Native Hadoop YARN integration for batch/ETL Apache
Spark applications

Apache Spark is a general-purpose data processing framework and execution environment. It
consists of the following core architectural components:

1. API - allows user to describe a DAG process using variety of languages (Java, Scala,
Python)

2. DAG Compiler/Optimizer - assembler and optimizer which interprets Spark API code
provided by a user into ‘stages’ with each stage representing a single Vertex of the
overall DAG

3. DAG Execution Engine - an engine that manages the execution of the assembled DAG.

Spark already integrates with resource-managers such as Apache Hadoop YARN, Mesos etc.,
However, in the context of YARN, the current model of Spark-on-YARN (where-in a Spark
cluster is deployed per-user for security, isolation etc.) leads to less than ideal utilization of
cluster resources - particularly for large, batch or ETL applications. In these batch scenarios,
especially as Spark aims to support Apache Hive, Apache Pig etc. for batch workloads, Spark
can take advantage of the Hadoop architecture where YARN containers are allocated per
task; and resources are given up right-away when the task completes. Furthermore, we can
rely on the state-less shuffle provided by YARN NodeManagers which do not rely on Spark
executors being up to serve map-outputs to aggregation tasks.

We propose exactly such an architecture for Spark - again, only for batch scenarios. The
Spark community already recognizes this and there is nascent effort (see SPARK-3174) - we
propose to considerably speed this effort via this jira. Overall, by providing native integration
for Spark on YARN for batch applications by utilizing features such as YARN shulffle, Tez etc.
we feel the Spark community would benefit considerably - there-by allow the Spark user
community to use Spark for all use-cases on Hadoop: interactive, in-memory, streaming and,
now, batch in a shared, multi-tenant manner. It’s very possible that at some point in the
future we can make these changes to Spark core directly - however, as evidenced by the
discussion in SPARK-3174 wholesale changes to Spark core in the context of YARN will take
time - the proposal here provides a simple, risk-free option as a bridge and allows Spark
users to take full advantage of YARN for batch processing scenarios.

We also appreciate that the changes to Spark core need to be very minimal - as such we are
only proposing a very minimal JobExecutionContext interface to allow SparkContext to
delegate. This new interface is completely hidden from users and is private to Spark core.
The default will, obviously, continue to be the current Spark-on-YARN model - the new
plugin would be optional and also fully compatible so that end-users will need to explicitly
opt-in to the native YARN integration.

NOTE: The proposed change has already been tested with several execution environments and
is binary compatible with user’s code written against current and/or previous versions of Spark.

PROPOSED CHANGES

JobExecutionContext

The proposed approach would introduce JobExecutionContext

- a gateway and a delegate to Hadoop execution environment - as a non-public api
(@DeveloperAPI) not exposed to end users of Spark.

/**

Execution strategy which allows customizations around execution environment of Spark job.
Primarily used to facilitate the use of native features of Hadoop related to large scale
batch and ETL jobs.

* ¥ ¥ ¥ ¥

To enable it specify your implementation via master URL (e.g., "execution-
context:foo.bar.MyImplementation™).
*
* Implementation must provide default no-arg constructor
*/
trait JobExecutionContext
{

/** Get an RDD for a Hadoop file with an arbitrary InputFormat

"""Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
record, directly caching the returned RDD will create many references to the same object.
If you plan to directly cache Hadoop writable objects, you should first copy them using

a ‘map" function.

I I A

*/
def hadoopFile[K, V](
path: String,
inputFormatClass: Class[_ <: InputFormat[K, V1],
keyClass: Class[K],
valueClass: Class[V],
minPartitions: Int = 1): RDD[L(K, V)]

/**
Get an RDD for a given Hadoop file with an arbitrary new API InputFormat
and extra configuration options to pass to the input format.

record, directly caching the returned RDD will create many references to the same object.
If you plan to directly cache Hadoop writable objects, you should first copy them using
a ‘map" function.

*/

def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]](

path: String,

fClass: Class[F],

kClass: Class[K],

vClass: Class[V],

conf: Configuration = new Configuration): RDD[(K, V)]

*

*

*

* ""'Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each
*

*

*

/**
* Broadcast a read-only variable to the cluster, returning a
* [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions.

* The variable will be sent to each cluster only once.
*/
def broadcast[T: ClassTag](value: T): Broadcast[T]

/**
* Run a function on a given set of partitions in an RDD and pass the results to the given
* handler function. This is the main entry point for all actions in Spark. The allowlLocal
* flag allows you to manage scheduler's computation. Keep in mind that it is implementation
* specific and may simply be ignored by some implementations.
*/
def runlJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
allowLocal: Boolean,
resultHandler: (Int, U) => Unit)

As you can see all 4 operations derive from operations available on SparkContext, so all
invocations of those operations on SparkContext will be delegated to currently configured
instance of JobExecutionContext. Implementation of JobExecutionContext will be configured
via ‘execution-context:foo.bar.MyJobExecutionContext” master URL to be consistent with how
Spark currently integrates with external platforms.

There are several benefits to the above approach
* Binary compatibility with the old versions of SparkContext, ensuring that user’s code
written using earlier versions of Spark still works as expected without any changes.
* Introduces a first-class plug-in model for providing customization around native
features of Hadoop.

Further more we are more than happy to contribute the native YARN integration i.e. the
other implementation of JobExecutionContext to Apache Spark as an optional external
module and would prefer to do so in fact.

Regardless, it will be a separate jira de-coupled from this one, which only proposes to the
plug-in strategy.

