=

2300

2,0 0
0

�

where dΔGMST
dCO

t

t2, 0

� is the estimated increase in ΔGMST that occurs at each 

moment in time along the baseline climate trajectory (for example, 
RCP 8.5) as a result of a marginal unit of emissions at time t0, which we 
approximate with a small pulse of CO2 emissions occurring at time t0. 
The values D td ˆ(ΔGMST, )

dΔGMSTt
 are the marginal damages at each moment in 

time that occur as a result of this small change in future global tem-
peratures; they are computed using the damage functions described 
in equation (6). The discount factor, DFt, converts damages in future 
year t into an NPV.

To calculate the change in ΔGMSTt due to a marginal pulse of CO2 in 
2020, we adapt a version of the FAIR simple climate model that has 
been developed especially for this type of calculation (Supplementary 
Section E)25,70. Specifically, we use FAIR to calculate ΔGMSTt trajectories 
for emissions scenarios RCP 4.5 and RCP 8.5, both with and without an 
exogenous impulse of 1 GtC (equivalent to 3.66 GtCO2) in the year 2020, 
an approximation of a marginal emission for which the model numer-
ics are stable. In FAIR, this emissions impulse perturbs the trajectory 
of atmospheric CO2 concentrations and ΔGMSTt for 2020–2300, with 
dynamics that are influenced by the baseline RCP scenario. In each 
scenario, the trajectory of damages in the ‘RCP + pulse’ simulation is 
differenced from the baseline RCP simulation to compute 

D td ^(ΔGMST, )
dΔGMST

dΔGMST
dCOt

t

t2, 0

�, and the resulting damages are converted into US$ 

per 1 tCO2 and discounted to the present.
As there are multiple views on how best to discount future damages 

(see refs. 6,39,40 for reviews and discussions of various options and their 
implications), we present multiple estimates using both constant dis-
count rates and ‘Ramsey’ discounting6. In the case of a constant discount 
rate r, DF = et

r t t− ( − )0. We use the range of values r ∈ {0.02, 0.025, 0.03, 0.05} 
to explore the influence of the discount rate. The value r = 0.02 is con-
sistent with ten-year US Treasury rates over the past two decades71,72 
and the remaining values are recommended by ref. 1.

In the case of Ramsey discounting, IDF = et
r− ∑ s s t> 0s t

t
= 0 , where rs denotes 

the time-varying discount rate for year s, and s t> 0
I  is an indicator vari-

able taking a value of one if year s > t0. Time-varying discount rates are 
calculated according to the Ramsey equation rs = δ + ηgs, where the 
parameter δ measures the pure rate of time preference, gs measures 
the growth rate of consumption in year s, and η is the elasticity of mar-
ginal utility of consumption47. We use global per-capita income growth 
from the SSP scenarios to obtain annual values for gs, and explore a 
range of parameter values for δ and η based on previous litera-
ture29,39,47,73–79 and guidance from the US National Academy of Sciences6. 



We present estimates using six combinations of δ and η values, choos-
ing from δ ∈ {0%, 1%} and η ∈ {1, 2, 3}. Details of how these combinations 
were selected can be found in Supplementary Section E.3.

To capture uncertainty in the climate physics represented in FAIR, 
we generate a distribution of future temperature trajectories by 
resampling the equilibrium climate sensitivity, the transient climate 
response, the short thermal adjustment time and the timescale of 
rapid carbon uptake by the ocean mixed layer from a joint distribution 
that we constrain using findings from the literature (Supplementary 
Section E.2). The solid lines in Fig. 4 indicate  the median trajectories 
when sampling from this constrained joint distribution (Fig. 4b,c) or 
when sampling jointly from both this conditional joint distribution 
and quantiles of the damage function (Fig. 4d); shaded areas indicate 
interquartile ranges. The final range of uncertainty in projected dam-
ages (shaded area in Fig. 4d) thus combines uncertainty in climate 
sensitivity with uncertainty in damages, conditional on the climate 
sensitivity.

Figure 4e and Extended Data Tables 1 and 2 present partial SCC esti-
mates under RCP 8.5 and RCP 4.5, assuming various discount rates 
and future energy price scenarios. The 5th–95th percentile ranges 
(in parentheses) account for econometric and climatological uncer-
tainty (Supplementary Section E.4). Additional partial SCC estimates 
demonstrating sensitivity to alternative approaches for estimating 
post-2100 damages, and alternative socioeconomic scenarios can be 
found in Supplementary Section F.

Data availability
The data for replicating the findings of this study are available on 
Zenodo at https://doi.org/10.5281/zenodo.5099834.

Code availability
The code for replicating the findings of this study is available on GitHub 
at https://github.com/ClimateImpactLab/energy-code-release-2020/.
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Extended Data Fig. 1 | Map of the 24,378 “impact regions” for which 
location-specific projections are calculated. Map is produced with R 
software, ggplot2 package, using Global Administrative Region dataset 
(GADM) basemap50. A clustering algorithm17 is used to form these impact 

regions from the full set of GADM administrative regions50, such that they are 
roughly similar in total population, and so that they are approximately 
internally homogenous with respect to mean temperature, diurnal 
temperature range, and mean precipitation.
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Extended Data Fig. 2 | Future climate projections used in generating 
probabilistic, empirically-based climate change impact projections. Panel 
(a) shows local climate distributions under the 21 climate models (outlined 
maps) and 12 model surrogates (dimmed maps) (‘Data assembly’ in Methods, 
Supplementary Sections A.2.2, A.2.3) that are weighted in climate change 
impact projections so that the weighted distribution of the 2080 to 2099 
global mean surface temperature anomaly (ΔGMST) exhibited by the 33 total 
models matches the probability distribution of estimated ΔGMST responses 

(blue-grey line) under a high (RCP8.5) emissions scenario. For this 
construction, the anomaly is relative to values in 1986–2005. Maps are 
produced with Python programming language, using data from ref. 43 and 
Global Administrative Region dataset (GADM) basemap79. Panel (b) lists all 33 
models and model surrogates, and their corresponding model weights for both 
high (RCP8.5) and moderate (RCP4.5) emissions scenarios43. These are used to 
capture climate model uncertainty when generating climate change impact 
projections under a given emissions scenario (Supplementary Section B.5).



Extended Data Fig. 3 | Sample overlap between present and future. The 
density plots demonstrate the overlap in the joint income × long-run climate 
distributions at 2010 and 2090. Long-run climate is measured by heating 
degree days (a) and cooling degree days (b). Distributions are for 24,378 impact 
regions, in 2010 (grey-black) and 2090 under the RCP8.5 emissions scenario 
and SSP3 socioeconomic scenario (red-orange). All impact regions within a 

country are assigned the national per capita income. Although the future 
distribution is shifted towards higher incomes, greater cooling degree days, 
and fewer heating degree days, the substantial overlap in the two distributions 
allows for credible extrapolation of energy-temperature responses into the 
future (‘Projecting the impacts of climate change’ in Methods).
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Extended Data Fig. 4 | Climate-change induced changes in total energy 
expenditures at end-of-century, by present-day income deciles. The bar 
chart above depicts annual climate-change induced changes in total energy 
expenditures at 2099 under a high emissions scenario (RCP8.5) and the SSP3 
socioeconomic scenario, separately for each decile of 2012 national per capita 
income. Income deciles are calculated across all countries at 2012; 
representative countries in selected deciles are indicated. Expenditures are 
calculated under a 1.4% annual price growth scenario and are expressed in 2019 
USD per capita based on each decile’s projected 2099 population. Bars 
represent mean estimates across an ensemble of 33 climate models. Intervals 
indicate 5th–95th percentiles of projected distributions, accounting for climate 
model and econometric uncertainty (Supplementary Section B.5). The chart 
demonstrates that heterogeneity in expenditure changes at end-of-century 
(Fig. 2a) is systematically correlated with present-day national income per 
capita. Over the upper half of the present-day income distribution, we find that 

countries with higher incomes today are generally projected to experience 
larger overall net savings at end-of-century. This partly reflects the fact that 
today’s richest countries tend to be in temperate climates, where energy 
savings from fewer cold days will more than offset increases in costs from more 
hot days. The smallest savings at end-of-century are projected to occur in 
middle deciles of the present-day income distribution, which is consistent with 
many of these countries being situated in the tropics and also attaining 
sufficiently high income levels at end-of-century to increase electricity 
consumption due to more hot days. The positive correlation between 
present-day income and net savings at end-of-century does not hold in the 
lower ranges of today’s income distribution. Net savings in today’s poorest 
deciles (i.e. first and second) are actually higher than in the third and fourth 
deciles, as many of the poorest countries are projected to remain too poor at 
end-of-century to increase electricity consumption on hot days.



Extended Data Fig. 5 | The impacts of climate change on energy 
expenditures. Time series of changes in total global energy expenditures 
under the SSP3 socioeconomic scenario for moderate (RCP4.5; Panel a) and 
high (RCP8.5; Panel b) emissions scenarios, assuming various energy price 
trajectories. Three of these trajectories are based on direct extrapolation of 
present-day price statistics at either moderate (1.4%), stagnant (0%), or high 
(3%) annual growth rates (Supplementary Section C.1), while five are based on 
price projections from integrated assessment models (Supplementary 

Section C.2) named in the legend. Expenditure changes in a given year are 
expressed as a percent of global GDP in that year. Aggregate global expenditure 
changes are obtained by monetizing and summing over the spatially 
disaggregated impacts across both electricity and other fuels. Regardless of 
the emissions scenario or assumed price trajectory, end-of-century changes 
(i.e. net savings) represent a minute fraction of the US $ 353 trillion 
end-of-century global GDP projected under SSP3.
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Extended Data Fig. 6 | Recovering local temperature-energy consumption 
relationships using aggregate energy consumption data. An illustration 
demonstrating how the effect of local temperature on local per capita energy 
consumption can be recovered from observations of local temperatures and 
national per capita energy consumption. a: Let a hypothetical, linear response 
of daily temperature and energy consumption exist at a local (i.e. grid cell) 
level, depicted by the diagonal grey line. Let E denote baseline daily energy 
consumption on a 20 °C day. Average per capita energy consumption is 
observed on day d in countries i (blue circle) and j (pink circle), respectively 
consisting of 8 and 5 equally populated grid cells experiencing different 
temperatures. While the temperature is observed in each grid cell, only the 
national average per capita energy consumption is observed. b: Height of each 

bar represents unobserved energy consumption on day d within each grid cell. 
Pink bars are grid cells in country j and blue bars are grid cells in country i. 
Energy consumption within each grid cell responds to temperature within that 
grid cell. Averaging temperature and per capita energy consumption across 
grid cells within each country produces the country-level observations in Panel 
a. A regression using these observations recovers the grid cell-level response. 
Note that this illustration depicts a linear energy-temperature response for 
illustrative purposes, however a nonlinear temperature-energy consumption 
response can be recovered as well, if nonlinear transformations of temperature 
are computed at the grid-cell-level before being aggregated to the national 
level (‘Econometric estimation of energy–temperature responses’ in Methods, 
Equation 2).



Extended Data Table 1 | Social cost of energy consumption due to climate change under alternative future price scenarios

This table displays estimates of a partial Social Cost of Carbon for excess energy expenditure, under the socioeconomic scenario SSP3. Parentheses contain 5th–95th percentile ranges, account-
ing for damage function and climate model uncertainty (Supplementary Section E.4). Costs are valued under various projected energy price trajectories. Three of these trajectories are based 
on direct extrapolation of present-day price statistics at either moderate (1.4%), stagnant (0%), or high (3%) annual growth rates (Supplementary Section C.1), while five are based on price pro-
jections from integrated assessment models (Supplementary Section C.2) named in the table. Costs are discounted to the present using a constant annual discount rate (2%, 2.5%, 3%, or 5%).  
Estimates using Ramsey discounting are displayed in Extended Data Table 2.
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Extended Data Table 2 | Social cost of energy consumption due to climate change under alternative future price scenarios

This table displays estimates of a partial Social Cost of Carbon for excess energy expenditure, under the socioeconomic scenario SSP3. Parentheses contain 5th–95th percentile ranges, account-
ing for damage function and climate model uncertainty (Supplementary Section E.4). Costs are valued under various projected energy price trajectories. Three of these trajectories are based 
on direct extrapolation of present-day price statistics at either moderate (1.4%), stagnant (0%), or high (3%) annual growth rates (Supplementary Section C.1), while five are based on price 
projections from integrated assessment models (Supplementary Section C.2) named in the table. Costs are discounted to the present using Ramsey discount rates under various values of the 
pure rate of time preference, δ, and elasticity of marginal utility of consumption, η (‘Calculating the partial SCC’ in Methods). Estimates using constant annual discount rates are displayed in 
Extended Data Table 1.



Extended Data Table 3 | Feedback effects of climate change-induced energy consumption on CO2 emissions

This table provides a calculation of additional CO2 emissions in 2099 resulting from projected impacts of climate change on energy consumption under the RCP8.5 emissions scenario and 
SSP3 socioeconomic scenario. The calculation assumes that all climate change impacts to electricity consumption are powered by a combined cycle natural gas plant with 46% efficiency 
(i.e. the average 2015 efficiency of US natural gas-fired combined-cycle technology)80, and all climate change impacts to other fuels consumption are due to changes in natural gas consump-
tion. Global average per capita impacts at 2099 to electricity and other fuels consumption (Row 1) are taken from projections displayed in Fig. 2c (main text), and are converted to global total 
impacts (Row 2) by multiplying by the projected world population in 2099 under SSP3. Multiplying total electricity impacts by the emissions factor for natural gas81 scaled by 46% efficiency, 
and multiplying total other fuels impacts by the emissions factor for natural gas (Row 3) yields additional emissions from projected climate change-induced electricity and other fuels consump-
tion (Row 4). While assuming all impacts occur through natural gas likely leads to an upper bound in the magnitude of CO2 emissions feedbacks, the magnitude is nonetheless small when com-
pared to total 2099 global emissions of 100 Gt CO2 under RCP 8.582. While global CO2 emissions feedbacks are likely negligible, it is possible that climate change-induced energy consumption 
will result in substantial changes to local air pollutant emissions in certain locations. The extent of these changes will depend heavily on the shape of the future global energy system, including 
for example, the location and emissions trajectory of individual electricity generation plants throughout the world and the populations who will be exposed to the air pollution from each. Future 
research should explore the local air pollution implications of climate change-induced energy consumption.
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